Macroecological patterns of planktonic unicellular eukaryotes richness in the Southeast Pacific Ocean


  • Sutherland, W. J. et al. Identification of 100 fundamental ecological questions. J. Ecol. 101, 58–67 (2013).

    Article 

    Google Scholar
     

  • Geisen, S. et al. Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol. Biochem. 111, 94–103 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Azeem Jadoon, W., Nakai, R. & Naganuma, T. Biogeographical note on Antarctic microflorae: Endemism and cosmopolitanism. Geosci. Front. 4, 633–646 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Geisen, S. et al. Soil protists: A fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eme, L. & Tamarit, D. Microbial diversity and open questions about the deep tree of life. Genome Biol. Evol. 16, evae053 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. et al. Microbial macroecology: In search of mechanisms governing microbial biogeographic patterns. Global Ecol. Biogeogr. 29, 1870–1886 (2020).

    Article 

    Google Scholar
     

  • Dickey, J. R. et al. The utility of macroecological rules for microbial biogeography. Front. Ecol. Evol. 9, 633155 (2021).

    Article 

    Google Scholar
     

  • Bruni, E. P. et al. Global distribution modelling of a conspicuous Gondwanian soil protist reveals latitudinal dispersal limitation and range contraction in response to climate warming. Divers. Distrib. 30, e13779 (2024).

    Article 

    Google Scholar
     

  • Barberán, A. The microbial contribution to macroecology. Front. Microbiol https://doi.org/10.3389/fmicb.2014.00203 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiaffino, M. R. et al. Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ. Microbiol. 18, 5249–5264 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández, L. D., Hernández, C. E., Schiaffino, M. R., Izaguirre, I. & Lara, E. Geographical distance and local environmental conditions drive the genetic population structure of a freshwater microalga (Bathycoccaceae; Chlorophyta) in Patagonian lakes. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix125 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fenchel, T. Biogeography for bacteria. Science 301, 925–926 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martiny, J. B. H. et al. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol 4, 102–112 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fine, P. V. A. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).

    Article 

    Google Scholar
     

  • McClain, C. R. & Schlacher, T. A. On some hypotheses of diversity of animal life at great depths on the sea floor. Mar. Ecol. 36, 849–872 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Cruz-Motta, J. J. et al. Latitudinal patterns of species diversity on South American rocky shores: Local processes lead to contrasting trends in regional and local species diversity. J. Biogeogr. 47, 1966–1979 (2020).

    Article 

    Google Scholar
     

  • Huggett, R. J. Fundamentals of Biogeography (Routledge, 2004).

    Book 

    Google Scholar
     

  • Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bridle, J. & Hoffmann, A. Understanding the biology of species’ ranges: When and how does evolution change the rules of ecological engagement?. Phil. Trans. R. Soc. B 377, 20210027 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos 65, 514 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).

    Article 

    Google Scholar
     

  • Davies, T. J., Savolainen, V., Chase, M. W., Moat, J. & Barraclough, T. G. Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. Lond. B 271, 2195–2200 (2004).

    Article 

    Google Scholar
     

  • Evans, K. L., Warren, P. H. & Gaston, K. J. Species–energy relationships at the macroecological scale: A review of the mechanisms. Biol. Rev. 80, 1–25 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Hurlbert, A. H. & Stegen, J. C. On the processes generating latitudinal richness gradients: identifying diagnostic patterns and predictions. Front. Genet https://doi.org/10.3389/fgene.2014.00420 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabosky, D. L., Title, P. O. & Huang, H. Minimal effects of latitude on present-day speciation rates in New World birds. Proc. R. Soc. B. 282, 20142889 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández, L. D. et al. Water–energy balance, past ecological perturbations and evolutionary constraints shape the latitudinal diversity gradient of soil testate amoebae in south-western South America. Global Ecol. Biogeogr. 25, 1216–1227 (2016).

    Article 

    Google Scholar
     

  • Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Regionalización biogeográfica en Iberoamérica y tópicos afines: primeras jornadas biogeográficas de la Red Iberoamericana de biogeografia y entomología sistemática (RIBES XII.I-CYTED). (Fac. des Ciencias, UNAM [u.a.], México, 2005).

  • Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Li, F., Shao, L. & Li, S. Tropical niche conservatism explains the eocene migration from india to Southeast Asia in ochyroceratid spiders. Syst. Biol. 69, 987–998 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Brown, J. H. Why are there so many species in the tropics?. J. Biogeogr. 41, 8–22 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wright, D. H., Patterson, B. D., Mikkelson, G. M., Cutler, A. & Atmar, W. A comparative analysis of nested subset patterns of species composition. Oecologia 113, 1–20 (1997).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Article 

    Google Scholar
     

  • Beijerinck, M. W. De infusies en de ontdekking der backteriën. In Jaarboek van de Koninklijke Akademie van Wetenschappen (Müller, Amsterdam, 1913)

  • Baas Becking, L. B. Geobiologie of Inleiding Tot de Milieukunde (in Dutch) (WP Van Stockum & Zoon, 1934).


    Google Scholar
     

  • Holman, L. E. et al. Animals, protists and bacteria share marine biogeographic patterns. Nat. Ecol. Evol. 5, 738–746 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Caracciolo, M. et al. Seasonal dynamics of marine protist communities in tidally mixed coastal waters. Mol. Ecol. 31, 3761–3783 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabrerizo, M. J., Medina-Sánchez, J. M., González-Olalla, J. M., Sánchez-Gómez, D. & Carrillo, P. Microbial plankton responses to multiple environmental drivers in marine ecosystems with different phosphorus limitation degrees. Sci. Total Environ. 816, 151491 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haraguchi, L., Jakobsen, H. H., Lundholm, N. & Carstensen, J. Phytoplankton community dynamic: A driver for ciliate trophic strategies. Front. Mar. Sci. 5, 272 (2018).

    Article 

    Google Scholar
     

  • Fernández, L. D. et al. Niche conservatism drives the elevational diversity gradient in major groups of free-living soil unicellular eukaryotes. Microb. Ecol. 83, 459–469 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Edgcomb, V. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr. Opin. Microbiol. 31, 169–175 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W., Pan, Y., Yu, L., Yang, J. & Zhang, W. Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments, Southeast China. Front. Microbiol. 8, 1912 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papke, R. T. & Ward, D. M. The importance of physical isolation to microbial diversification. FEMS Microbiol. Ecol. 48, 293–303 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vincent, W. F. Evolutionary origins of Antarctic microbiota: Invasion, selection and endemism. Antart. Sci. 12, 374–385 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Danovaro, R. Understanding marine biodiversity patterns and drivers: The fall of Icarus. Mar. Ecol. 5, e12814. https://doi.org/10.1111/maec.12814 (2024).

    Article 

    Google Scholar
     

  • Costello, M. J. et al. A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5, e12110 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiedler, P. C., Philbrick, V. & Chavez, F. P. Oceanic upwelling and productivity in the eastern tropical Pacific. Limnol. Oceanogr. 36, 1834–1850 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Daneri, G. et al. Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Mar. Ecol. Prog. Ser. 197, 41–49 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Thiel, M. et al. The humboldt current system of northern and central Chile: Oceanographic processes, ecological interactions and socioeconomic feedback. In Oceanography and Marine Biology Vol. 20074975 (eds Gibson, R. et al.) 195–344 (CRC Press, 2007).

    Chapter 

    Google Scholar
     

  • Hidalgo, P. & Escribano, R. Coupling of life cycles of the copepods Calanus chilensis and Centropages brachiatus to upwelling induced variability in the central-southern region of Chile. Prog. Oceanogr. 75, 501–517 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Escribano, R., Hidalgo, P., Fuentes, M. & Donoso, K. Zooplankton time series in the coastal zone off Chile: Variation in upwelling and responses of the copepod community. Prog. Oceanogr. 97–100, 174–186 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Escribano, R. & Schneider, W. The structure and functioning of the coastal upwelling system off central/southern Chile. Prog. Oceanogr. 75, 343–347 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Strub, P. T., James, C., Montecino, V., Rutllant, J. A. & Blanco, J. L. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Prog. Oceanogr. 172, 159–198 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kämpf, J. & Chapman, P. Seasonal wind-driven coastal upwelling systems. In Upwelling Systems of the World 315–361 (Springer International Publishing, 2016).

