Temporal variation in discriminating Acacia species using optical and radar data


  • Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. U.S.A. 115 (10), 2264–2273. https://doi.org/10.1073/pnas.1719429115 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95 (6), 1511–1534. https://doi.org/10.1111/brv.12627 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576. (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Riera, M., Pino, J. & Melero, Y. Impact of introduction pathways on the spread and geographical distribution of alien species: implications for preventive management in mediterranean ecosystems. Divers. Distrib. 27 (6), 1019–1034. https://doi.org/10.1111/ddi.13251 (2021).

    Article 

    Google Scholar
     

  • Montagnani, C., Gentili, R., Brundu, G., Caronni, S. & Citterio, S. Accidental Introduction and Spread of Top Invasive Alien Plants in the European Union through Human-Mediated Agricultural Pathways: What Should We Expect? Agron. 12(2), 423. (2022). https://doi.org/10.3390/agronomy12020423

  • Vieites-Blanco, C. & González-Prieto, S. J. Invasiveness, ecological impacts and control of Acacias in Southwestern Europe – a review. Web Ecol. 20, 33–51. https://doi.org/10.5194/we-20-33-2020 (2020).

    Article 

    Google Scholar
     

  • Murugan, R., Beggi, F., Prabakaran, N., Maqsood, S. & Joergensen, R. G. Changes in plant community and soil ecological indicators in response to Prosopis juliflora and Acacia mearnsii invasion and removal in two biodiversity hotspots in Southern India. SEL 2 (1), 61–72. https://doi.org/10.1007/s42832-019-0020-z (2020).

    Article 
    CAS 

    Google Scholar
     

  • Keet, J. H., Ellis, A. G., Hui, C., Novoa, A. & Le Roux, J. J. Impacts of invasive Australian Acacias on soil bacterial community composition, microbial enzymatic activities, and nutrient availability in fynbos soils. Microb. Ecol. 82, 704–721. https://doi.org/10.1007/s00248-021-01683-1 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, A., Figueiredo, A. & Ferreira, V. Invasive Acacia tree species affect instream litter decomposition through changes in water nitrogen concentration and litter characteristics. Microb. Ecol. 82, 257–273. https://doi.org/10.1007/s00248-021-01749-0 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Riveiro, S. F., Cruz, Ó. & Reyes, O. Are the invasive Acacia melanoxylon and Eucalyptus globulus drivers of other species invasion? Testing their allelochemical effects on germination. New. For. 55 (4), 751–767. https://doi.org/10.1007/s11056-023-10001-1 (2024).

    Article 

    Google Scholar
     

  • Maoela, M. A., Roets, F., Jacobs, S. M. & Esler, K. J. Restoration of invaded cape floristic region riparian systems leads to a recovery in foliage-active arthropod alpha- and beta-diversity. J. Insect Conserv. 20 (1), 85–97. https://doi.org/10.1007/s10841-015-9842-x (2016).

    Article 

    Google Scholar
     

  • Rodríguez, J., Cordero-Rivera, A. & González, L. Characterizing arthropod communities and trophic diversity in areas invaded by Australian Acacias. Arthropod Plant. Interact. 14 (4), 531–545. https://doi.org/10.1007/s11829-020-09758-5 (2020).

    Article 

    Google Scholar
     

  • Henderson, L. & Wilson, J. R. Changes in the composition and distribution of alien plants in South africa: an update from the Southern African plant invaders atlas. Bothalia 47 (2), 1–26. https://doi.org/10.4102/abc.v47i2.2172 (2017).

    Article 

    Google Scholar
     

  • Dai, J. et al. Mapping understory invasive plant species with field and remotely sensed data in chitwan, Nepal. Remote Sens. Environ. 250, 112037. https://doi.org/10.1016/j.rse.2020.112037 (2020).

    Article 

    Google Scholar
     

  • Jensen, T., Hass, F. S., Akbar, M. S., Petersen, P. H. & Arsanjani, J. J. Employing machine learning for detection of invasive species using Sentinel-2 and AVIRIS data: the case of Kudzu in the united States. Sustainability 12 (9), 3544. https://doi.org/10.3390/SU12093544 (2020).

    Article 

    Google Scholar
     

  • Liu, X., Liu, H., Datta, P., Frey, J. & Koch, B. Mapping an invasive plant Spartina alterniflora by combining an ensemble one-class classification algorithm with a phenological NDVI time-series analysis approach in middle Coast of jiangsu, China. Remote Sens. 12 (24), 1–24. https://doi.org/10.3390/rs12244010 (2020).

    Article 

    Google Scholar
     

  • Masemola, C., Cho, M. A. & Ramoelo, A. Sentinel-2 time series based optimal features and time window for mapping invasive Australian native Acacia species in KwaZulu natal, South Africa. Int. J. Appl. Earth Obs Geoinf. 93, 102207. https://doi.org/10.1016/j.jag.2020.102207 (2020).

