Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. U.S.A. 115 (10), 2264–2273. https://doi.org/10.1073/pnas.1719429115 (2018).
Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95 (6), 1511–1534. https://doi.org/10.1111/brv.12627 (2020).
Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576. (2021).
Riera, M., Pino, J. & Melero, Y. Impact of introduction pathways on the spread and geographical distribution of alien species: implications for preventive management in mediterranean ecosystems. Divers. Distrib. 27 (6), 1019–1034. https://doi.org/10.1111/ddi.13251 (2021).
Montagnani, C., Gentili, R., Brundu, G., Caronni, S. & Citterio, S. Accidental Introduction and Spread of Top Invasive Alien Plants in the European Union through Human-Mediated Agricultural Pathways: What Should We Expect? Agron. 12(2), 423. (2022). https://doi.org/10.3390/agronomy12020423
Vieites-Blanco, C. & González-Prieto, S. J. Invasiveness, ecological impacts and control of Acacias in Southwestern Europe – a review. Web Ecol. 20, 33–51. https://doi.org/10.5194/we-20-33-2020 (2020).
Murugan, R., Beggi, F., Prabakaran, N., Maqsood, S. & Joergensen, R. G. Changes in plant community and soil ecological indicators in response to Prosopis juliflora and Acacia mearnsii invasion and removal in two biodiversity hotspots in Southern India. SEL 2 (1), 61–72. https://doi.org/10.1007/s42832-019-0020-z (2020).
Keet, J. H., Ellis, A. G., Hui, C., Novoa, A. & Le Roux, J. J. Impacts of invasive Australian Acacias on soil bacterial community composition, microbial enzymatic activities, and nutrient availability in fynbos soils. Microb. Ecol. 82, 704–721. https://doi.org/10.1007/s00248-021-01683-1 (2021).
Pereira, A., Figueiredo, A. & Ferreira, V. Invasive Acacia tree species affect instream litter decomposition through changes in water nitrogen concentration and litter characteristics. Microb. Ecol. 82, 257–273. https://doi.org/10.1007/s00248-021-01749-0 (2021).
Riveiro, S. F., Cruz, Ó. & Reyes, O. Are the invasive Acacia melanoxylon and Eucalyptus globulus drivers of other species invasion? Testing their allelochemical effects on germination. New. For. 55 (4), 751–767. https://doi.org/10.1007/s11056-023-10001-1 (2024).
Maoela, M. A., Roets, F., Jacobs, S. M. & Esler, K. J. Restoration of invaded cape floristic region riparian systems leads to a recovery in foliage-active arthropod alpha- and beta-diversity. J. Insect Conserv. 20 (1), 85–97. https://doi.org/10.1007/s10841-015-9842-x (2016).
Rodríguez, J., Cordero-Rivera, A. & González, L. Characterizing arthropod communities and trophic diversity in areas invaded by Australian Acacias. Arthropod Plant. Interact. 14 (4), 531–545. https://doi.org/10.1007/s11829-020-09758-5 (2020).
Henderson, L. & Wilson, J. R. Changes in the composition and distribution of alien plants in South africa: an update from the Southern African plant invaders atlas. Bothalia 47 (2), 1–26. https://doi.org/10.4102/abc.v47i2.2172 (2017).
Dai, J. et al. Mapping understory invasive plant species with field and remotely sensed data in chitwan, Nepal. Remote Sens. Environ. 250, 112037. https://doi.org/10.1016/j.rse.2020.112037 (2020).
Jensen, T., Hass, F. S., Akbar, M. S., Petersen, P. H. & Arsanjani, J. J. Employing machine learning for detection of invasive species using Sentinel-2 and AVIRIS data: the case of Kudzu in the united States. Sustainability 12 (9), 3544. https://doi.org/10.3390/SU12093544 (2020).
Liu, X., Liu, H., Datta, P., Frey, J. & Koch, B. Mapping an invasive plant Spartina alterniflora by combining an ensemble one-class classification algorithm with a phenological NDVI time-series analysis approach in middle Coast of jiangsu, China. Remote Sens. 12 (24), 1–24. https://doi.org/10.3390/rs12244010 (2020).