  • Iriarte, J. L., González, H. E. & Nahuelhual, L. Patagonian fjord ecosystems in southern Chile as a highly vulnerable region: Problems and needs. Ambio 39, 463–466 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corredor-Acosta, A. et al. Spatio-temporal variability of chlorophyll-A and environmental variables in the panama bight. Remote Sens. 12, 2150 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems: Data exploration. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar
     

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography 37, 191–203 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Williams, K. J., Belbin, L., Austin, M. P., Stein, J. L. & Ferrier, S. Which environmental variables should I use in my biodiversity model?. Int. J. Geogr. Inf. Sci. 26, 2009–2047 (2012).

    Article 

    Google Scholar
     

  • Jeng, C. C. Why a variance inflation factor of 10 is not an ideal cutoff for multicollinearity diagnostics. J. Educ. Stud. 57, 067–092 (2023).


    Google Scholar
     

  • Van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).

    Article 
    ADS 

    Google Scholar
     

  • MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).

    Article 

    Google Scholar
     

  • Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article 

    Google Scholar
     

  • Melo, A. S., Cianciaruso, M. V. & Almeida-Neto, M. tree NODF: Nestedness to phylogenetic, functional and other tree-based diversity metrics. Methods Ecol. Evol. 5, 563–572 (2014).

    Article 

    Google Scholar
     

  • Swingland, I. R. Biodiversity, Definition of. In Encyclopedia of Biodiversity 399–410 (Elsevier, 2013). https://doi.org/10.1016/B978-0-12-384719-5.00009-5.

  • Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206 (1992).

    Article 

    Google Scholar
     

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar
     

  • Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecol. Biogeogr. 27, 760–786 (2018).

    Article 

    Google Scholar
     

  • Rue, H., Martino, S. & Chopin, N. Approximate Bayesian Inference for Latent Gaussian models by using Integrated Nested Laplace Approximations. J. R. Stat. Soc. Ser. B Stat Methodol. 71, 319–392 (2009).

    Article 
    MathSciNet 

    Google Scholar
     

  • Lindgren, F., Rue, H. & Lindström, J. An explicit link between gaussian fields and gaussian markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat Methodol. 73, 423–498 (2011).

    Article 
    MathSciNet 

    Google Scholar
     

  • Lindgren, F. & Rue, H. Bayesian spatial modelling with R—INLA. J. Stat. Soft. https://doi.org/10.18637/jss.v063.i19 (2015).

    Article 

    Google Scholar
     

  • Poggio, L., Gimona, A., Spezia, L. & Brewer, M. J. Bayesian spatial modelling of soil properties and their uncertainty: The example of soil organic matter in Scotland using R-INLA. Geoderma 277, 69–82 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Muñoz, F., Pennino, M. G., Conesa, D., López-Quílez, A. & Bellido, J. M. Estimation and prediction of the spatial occurrence of fish species using Bayesian latent Gaussian models. Stoch. Environ. Res. Risk Assess 27, 1171–1180 (2013).

    Article 

    Google Scholar
     

  • Dell’Apa, A., Maria Grazia, P. & Bonzek, C. Modeling the habitat distribution of spiny dogfish (Squalus acanthias), by sex, in coastal waters of the northeastern United States. Fish. Bull. 115, 89–100 (2016).

    Article 

    Google Scholar
     

  • Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat Comput 24, 997–1016 (2014).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In 14th International Joint Conference on Artificial Intelligence (IJCAI), vol. 2, 1137–1143 (1995).

  • Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article 

    Google Scholar
     

  • Pennino, M. G., Muñoz, F., Conesa, D., López-Quίlez, A. & Bellido, J. M. Modeling sensitive elasmobranch habitats. J. Sea Res. 83, 209–218 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lezama-Ochoa, N. et al. Biodiversity and habitat characteristics of the bycatch assemblages in fish aggregating devices (FADs) and school sets in the Eastern Pacific Ocean. Front. Mar. Sci. 4, 265 (2017).