    Article 

    Google Scholar
     

  • Domingo, D., Pérez-Rodríguez, F., Gómez-García, E. & Rodríguez-Puerta, F. Assessing the efficacy of phenological spectral differences to detect invasive alien acacia dealbata using Sentinel-2 data in Southern Europe. Remote Sens. 15 (3), 722. https://doi.org/10.3390/rs15030722 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hu, X. et al. Radar vegetation indices for monitoring surface vegetation: developments, challenges, and trends. Sci. Total Environ. 945, 173974. https://doi.org/10.1016/j.scitotenv.2024.173974 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dronova, I. & Taddeo, S. Remote sensing of phenology: towards the comprehensive indicators of plant community dynamics from species to regional scales. J. Ecol. 110, 1460–1484. https://doi.org/10.1111/1365-2745.13897 (2022).

    Article 

    Google Scholar
     

  • Rajah, P., Odindi, J. & Mutanga, O. Assessing the synergistic potential of Sentinel-2 spectral reflectance bands and derived vegetation indices for detecting and mapping invasive alien plant species. SAJG 9 (1), 75–88 (2020).


    Google Scholar
     

  • Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C. & Fassnacht, F. E. UAV data as alternative to field sampling to map Woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 227, 61–73. https://doi.org/10.1016/j.rse.2019.03.025 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Nwobi, C., Williams, M. & Mitchard, E. T. Rapid Mangrove forest loss and Nipa palm (Nypa fruticans) expansion in the Niger delta, 2007–2017. Remote Sens. 12 (14), 23–44. https://doi.org/10.3390/rs12142344 (2020).

    Article 

    Google Scholar
     

  • Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354. https://doi.org/10.1016/j.rse.2018.07.006 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Rebelo, A. J., Gokool, S., Holden, P. B. & New, M. G. Can Sentinel-2 be used to detect invasive alien trees and shrubs in Savanna and Grassland Biomes? RSASE. 23, p100600. (2021). https://doi.org/10.1016/j.rsase.2021.100600

  • Spracklen, B. & Spracklen, D. V. Synergistic use of Sentinel-1 and Sentinel-2 to map natural forest and Acacia plantation and stand ages in north-central Vietnam. Remote Sens. 13 (2), 1–19. https://doi.org/10.3390/rs13020185 (2021).

    Article 

    Google Scholar
     

  • Cowling, R. M., MacDonald, I. A. W. & Simmons, M. T. The cape peninsula, South africa: physiographical, biological and historical background to an extraordinary hot-spot of biodiversity. Biodivers. Conserv. 5, 527–550. https://doi.org/10.1007/BF00137608 (1996).

    Article 

    Google Scholar
     

  • Helme, N. A. & Trinder-Smith, T. H. The endemic flora of cape peninsula, South Africa. S Afr. J. Bot. 72 (2), 205–210. https://doi.org/10.1016/j.sajb.2005.07.004 (2006).

    Article 

    Google Scholar
     

  • South African Weather Service. Climate data: Cape Town. (2012). Available at: https://web.archive.org/web/20110314111749/http://old.weathersa.co.za/Climat/Climstats/CapeTownStats.jsp (Accessed: 11 July 2024).

  • van Wilgen, B. W. et al. Fire management in Mediterranean-climate shrublands: A case study from the cape fynbos, South Africa. J. Appl. Ecol. 47 (3), 631–638. https://doi.org/10.1111/j.1365-2664.2010.01800.x (2010).

    Article 

    Google Scholar
     

  • van Wilgen, B. W. Fire management in species-rich cape fynbos shrublands. Front. Ecol. Environ. 11 (1), e35–e45. https://doi.org/10.1890/120137 (2013).

    Article 

    Google Scholar
     

  • Le Maitre, D. C. et al. Impacts of invasive Australian Acacias: implications for management and restoration. Divers. Distrib. 17 (5), 1015–1029. https://doi.org/10.1111/j.1472-4642.2011.00816.x (2011).

    Article 

    Google Scholar
     

  • GBIF.org. The Global Biodiversity Information Facility (GBIF). (2023). Available from https://www.gbif.org [13 May 2023].

  • Sentinel-2 User Guide. European Space Agency. (2022). Available from https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook [14 February 2024].

  • Marzialetti, F. et al. Unmanned aerial vehicle (UAV)-based mapping of Acacia saligna invasion in the mediterranean Coast. Remote Sens. 13 (17), 3361. https://doi.org/10.3390/rs13173361 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Vogelmann, J. E., Rock, B. N. & Moss, D. M. Red edge spectral measurements from sugar maple leaves. Remote Sens. 14 (8), 1563–1575. https://doi.org/10.1080/01431169308953986 (1993).

    Article 

    Google Scholar
     

  • Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. Monitoring vegetation systems in the great plains with ERTS. NASA Special Publication. 351 (1), 309 (1974).

    ADS 

    Google Scholar
     

  • Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Yun-gang, C., Li-juan, Y. & Ze-zhong, Z. Extraction of information on geology hazard from multi-polarization SAR images. ISPRS Archives. 37, 1529–2532 (2008).