Masemola, C., Cho, M. A. & Ramoelo, A. Sentinel-2 time series based optimal features and time window for mapping invasive Australian native Acacia species in KwaZulu natal, South Africa. Int. J. Appl. Earth Obs Geoinf. 93, 102207. https://doi.org/10.1016/j.jag.2020.102207 (2020).
Domingo, D., Pérez-Rodríguez, F., Gómez-García, E. & Rodríguez-Puerta, F. Assessing the efficacy of phenological spectral differences to detect invasive alien acacia dealbata using Sentinel-2 data in Southern Europe. Remote Sens. 15 (3), 722. https://doi.org/10.3390/rs15030722 (2023).
Hu, X. et al. Radar vegetation indices for monitoring surface vegetation: developments, challenges, and trends. Sci. Total Environ. 945, 173974. https://doi.org/10.1016/j.scitotenv.2024.173974 (2024).
Dronova, I. & Taddeo, S. Remote sensing of phenology: towards the comprehensive indicators of plant community dynamics from species to regional scales. J. Ecol. 110, 1460–1484. https://doi.org/10.1111/1365-2745.13897 (2022).
Rajah, P., Odindi, J. & Mutanga, O. Assessing the synergistic potential of Sentinel-2 spectral reflectance bands and derived vegetation indices for detecting and mapping invasive alien plant species. SAJG 9 (1), 75–88 (2020).
Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C. & Fassnacht, F. E. UAV data as alternative to field sampling to map Woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 227, 61–73. https://doi.org/10.1016/j.rse.2019.03.025 (2019).
Nwobi, C., Williams, M. & Mitchard, E. T. Rapid Mangrove forest loss and Nipa palm (Nypa fruticans) expansion in the Niger delta, 2007–2017. Remote Sens. 12 (14), 23–44. https://doi.org/10.3390/rs12142344 (2020).
Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354. https://doi.org/10.1016/j.rse.2018.07.006 (2018).
Rebelo, A. J., Gokool, S., Holden, P. B. & New, M. G. Can Sentinel-2 be used to detect invasive alien trees and shrubs in Savanna and Grassland Biomes? RSASE. 23, p100600. (2021). https://doi.org/10.1016/j.rsase.2021.100600
Spracklen, B. & Spracklen, D. V. Synergistic use of Sentinel-1 and Sentinel-2 to map natural forest and Acacia plantation and stand ages in north-central Vietnam. Remote Sens. 13 (2), 1–19. https://doi.org/10.3390/rs13020185 (2021).
Cowling, R. M., MacDonald, I. A. W. & Simmons, M. T. The cape peninsula, South africa: physiographical, biological and historical background to an extraordinary hot-spot of biodiversity. Biodivers. Conserv. 5, 527–550. https://doi.org/10.1007/BF00137608 (1996).
Helme, N. A. & Trinder-Smith, T. H. The endemic flora of cape peninsula, South Africa. S Afr. J. Bot. 72 (2), 205–210. https://doi.org/10.1016/j.sajb.2005.07.004 (2006).
South African Weather Service. Climate data: Cape Town. (2012). Available at: https://web.archive.org/web/20110314111749/http://old.weathersa.co.za/Climat/Climstats/CapeTownStats.jsp (Accessed: 11 July 2024).
van Wilgen, B. W. et al. Fire management in Mediterranean-climate shrublands: A case study from the cape fynbos, South Africa. J. Appl. Ecol. 47 (3), 631–638. https://doi.org/10.1111/j.1365-2664.2010.01800.x (2010).
van Wilgen, B. W. Fire management in species-rich cape fynbos shrublands. Front. Ecol. Environ. 11 (1), e35–e45. https://doi.org/10.1890/120137 (2013).
Le Maitre, D. C. et al. Impacts of invasive Australian Acacias: implications for management and restoration. Divers. Distrib. 17 (5), 1015–1029. https://doi.org/10.1111/j.1472-4642.2011.00816.x (2011).
GBIF.org. The Global Biodiversity Information Facility (GBIF). (2023). Available from https://www.gbif.org [13 May 2023].
Sentinel-2 User Guide. European Space Agency. (2022). Available from https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook [14 February 2024].
Marzialetti, F. et al. Unmanned aerial vehicle (UAV)-based mapping of Acacia saligna invasion in the mediterranean Coast. Remote Sens. 13 (17), 3361. https://doi.org/10.3390/rs13173361 (2021).