    Article 

    Google Scholar
     

  • Escalle, L. et al. Environmental factors and megafauna spatio-temporal co-occurrence with purse-seine fisheries. Fish. Oceanogr. 25, 433–447 (2016).

    Article 

    Google Scholar
     

  • Goldenberg, S. U. et al. Nutrient composition (Si:N) as driver of plankton communities during artificial upwelling. Front. Mar. Sci. 9, 1015188 (2022).

    Article 

    Google Scholar
     

  • Baumann, M. et al. Counteracting effects of nutrient composition (Si:N) on export flux under artificial upwelling. Front. Mar. Sci. 10, 1181351 (2023).

    Article 

    Google Scholar
     

  • Bode, A., Alvarez-Ossorio, M. T., Cabanas, J. M., Miranda, A. & Varela, M. Recent trends in plankton and upwelling intensity off Galicia (NW Spain). Prog. Oceanogr. 83, 342–350 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Gonzalez-Nuevo, G., Gago, J. & Cabanas, J. M. Upwelling index: a powerful tool for marine research in the NW Iberian upwelling system. J Op. Oceanogr. 7, 47–57 (2014).


    Google Scholar
     

  • Guo, X., Wu, L. & Huang, L. Spatiotemporal patterns in diversity and assembly process of marine protist communities of the Changjiang (Yangtze river) plume and its adjacent waters. Front. Microbiol. 11, 579290 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balzano, S., Abs, E. & Leterme, S. Protist diversity along a salinity gradient in a coastal lagoon. Aquat. Microb. Ecol. 74, 263–277 (2015).

    Article 

    Google Scholar
     

  • Li, S. et al. Ecological and evolutionary processes involved in shaping microbial habitat generalists and specialists in urban park ecosystems. Msystems 9, e00469-e524 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omand, M. M. et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348, 222–225 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Freilich, M. A. et al. 3D intrusions transport active surface microbial assemblages to the dark ocean. Proc. Natl. Acad. Sci. U.S.A. 121, e2319937121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreles, E., Romero, E., Ramos-Musalem, K. & Tenorio-Fernandez, L. The global ocean mixed layer depth derived from an energy approach. EGUsphere https://doi.org/10.5194/egusphere-2024-4079 (2025).

  • Gill, A. E. Atmosphere-Ocean Dynamics (Academic Press, 1982).


    Google Scholar
     

  • Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol 10, e1001292 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coogan, J., Dzwonkowski, B. & Lehrter, J. Effects of coastal upwelling and downwelling on hydrographic variability and dissolved oxygen in mobile bay. JGR Oceans 124, 791–806 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Currie, D. J. Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991).

    Article 

    Google Scholar
     

  • Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).

    Article 

    Google Scholar
     

  • Rivadeneira, M. M., Thiel, M., González, E. R. & Haye, P. A. An inverse latitudinal gradient of diversity of peracarid crustaceans along the Pacific Coast of South America: Out of the deep south: An inverse gradient of latitudinal diversity. Glob. Ecol. Biogeogr. 20, 437–448 (2011).

    Article 

    Google Scholar
     

  • Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, art24 (2011).

    Article 

    Google Scholar
     

  • Mattheeussen, R. et al. Habitat selection of aquatic testate amoebae communities on Qeqertarsuaq (Disko Island), West Greenland. Acta Protozool 44(3), 253 (2005).


    Google Scholar
     

  • Sigala Regalado, I., Lozano García, S., Pérez Alvarado, L., Caballero, M. & Lugo Vázquez, A. Ecological drivers of testate amoeba diversity in tropical water bodies of central Mexico. J. Limnol. https://doi.org/10.4081/jlimnol.2018.1699 (2018).

    Article 

    Google Scholar
     

  • Brandhorst, W. Condiciones oceanográficas estivales frente a la costa de Chile. Rev. Biol. Mar. 14, 45–84 (1971).


    Google Scholar
     

  • Fonseca, T. & Farías, M. Estudio del proceso de surgencia en la costa chilena utilizando percepción remota. Investigaciones Pesqueras 34, 33–46 (1987).


