First national survey of terrestrial biodiversity using airborne eDNA


  • Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).

    Article 

    Google Scholar
     

  • Pereira, H. M. et al. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 384, 458–465 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Faria, D. et al. The breakdown of ecosystem functionality driven by deforestation in a global biodiversity hotspot. Biol. Conserv. 283, 110126 (2023).

    Article 

    Google Scholar
     

  • Magurran, A. E. et al. Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gering, J. C., Crist, T. O. & Veech, J. A. Additive partitioning of species diversity across multiple Spatial scales: Implications for regional conservation of biodiversity. Conserv. Biol. 17, 488–499 (2003).

    Article 

    Google Scholar
     

  • Olden, J. D. Biotic homogenization: A new research agenda for conservation biogeography. J. Biogeogr. 33, 2027–2039 (2006).

    Article 

    Google Scholar
     

  • Dornelas, M. et al. Looking back on biodiversity change: Lessons for the road ahead. Philos. Trans. R. Soc. B Biol. Sci. 378, 20220199 (2023).

    Article 

    Google Scholar
     

  • Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017).

    Article 

    Google Scholar
     

  • Knape, J., Coulson, S. J., van der Wal, R. & Arlt, D. Temporal trends in opportunistic citizen science reports across multiple taxa. Ambio 51, 183–198 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Geurts, E. M., Reynolds, J. D. & Starzomski, B. M. Turning observations into biodiversity data: Broadscale Spatial biases in community science. Ecosphere 14, e4582 (2023).

    Article 

    Google Scholar
     

  • Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, D. F. Understanding sampling and taxonomic biases recorded by citizen scientists. J. Insect Conserv. 18, 753–756 (2014).

    Article 

    Google Scholar
     

  • Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).

    Article 

    Google Scholar
     

  • August, T. A., Pescott, O. L., Joly, A. & Bonnet, P. AI Naturalists might hold the key to unlocking biodiversity data in social media imagery. PATTER 1, (2020).

  • Selvarajah, M. Beast mode: Can technology help protect some of the world’s most endangered animals?.

  • Elbrecht, V., Vamos, E. E., Meissner, K., Aroviita, J. & Leese, F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol. 8, 1265–1275 (2017).

    Article 

    Google Scholar
     

  • Buchner, D. et al. Upscaling biodiversity monitoring: Metabarcoding estimates 31,846 insect species from malaise traps across Germany. Mol. Ecol. Resour. 25, e14023 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Bunholi, I. V., Foster, N. R. & Casey, J. M. Environmental DNA and RNA in aquatic community ecology: Toward methodological standardization. Environ. DNA. 5, 1133–1147 (2023).

    Article 

    Google Scholar
     

  • Thomsen, P. F., Jensen, M. R. & Sigsgaard, E. E. A vision for global eDNA-based monitoring in a changing world. Cell 187, 4444–4448 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newton, J. P., Allentoft, M. E., Bateman, P. W., van der Heyde, M. & Nevill, P. Targeting terrestrial vertebrates with eDNA: Trends, perspectives, and considerations for sampling. Environ. DNA. 7, e70056 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Broadhurst, H. A. et al. From water to land: A review on the applications of environmental DNA and Invertebrate-Derived DNA for monitoring terrestrial and Semi-Aquatic mammals. Mammal Rev. N/a, e70006 (2025).

  • Nørgaard, L. et al. eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants. Sci. Rep. 11, 6820 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ariza, M. et al. Plant biodiversity assessment through soil eDNA reflects Temporal and local diversity. Methods Ecol. Evol. 14, 415–430 (2023).

    Article 

    Google Scholar
     

  • Johnson, M. & Barnes, M. A. Macrobial airborne environmental DNA analysis: A review of progress, challenges, and recommendations for an emerging application. Mol. Ecol. Resour. n/a, e13998.

  • Johnson, M. D., Barnes, M. A., Garrett, N. R. & Clare, E. L. Answers blowing in the wind: Detection of birds, mammals, and amphibians with airborne environmental DNA in a natural environment over a yearlong survey. Environ. DNA. 5, 375–387 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Garrett, N. R. et al. Out of thin air: Surveying tropical Bat roosts through air sampling of eDNA. PeerJ 11, e14772 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynggaard, C., Frøslev, T. G., Johnson, M. S., Olsen, M. T. & Bohmann, K. Airborne environmental DNA captures terrestrial vertebrate diversity in nature. Mol. Ecol. Resour. 24, e13840 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roger, F. et al. Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—A proof of concept from the field. Environ. DNA. 4, 790–807 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Littlefair, J. E. et al. Air-quality networks collect environmental DNA with the potential to measure biodiversity at continental scales. Curr. Biol. 33, R426–R428 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Klepke, M. J., Sigsgaard, E. E., Jensen, M. R., Olsen, K. & Thomsen, P. F. Accumulation and diversity of airborne, eukaryotic environmental DNA. Environ. DNA. 4, 1323–1339 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Global Ecol. Conserv. 10, 32–42 (2017).