Vogelmann, J. E., Rock, B. N. & Moss, D. M. Red edge spectral measurements from sugar maple leaves. Remote Sens. 14 (8), 1563–1575. https://doi.org/10.1080/01431169308953986 (1993).
Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. Monitoring vegetation systems in the great plains with ERTS. NASA Special Publication. 351 (1), 309 (1974).
Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2 (2002).
Yun-gang, C., Li-juan, Y. & Ze-zhong, Z. Extraction of information on geology hazard from multi-polarization SAR images. ISPRS Archives. 37, 1529–2532 (2008).
Vreugdenhil, M. et al. Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval. IEEE Trans. Geosci. Remote Sens. 54 (6), 3513–3531. https://doi.org/10.1109/TGRS.2016.2519842 (2016).
Kim, Y. & van Zyl, J. J. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Trans. Geosci. Remote Sens. 47, 2519–2527. https://doi.org/10.1109/TGRS.2009.2014944 (2009).
Ali, H., Salleh, M. M., Saedudin, R., Hussain, K. & Mushtaq, M. F. Imbalance class problems in data mining: a review. IJEECS 14, 1560–1571. https://doi.org/10.11591/ijeecs.v14.i3.pp1560-1571 (2019).
Ramezan, C. A., Warner, T. A., Maxwell, A. E. & Price, B. S. Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sens. 13, 368. https://doi.org/10.3390/rs13030368 (2021).
Maxwell, A. E., Warner, T. A. & Fang, F. Implementation of machine-learning classification in remote sensing: an applied review. Int. J. Remote Sens. 39 (9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343 (2018).
Breiman, L., Random & Forests Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).
Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM. (2016). https://doi.org/10.1145/2939672.2939785
de Sa, N. C. et al. Mapping the flowering of an invasive plant using unmanned aerial vehicles: is there potential for biocontrol monitoring? Front. Plant. Sci. 9, 293. https://doi.org/10.3389/fpls.2018.00293 (2018).
Cho, M. A., Ramoelo, A. & Dziba, L. Response of land surface phenology to variation in tree cover during green-up and senescence periods in the semi-arid savanna of Southern Africa. Remote Sens. 9 (7), 689. https://doi.org/10.3390/rs9070689 (2017).
Rajah, P., Odindi, J., Mutanga, O. & Kiala, Z. The utility of Sentinel-2 vegetation indices (Vis) and Sentinel-1 synthetic aperture radar (SAR) for invasive alien species detection and mapping. Nat. Conserv. 35, 41–61 (2019).
Ulaby, F. T., Moore, R. K. & Fung, A. K. Microwave Remote Sensing: Active and Passive. 1–3 (Artech House, 1986).
Engman, E. T. Applications of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sens. Environ. 35 (2–3), 213–226. https://doi.org/10.1016/0034-4257(91)90013-V (1991).
Gitelson, A. A., Kaufman, Y. J., Stark, R. & Rundquist, D. Novel algorithm for remote sensing Estimation of vegetation fraction. Remote Sens. Environ. 80 (1), 76–87. https://doi.org/10.1016/S0034-4257(01)00289-9 (2002).
Oumar, M. S., Peerbhay, K., Germishuizen, I., Mutanga, O. & Oumar, Z. Detecting canopy damage caused by Uromycladium acaciae on South African black wattle forest compartments using moderate resolution satellite imagery. SAJG 8 (1), 69–83. https://doi.org/10.4314/sajg.v8i1.5 (2022).
Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8 (2), 127–150 (1979).
Glenn, E. P., Huete, A. R., Nagler, P. L. & Nelson, S. G. Relationship between remotely sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell Us about the landscape. Sens 8, 2136–2160. https://doi.org/10.3390/s8042136 (2008).
Rajah, P., Odindi, J. & Mutanga, O. Feature level image fusion of optical imagery and synthetic aperture radar (SAR) for invasive alien plant species detection and mapping. RSASE 10, 198–208. https://doi.org/10.1016/j.rsase.2018.04.007 (2018).
Impson, F., Hoffmann, J. H. & Kleinjan, C. Australian Acacia species (Mimosaceae) in South Africa. In: (eds Muniappan, R., Reddy, G. V. & Raman, A.) P Biological Control of Tropical Weeds Using Arthropods. Cambridge University Press. 38–62 (2009).