    Google Scholar
     

  • Strub, P. T., Mesias, J. M., Montecino, V., Ruttlant, J. & Salinas, S. Coastal ocean circulation off Western South America. In The Global Coastal Ocean, Regional Studies and Syntheses. 273–315 (Wiley, 1998).

  • Mohtadi, M., Hebbeln, D. & Marchant, M. Upwelling and productivity along the Peru-Chile Current derived from faunal and isotopic compositions of planktic foraminifera in surface sediments. Mar. Geol. 216, 107–126 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hansen, A., Ohde, T. & Wasmund, N. Succession of micro- and nanoplankton groups in ageing upwelled waters off Namibia. J. Mar. Syst. 140, 130–137 (2014).

    Article 

    Google Scholar
     

  • Bohata, K. Microzooplankton of the northern Benguela upwelling system (Doctoral dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky, 2015).

  • Brattström, H. & Johanssen, A. Ecological and regional zoogeography of the marine benthic fauna of Chile: Report no. 49 of the Lund University Chile Expedition 1948–49. Sarsia 68, 289–339 (1983).

    Article 

    Google Scholar
     

  • Camus, P. A. Biogeografía marina de Chile continental. Rev. Chil. Hist. Nat. https://doi.org/10.4067/S0716-078X2001000300008 (2001).

    Article 

    Google Scholar
     

  • Saeedi, H., Dennis, T. E. & Costello, M. J. Bimodal latitudinal species richness and high endemicity of razor clams (Mollusca). J. Biogeogr. 44, 592–604 (2017).

    Article 

    Google Scholar
     

  • Rivadeneira, M. M. & Poore, G. C. B. Latitudinal gradient of diversity of marine crustaceans: TOWARDS a synthesis. In Evolution and Biogeography (eds Thiel, M. & Poore, G.) 389–412 (Oxford University Press, 2020). https://doi.org/10.1093/oso/9780190637842.003.0015.

    Chapter 

    Google Scholar
     

  • Rivera, R., Escribano, R., González, C. E. & Pérez-Aragón, M. Latitudinal diversity of planktonic copepods in the Eastern Pacific: Overcoming sampling biases and predicting patterns. Front. Ecol. Evol. 12, 1305916 (2024).

    Article 

    Google Scholar
     

  • Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. Part II 56, 1083–1094 (2009).

    Article 

    Google Scholar
     

  • Fernández-Álamo, M. A. & Färber-Lorda, J. Zooplankton and the oceanography of the eastern tropical Pacific: A review. Prog. Oceanogr. 69, 318–359 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Hidalgo, P., Escribano, R. & Morales, C. E. Ontogenetic vertical distribution and diel migration of the copepod Eucalanus inermis in the oxygen minimum zone off northern Chile (20–21° S). J. Plankton Res. 27, 519–529 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. U.S.A. 105, 7774–7778 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernández-León, S. et al. Large deep-sea zooplankton biomass mirrors primary production in the global ocean. Nat. Commun. 11, 6048 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marañón, E., Cermeño, P., Latasa, M. & Tadonléké, R. D. Resource supply alone explains the variability of marine phytoplankton size structure. Limnol. Oceanogr. 60, 1848–1854 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gong, F. et al. Spatial shifts in size structure, phylogenetic diversity, community composition and abundance of small eukaryotic plankton in a coastal upwelling area of the northern South China Sea. J. Plankton Res. 42(6), 650–667 (2020).

    CAS 

    Google Scholar
     

  • James, C. C. et al. Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region. Nat. Commun. 13, 2448 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McManus, G. & Peterson, W. Bacterioplankton production in the nearshore zone during upwelling off central Chile. Mar. Ecol. Prog. Ser. 43, 11–17 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Vargas, C., Contreras, P. & Iriarte, J. Relative importance of phototrophic, heterotrophic, and mixotrophic nanoflagellates in the microbial food web of a river-influenced coastal upwelling area. Aquat. Microb. Ecol. 65, 233–248 (2012).

    Article 

    Google Scholar
     

  • Figueiras, F. G., Arbones, B., Castro, C. G., Froján, M. & Teixeira, I. G. About pigmented nanoflagellates and the importance of mixotrophy in a coastal upwelling system. Front. Mar. Sci. 7, 144 (2020).