    Article 

    Google Scholar
     

  • Everts, T. et al. Phenological mismatches mitigate the ecological impact of a biological invader on amphibian communities. Ecol. Appl. e3017 https://doi.org/10.1002/eap.3017 (2024).

  • Tsuji, S., Doi, H., Hibino, Y., Shibata, N. & Watanabe, K. Rapid assessment of invasion front and biological impact of the invasive fish Coreoperca herzi using quantitative eDNA metabarcoding. Biol. Invasions. https://doi.org/10.1007/s10530-024-03364-9 (2024).

    Article 

    Google Scholar
     

  • Després, V. R. et al. Primary biological aerosol particles in the atmosphere: A review | tellus B: Chemical and physical meteorology. Tellus B Chem. Phys. Meteorol. 64, 15598 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Johnson, M. D., Cox, R. D. & Barnes, M. A. The detection of a non-anemophilous plant species using airborne eDNA. PLoS ONE. 14, e0225262 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wittmaack, K., Wehnes, H., Heinzmann, U. & Agerer, R. An overview on bioaerosols viewed by scanning electron microscopy. Sci. Total Environ. 346, 244–255 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pumkaeo, P., Takahashi, J. & Iwahashi, H. Detection and monitoring of insect traces in bioaerosols. PeerJ 9, e10862 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, C. R. et al. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol. Evol. 5, 676–684 (2014).

    Article 

    Google Scholar
     

  • Barnes, M. A. et al. Environmental conditions influence eDNA particle size distribution in aquatic systems. Environ. DNA. 3, 643–653 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Moushomi, R., Wilgar, G., Carvalho, G., Creer, S. & Seymour, M. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Sci. Rep. 9, 12500 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112, 5756–5761 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, K. R. et al. Annual Report for 2023 on the UK Heavy Metals Monitoring Network. (2024). https://doi.org/10.47120/npl.ENV55

  • Schwendemann, A. B. et al. Aerodynamics of saccate pollen and its implications for wind pollination. Am. J. Bot. 94, 1371–1381 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Abrego, N. et al. Give me a sample of air and I will tell which species are found from your region: Molecular identification of fungi from airborne spore samples. Mol. Ecol. Resour. 18, 511–524 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bowen, A. J. & Lindley, D. A wind-tunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes. Boundary-Layer Meteorol. 12, 259–271 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Hesp, P. A., Davidson-Arnott, R., Walker, I. J. & Ollerhead, J. Flow dynamics over a foredune at Prince Edward Island, Canada. Geomorphology 65, 71–84 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Lynggaard, C. et al. Airborne environmental DNA for terrestrial vertebrate community monitoring. Curr. Biol. 32, 701–707e5 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polling, M., Buij, R., Laros, I. & de Groot, G. A. Continuous daily sampling of airborne eDNA detects all vertebrate species identified by camera traps. Environ. DNA. 6, e591 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Cáceres, C. E. & Soluk, D. A. Blowing in the wind: A field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131, 402–408 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Brendonck, L. & Riddoch, B. J. Wind-borne short-range egg dispersal in anostracans (Crustacea: Branchiopoda). Biol. J. Linn. Soc. 67, 87–95 (1999).

    Article 

    Google Scholar
     

  • Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J. C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brehm, G. et al. Turning up the heat on a hotspot: DNA barcodes reveal 80% more species of geometrid moths along an Andean elevational gradient. PLOS ONE. 11, e0150327 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fediajevaite, J., Priestley, V., Arnold, R. & Savolainen, V. Meta-analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecol. Evol. 11, 4803–4815 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maracle, S. R. et al. Nearshore fish diversity changes with sampling method and human disturbance: Comparing eDNA metabarcoding and Seine netting along the upper St. Lawrence river. J. Great Lakes Res. 50, 102317 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koch, W., Hogeweg, L., Nilsen, E. B., O’Hara, R. B. & Finstad, A. G. Recognizability bias in citizen science photographs. R. Soc. Open. Sci. 10, 221063 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Goldstein, B. R. et al. Logistical and preference bias in participatory science butterfly data. Front. Ecol. Environ. e2783 https://doi.org/10.1002/fee.2783 (2024).

