Jena, M. et al. Paradigm shift of insect pests in rice ecosystem and their management strategy. ORYZA-An Int. J. Rice. 55, 82–89 (2018).
Renuka, P. et al. RNA-seq of rice yellow stem borer Scirpophaga incertulas reveals molecular insights during four larval developmental stages. G3: Genes Genomes Genet. 7 (9), 3031–3045 (2017).
Muralidharan, K. & Pasalu, I. C. Assessments of crop losses in rice ecosystems due to stem borer damage (Lepidoptera: Pyralidae). Crop Prot. 25 (5), 409–417 (2006).
Horgan. F.G. et al. Stem borers revisited: Host resistance, tolerance, and vulnerability determine levels of field damage from a complex of Asian rice stemborers. Crop Prot. 142, p105513 (2021).
Horgan, F. G. et al. Susceptibility and tolerance in hybrid and pure-line rice varieties to herbivore attack: biomass partitioning and resource‐based compensation in response to damage. Ann. Appl. Biol. 169 (2), 200–213 (2016).
Kattupalli, D. et al. The draft genome of yellow stem borer, an agriculturally important pest, provides molecular insights into its biology, development and specificity towards rice for infestation. Insects 12 (6), 563 (2021).
Litsinger, J. A. et al. Rice white stemborer Scirpophaga innotata (Walker) in Southern Mindanao, Philippines. I. Supplantation of yellow stemborer S. incertulas (Walker) and pest status. Int. J. Pest Manag. 52 (1), 11–21 (2006).
Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60 (1), 17–34 (2015).
Dillon, R. J. & Dillon, V. M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49 (1), 71–92 (2004).
Hammer, T. J. & Bowers, M. D. Gut microbes May facilitate insect herbivory of chemically defended plants. Oecologia 179, 1–14 (2015).
Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37 (5), 699–735 (2013).
Ren, Z. et al. Dynamics of microbial communities across the life stages of Nilaparvata lugens (stål). Microb. Ecol. 83 (4), 1049–1058 (2021).
Lai, C. et al. Detection of yeast-like symbionts in brown planthopper reared on different resistant rice varieties combining Dgge and absolute quantitative real-time Pcr. Insects 13 (1), 85 (2022).
Huang, H. et al. Microbial communities in different developmental stages of the Oriental fruit fly, bactrocera dorsalis, are associated with differentially expressed peptidoglycan recognition protein-encoding genes. Appl. Environ. Microbiol., 85(13) (2019).
Higuita Palacio, M. F. et al. Dry and rainy seasons significantly alter the gut Microbiome composition and reveal a key Enterococcus Sp. (Lactobacillales: Enterococcaceae) core component in Spodoptera frugiperda (Lepidoptera: Noctuidae) corn strain from Northwestern Colombia. J. Insect Sci. 21 (6), 10 (2021).
Pinto, A. J. & Raskin, L. PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. Plos One. 7, e43093 (2012).
Choudhary, J. S. et al. High taxonomic and functional diversity of bacterial communities associated with melon fly, Zeugodacus cucurbitae (Diptera: Tephritidae). Curr. Microbiol. 78, 611–623 (2021).
Naaz, N. et al. Developmental stage-associated microbiota profile of the Peach fruit fly, Bactrocera zonata (Diptera: Tephritidae) and their functional prediction using 16S rRNA gene metabarcoding sequencing. 3 Biotech. 10, 1–13 (2020).
Singh, R. et al. Mining the biomass deconstructing capabilities of rice yellow stem borer symbionts. Biotechnol. Biofuels. 12, 265 (2019).
Andongma, A. A. et al. Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis. Sci. Rep. 5, 9470 (2015).
Liu, S. H. et al. Diversity of bacterial communities in the intestinal tracts of two geographically distant populations of Bactrocera dorsalis (Diptera: Tephritidae). J. Econ. Ent 111:2861 (2018). (2018).
Yong, H. S. et al. Microbiota associated with Bactrocera carambolae and B. dorsalis (Insecta: Tephritidae) revealed by next-generation sequencing of 16S rRNA gene. Meta Gene. 11, 189–196 (2017).
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. N R. 1, 41 (2013).
Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010). http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Caporaso, J. G. et al. QIIME allows analysis of high- throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).
Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
Rognes, T. et al. VSEARCH: a versatile open-source tool for metagenomics. Peer J. 4, e2584 (2016).
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
Caporaso, J. G. et al. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).
Dhariwal, A. et al. MicrobiomeAnalyst – A web-based tool for comprehensive statistical, visual and meta-analysis of Microbiome data. Nucleic Acids Res. 45, 180–188 (2017).
Hammer, O. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Langille, M. G. I. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences HHS public access. Nat. Biotechnol. 31, 814–821 (2013).
Hill, G. T. et al. Methods for assessing the composition and diversity of soil microbial communities. Appl. Soil. Ecol. 15 (1), 25–36 (2000).
Degnan, P. H. & Ochman, H. Illumina-based analysis of microbial community diversity. I S M E J. 6, 183–194 (2012).
Gao, B. et al. An introduction to next generation sequencing bioinformatic analysis in gut Microbiome studies. Biomolecules 2, 530 (2021).
Pearman, W. S. et al. Testing the advantages and disadvantages of short- and long- read eukaryotic metagenomics using simulated reads. BMC Bioinform. 21, 220 (2020).
Zhong, H. et al. Gut microbial communities associated with phenotypically divergent populations of the striped stem borer Chilo suppressalis (Walker, 1863). Sci. Rep. 11, 15010 (2021).