    Article 

    Google Scholar
     

  • Hou, L. et al. Effects of mixed layer depth on phytoplankton biomass in a tropical marginal ocean: A multiple timescale analysis. Earth’s Future 10, e2020EF001842 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Diaz, B. P. et al. Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic. Nat Commun 12, 6634 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Charrieau, L. M. et al. Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance. Biogeosciences 16, 3835–3852 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I. & Castillo, K. D. Impacts of seawater saturation state (ΩA= 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochim. Cosmochim. Acta 192, 318–337 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moreno, R. A., Rivadeneira, M. M., Hernández, C. E., Sampértegui, S. & Rozbaczylo, N. Do Rapoport’s rule, the mid-domain effect or the source–sink hypotheses predict bathymetric patterns of polychaete richness on the Pacific coast of South America?. Glob. Ecol. Biogeogr. 17, 415–423 (2008).

    Article 

    Google Scholar
     

  • Baumgartner, M. T. Connectance and nestedness as stabilizing factors in response to pulse disturbances in adaptive antagonistic networks. J. Theor. Biol. 486, 110073 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L. & Lange, C. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep Sea Res. Part II 56, 992–1003 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Espinoza-Morriberón, D. et al. Oxygen variability during ENSO in the tropical south eastern Pacific. Front. Mar. Sci. 5, 526 (2019).

    Article 

    Google Scholar
     

  • Paulmier, A. & Ruiz-Pino, D. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80, 113–128 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Finlay, B. J., Corliss, J. O., Esteban, G. & Fenchel, T. Biodiversity at the microbial level: The number of free-living ciliates in the biosphere. Q. Rev. Biol. 71, 221–237 (1996).

    Article 

    Google Scholar
     

  • Finlay, B. J. & Clarke, K. J. Ubiquitous dispersal of microbial species. Nature 400, 828–828 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Agatha, S. Global diversity of Aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in Marine and Brackish Sea Water. PLoS ONE 6, e22466 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17, 407–418 (2008).

    Article 

    Google Scholar
     

  • Mitchell, E. A. D. & Meisterfeld, R. Taxonomic confusion blurs the debate on cosmopolitanism versus local endemism of free-living protists. Protist 156, 263–267 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Foissner, W. Dispersal and biogeography of protists: Recent advances. Jpn. J. Protozool. 40(1), 1–16 (2007).


    Google Scholar
     

  • Fondi, M. et al. “Every gene is everywhere but the environment selects”: Global geolocalization of gene sharing in environmental samples through network analysis. Genome Biol Evol 8, 1388–1400 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Geographic Barriers Isolate Endemic

  • González-Rocha, G. et al. Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective. PLoS ONE 12, e0179390 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foissner, W. Protist diversity and distribution: Some basic considerations. Biodivers Conserv 17, 235–242 (2008).

    Article 

    Google Scholar
     

  • Foissner, W. Ubiquity and cosmopolitanism of protists questioned. Soc. Int. Limnol. News. 43, 6–7 (2004).


    Google Scholar
     

  • Foissner, W. Biogeography and dispersal of micro-organisms: A review emphasizing protists. Acta Protozool. 45, 111–136 (2006).


    Google Scholar
     

  • De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Fenchel, T. & Finlay, B. J. The ubiquity of small species: Patterns of local and global diversity. Bioscience 54, 777 (2004).

    Article 

    Google Scholar
     

  • Custer, G. F., Bresciani, L. & Dini-Andreote, F. Ecological and evolutionary implications of microbial dispersal. Front. Microbiol. 13, 855859 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foissner, W. Protist Diversity: Estimates of the Near-Imponderable. Protist 150, 363–368 (1999). Populations of Hyperthermophilic Archaea. Science 301, 976–978 (2003).

  • Pearson, L. A. & Neilan, B. A. Protozoan Diversity and Biogeography. in Encyclopedia of Life Sciences 1–7 (Wiley, 2021).

  • Okie, J. G. & Storch, D. The equilibrium theory of biodiversity dynamics: a general framework for scaling species richness and community abundance along environmental gradients. Am. Nat. 205, 20–40 (2025).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img