  • Wong, M. K. L. & Didham, R. K. Global meta-analysis reveals overall higher nocturnal than diurnal activity in insect communities. Nat. Commun. 15, 3236 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28, 420–430 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Garrett, N. R. et al. Airborne eDNA documents a diverse and ecologically complex tropical Bat and other mammal community. Environ. DNA. 5, 350–362 (2023).

    Article 

    Google Scholar
     

  • Zinger, L. et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mathon, L. et al. Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification. Mol. Ecol. Resour. 21, 2565–2579 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gold, Z. et al. Signal and noise in metabarcoding data. PLoS ONE. 18, e0285674 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, A. R. et al. Airborne eDNA captures three decades of ecosystem biodiversity. BioRxiv (2023).

  • Lanzén, A., Lekang, K., Jonassen, I., Thompson, E. M. & Troedsson, C. DNA extraction replicates improve diversity and compositional dissimilarity in metabarcoding of eukaryotes in marine sediments. PLoS ONE. 12, e0179443 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, C. I. M. et al. Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool?? Genes 10, 192 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, P. Reproducibility of ancient DNA sequences from extinct pleistocene fauna. Mol. Biol. Evol. 13, 283–285 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calvignac-Spencer, S. et al. Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity. Mol. Ecol. 22, 915–924 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ushio, M. et al. Environmental DNA enables detection of terrestrial mammals from forest pond water. Mol. Ecol. Resour. 17, e63–e75 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thalinger, B., Empey, R., Cowperthwaite, M. & Coveny, K. & Steinke, D. BirT: A novel primer pair for avian environmental DNA metabarcoding. bioRxiv 2023–08 (2023).

  • Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in Bat faeces. Mol. Ecol. Resour. 11, 236–244 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, T. et al. Barcoding the Kingdom plantae: New PCR primers for regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16, 138–149 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate illumina Paired-End read merger. Bioinformatics 30, 614–620 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods. 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

  • Edgar, R. SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS sequences. biorxiv 074161 (2016).

  • Banchi, E. et al. PLANiTS: A curated sequence reference dataset for plant ITS DNA metabarcoding. Database baz155 (2020). (2020).

  • Abarenkov, K. et al. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: Sequences, taxa and classifications reconsidered. Nucleic Acids Res. 52, D791–D797 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tournayre, O. et al. Enhancing metabarcoding of freshwater biotic communities: A new online tool for primer selection and exploring data from 14 primer pairs. Environ. DNA. 6, e590 (2024).

    Article 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • Wickham, H., Vaughan, D. & Girlich, M. Tidy Messy Data. (2024).

  • Wickham, H., François, R., Henry, L. & Müller, K. & Vaughan, D. dplyr: A grammar of data manipulation. (2023).

  • Wickham, H. Simple, Consistent Wrappers for Common String Operations. (2023).

  • NBN Trust. The National Biodiversity Network (NBN) Atlas. (2024). https://ror.org/00mcxye41

  • Pebesma, E. Simple features for R: standardized support for Spatial vector data. R J. 10, 439–446 (2018).

    Article 

    Google Scholar
     

  • Massicotte, P. & South, A. rnaturalearth: World Map Data from Natural Earth. (2023).



  • Source link

    More From Forest Beat

    Thousands of endangered trees preserved for centuries inside Chinese temples

    Religious monuments in China have provided a refuge for ancient trees for thousands of years, including dozens of endangered species and some...
    Biodiversity
    1
    minute

    The Top End’s tropical savannas are a natural wonder – but...

    The Top End of Australia’s Northern Territory contains an extensive, awe-inspiring expanse of tropical savanna landscapes. It includes well-known...
    Biodiversity
    3
    minutes

    Navigating synergies vs. trade-offs between climate change mitigation and biodiversity conservation

    Climate change and biodiversity are among the foremost environmental challenges facing modern society. Although climate change impacts may seem more noticeable and garner...
    Biodiversity
    14
    minutes

    Why we should protect the high seas from all extraction, forever

    International waters, also known as the high seas, make up 61% of the ocean and cover 43% of Earth’s surface — amounting...
    Biodiversity
    7
    minutes
    spot_imgspot_img