    Google Scholar
     

  • Vreugdenhil, M. et al. Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval. IEEE Trans. Geosci. Remote Sens. 54 (6), 3513–3531. https://doi.org/10.1109/TGRS.2016.2519842 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kim, Y. & van Zyl, J. J. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Trans. Geosci. Remote Sens. 47, 2519–2527. https://doi.org/10.1109/TGRS.2009.2014944 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ali, H., Salleh, M. M., Saedudin, R., Hussain, K. & Mushtaq, M. F. Imbalance class problems in data mining: a review. IJEECS 14, 1560–1571. https://doi.org/10.11591/ijeecs.v14.i3.pp1560-1571 (2019).

    Article 

    Google Scholar
     

  • Ramezan, C. A., Warner, T. A., Maxwell, A. E. & Price, B. S. Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sens. 13, 368. https://doi.org/10.3390/rs13030368 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Maxwell, A. E., Warner, T. A. & Fang, F. Implementation of machine-learning classification in remote sensing: an applied review. Int. J. Remote Sens. 39 (9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343 (2018).

    Article 

    Google Scholar
     

  • Breiman, L., Random & Forests Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).

    Article 

    Google Scholar
     

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM. (2016). https://doi.org/10.1145/2939672.2939785

  • de Sa, N. C. et al. Mapping the flowering of an invasive plant using unmanned aerial vehicles: is there potential for biocontrol monitoring? Front. Plant. Sci. 9, 293. https://doi.org/10.3389/fpls.2018.00293 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, M. A., Ramoelo, A. & Dziba, L. Response of land surface phenology to variation in tree cover during green-up and senescence periods in the semi-arid savanna of Southern Africa. Remote Sens. 9 (7), 689. https://doi.org/10.3390/rs9070689 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Rajah, P., Odindi, J., Mutanga, O. & Kiala, Z. The utility of Sentinel-2 vegetation indices (Vis) and Sentinel-1 synthetic aperture radar (SAR) for invasive alien species detection and mapping. Nat. Conserv. 35, 41–61 (2019).

    Article 

    Google Scholar
     

  • Ulaby, F. T., Moore, R. K. & Fung, A. K. Microwave Remote Sensing: Active and Passive. 1–3 (Artech House, 1986).

  • Engman, E. T. Applications of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sens. Environ. 35 (2–3), 213–226. https://doi.org/10.1016/0034-4257(91)90013-V (1991).

    Article 
    ADS 

    Google Scholar
     

  • Gitelson, A. A., Kaufman, Y. J., Stark, R. & Rundquist, D. Novel algorithm for remote sensing Estimation of vegetation fraction. Remote Sens. Environ. 80 (1), 76–87. https://doi.org/10.1016/S0034-4257(01)00289-9 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Oumar, M. S., Peerbhay, K., Germishuizen, I., Mutanga, O. & Oumar, Z. Detecting canopy damage caused by Uromycladium acaciae on South African black wattle forest compartments using moderate resolution satellite imagery. SAJG 8 (1), 69–83. https://doi.org/10.4314/sajg.v8i1.5 (2022).

    Article 

    Google Scholar
     

  • Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8 (2), 127–150 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Glenn, E. P., Huete, A. R., Nagler, P. L. & Nelson, S. G. Relationship between remotely sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell Us about the landscape. Sens 8, 2136–2160. https://doi.org/10.3390/s8042136 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Rajah, P., Odindi, J. & Mutanga, O. Feature level image fusion of optical imagery and synthetic aperture radar (SAR) for invasive alien plant species detection and mapping. RSASE 10, 198–208. https://doi.org/10.1016/j.rsase.2018.04.007 (2018).

    Article 

    Google Scholar
     

  • Impson, F., Hoffmann, J. H. & Kleinjan, C. Australian Acacia species (Mimosaceae) in South Africa. In: (eds Muniappan, R., Reddy, G. V. & Raman, A.) P Biological Control of Tropical Weeds Using Arthropods. Cambridge University Press. 38–62 (2009).



  • Source link

    More From Forest Beat

    Comprehensive Dataset for Polychaetes in the IPC: Species Distribution, DNA Barcodes,...

    The dataset can be found in a figshare repository (Weng et al.22, and are licensed under CC BY.The database, which includes three main...
    Biodiversity
    4
    minutes

    Coral reefs face an uncertain recovery from the 4th global mass...

    Tropical reefs might look like inanimate rock, but these colorful seascapes are built by tiny jellyfish-like animals called corals....
    Biodiversity
    5
    minutes

    Identifying ecological thresholds from functional traits for optimal ecosystem management

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Le Bagousse-Pinguet,...
    Biodiversity
    0
    minutes

    The niche concept in a changing world

    In the spring of 1958, G. Evelyn Hutchinson visited the sanctuary of Santa Rosalia on Mount Pellegrino in Palermo, Sicily. While examining a...
    Biodiversity
    1
    minute
    spot_imgspot_img