Chen, B. et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. I S M E J. 12 (9), 2252 (2018).
Wang, X. et al. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 11, 1366 (2020).
Chen, B. et al. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore. Sci. Rep. 6, 29505 (2016).
Gao, X. et al. Biodiversity of the microbiota in Spodoptera exigua (Lepidoptera: Noctuidae). J. Appl. Microbiol. 126, 1199 (2019).
Fu, J. et al. Composition and diversity of gut microbiota across developmental stages of and its effect on the reproduction. Front. Microbiol. 14, 1237684 (2023).
Paniagua-Voirol, L. R. et al. Bacterial symbionts in lepidoptera: their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).
Briones-Roblero, C. I. et al. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae). Folia Microbiol. 62, 1–990 (2017).
Anand, A. A. P. et al. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, Xylan, pectin and starch and their impact on digestion. J. Insect Sci. 10, 107 (2010).
Boush, M. G. & Matsumura, F. Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the Apple maggot. J. Econ. Entomol. 60, 918–920 (1967).
Tago, K. et al. Diversity of fenitrothion-degrading bacteria in soils from distant geographical areas. Micro Enviro. 21 (1), 58–64 (2006).
Arbeli, Z. & Fuentes, C. L. Accelerated biodegradation of pesticides: an overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop Prot. 26 (12), 1733–1746 (2007).
Zhang, X. et al. Diversity and functional roles of the gut microbiota in lepidopteran insects. Microorganisms 10, 1234 (2022).
Camus, M. F. et al. Dietary choices are influenced by genotype, mating status, and sex in Drosophila melanogaster. Ecol. Evol. 8, 5385–5393 (2018).
Wright, G. A. et al. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. 63, 327–344 (2018).
Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. Plos One. 15, e0229848 (2020).
Acevedo, F. E. et al. Fall armyworm-associated gut bacteria modulate plant defense responses. Mol. Plant. Microbe Interact. 30, 127–137 (2017).
Colman, D. R. et al. Do diet and taxonomy influence insect gut bacterial communities? Mol. Ecol. 21, 5124–5137 (2012).
Song, J. et al. Carbendazim shapes Microbiome and enhances resistome in the earthworm gut. Microbiome 10, 63 (2022).
Mason, C. J. et al. Opposing growth responses of lepidopteran larvae to the establishment of gut microbiota. Microbiol. Spectr. 10, 01941–01922 (2022).
Li, D. D. et al. Fall armyworm gut bacterial diversity associated with different developmental stages, environmental habitats, and diets. Insects 24, 13:762 (2022).
Jeon, J. et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) life table comparisons and gut Microbiome analysis reared on corn varieties. Insects 14, 4:358 (2023).
Han, S. et al. Effect of different host plants on the diversity of gut bacterial communities of (J. E. Smith, 1797). Insects 14, 3:264 (2023).
Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).
Brune, A. & Dietrich, C. The gut microbiota of termites: Digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69, 145–166 (2015).
Freitak, D. et al. The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence 5, 547–554 (2014).
Shahid, M. et al. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil. Tillage Res. 170, 136–146 (2017).
Zhang, Z. et al. Chemical identity and functional characterization of semiochemicals that promote the interactions between rice plant and rice major pest Nilaparvata lugens. J. Agric. Food Chem. 69 (16), 4635–4644 (2021).
Sato, Y. et al. High prevalence of Pantoea spp. In microbiota associated with the sorghum plant bug Stenotus rubrovittatus (Heteroptera: Miridae). Microbes Environ. 38 (3), ME22110 (2023).
Ali, M. et al. A way forward to combat insect pest in rice. Bangladesh Rice J. 25 (1), 1–22 (2021).
Yang, Y. et al. Impacts of nitrogen fertilizer on major insect pests and their predators in Transgenic Bt rice lines t2a-1 and t1c‐19. Entomol. Exp. Appl. 160 (3), 281–291 (2016).
Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in Gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).
Brinkmann, N. et al. Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, lepidoptera, Insecta). Appl. Enviro Microbiol. 74, 7189–7196 (2008).
Shao, Y. et al. Toward an integrated Understanding of the Lepidoptera Microbiome. Annu. Ver. Entomol. 69, 117–137 (2024).
Chen, B. et al. Comparative shotgun metagenomic data of the silkworm Bombyx mori gut Microbiome. Sci. Data. 5, 180285 (2018).
Zhang, N. et al. Contribution of sample processing to gut Microbiome analysis in the model lepidoptera, silkworm Bombyx mori. C S B J. 19, pp4658–4668 (2021).
Chen, B. et al. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ. Int. 143, 105886 (2020).
Geiger, A. et al. First isolation of Enterobacter, Enterococcus, and Acinetobacter spp. As inhabitants of the Tsetse fly (Glossina palpalis palpalis) midgut. Infect. Gen. Evol. 9 (6), 1364–1370 (2009).
Van, D. S. & Boopathy, R. Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite. Environ. Sci. Pollut Res. 26, 34067–34072 (2019).
Çakici, F. Ö. et al. Investigating internal bacteria of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) larvae and some Bacillus strains as biocontrol agents. Turk. J. Agri For. 38 (1), 12 (2014).
Ademolu, K. O. & Idowu, A. B. Occurrence and distribution of microflora in the gut regions of the variegated grasshopper Zonocerus variegatus (Orthoptera: Pyrgomorphidae) during development. Zool. Stud. 50 (4), 409–415 (2011).