Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54, 2298–2314 (2009).
Peters N. E. et al. Hydrology and biogeochemistry linkages. In: Wilderer P. ed. Treatise on water science, Vol. 2. Oxford, Academic Press. Pp. 271–304. (2011).
U.S. Department of the Interior, U.S. Fish and Wildlife Service [USDOI]. National survey of fishing, hunting, and wildlife-associated recreation. U.S. Department of Commerce, U.S. Census Bureau. https://www.fws.gov/sites/default/files/documents/Final_2022-National-Survey_101223-accessible-single-page.pdf (2022).
Lansford, N. H. & Jones, L. L. Recreational and aesthetic value of water using hedonic price analysis. Journal of Agricultural and Resource Economics 20(2), 341–355 (1995).
Reynaud, A. & Lanzanova, D. A global meta-analysis of the value of ecosystem services provided by lakes. Ecological Economy 137, 184–194, https://doi.org/10.1016/j.ecolecon.2017.03.001 (2017).
O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42(10), 773–781 (2015).
U.S. Environmental Protection Agency [USEPA]. National Lakes Assessment 2012: A Collaborative Survey of Lakes in the United States. EPA 841-R-16-113. U.S. Environmental Protection Agency, Washington, DC. https://nationallakesassessment.epa.gov/ (2016).
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94, 849–873, https://onlinelibrary.wiley.com/doi/full/10.1111/brv.12480 (2018).
Alofs, K. M., Jackson, D. A. & Lester, N. P. Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Divers. Distrib. 20, 123–136 (2014).
Hansen, G. J. A., Read, J. S., Hansen, J. F. & Winslow, L. A. Projected shifts in fish species dominance in Wisconsin lakes under climate change. Global Change Biol 23, 1463–1476 (2017).
King, K. B. S. et al. Using historical fish catch data to evaluate predicted changes in relative abundance in response to a warming climate. Ecography 2023, 8, https://doi.org/10.1111/ecog.06798 (2023).
Whittier, T. R. et al. Indicators of Ecological Stress and Their Extent in the Population of Northeastern Lakes: A Regional-Scale Assessment. BioScience 52(3), 235–247 (2012).
Solokas M. et al. Shrinking body size and climate warming: many freshwater salmonids do not follow the rule. Global Change Biology. https://doi.org/10.1111/gcb.16626 (2023).
Lynch, A. J. et al. Climate change effects on North American inland fish populations and assemblages. Fisheries 41(7), 346–361, https://doi.org/10.1080/03632415.2016.1186016 (2016).
Magee, M. R. et al. Scientific advances and adaptation strategies for Wisconsin lakes facing climate change. Lake and Reservoir Management 35(4), 364–381, https://doi.org/10.1080/10402381.2019.1622612 (2019).
Tingley, R. W. et al. Adapting to climate change: guidance for the management of inland glacial lake fisheries. Lake and Reservoir Management 35(4), 435–452, https://doi.org/10.1080/10402381.2019.1678535 (2019).
Müller, F. et al. Assessing resilience in long-term ecological data sets. Ecological Indicators 65, 10–43 (2016).
Kling, M. M., Auer, S. L., Comer, P. J., Ackerly, D. D. & Hamilton, H. Multiple axes of ecological vulnerability to climate change. Global Change Biology 26(5), 2798–2813 (2020).
Moore, J. W. & Schindler, D. E. Getting ahead of climate change for ecological adaptation and resilience. Science 376(6600), 1421–1426 (2022).
Willis, K. J. et al. How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society: 362175–187 (2007).
Dietl, G. P. et al. Conservation Paleobiology: Leveraging Knowledge of the Past to Inform Conservation and Restoration. The Annual Review of Earth and Planetary Sciences 43, 79–103, https://doi.org/10.1146/annurev-earth-040610-133349 (2015).
Stein, E. D. et al. Establishing Targets for Regional Coastal Wetland Restoration Planning Using Historical Ecology and Future Scenario Analysis: The Past, Present, Future Approach. Estuaries and Coasts 43, 207–222, https://doi.org/10.1007/s12237-019-00681-4 (2020).
Tingley, M. W. & Beissinger, S. R. Detecting range shifts from historical species occurrences: new perspectives on old data. Trends in Ecology and Evolution 24(11), 625–33, https://doi.org/10.1016/j.tree.2009.05.009 (2009).
Pyke, G. H. & Ehrlich, P. R. Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biological Reviews of the Cambridge Philosophical Society 85, 247–266 (2010).
Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353(6304), aad8466 (2016).
Kwok, R. Historical data: Hidden in the past. Nature 549, 419–421, https://doi.org/10.1038/nj7672-419 (2017).
Astudillo-Clavijo, V., Mankis, T., & López-Fernández, H. Opening the museum’s vault: historical field records preserve reliable ecological data. The American Naturalist. https://doi.org/10.1086/728422 (2024).
Thomer, A., Vaidya, G., Guralnick, R., Bloom, D., & Russell L. From documents to datasets: A MediaWiki-based method of annotating and extracting species observations in century-old field notebooks. Zookeys. (209):235-53. https://doi.org/10.3897/zookeys.209.3247 (2012).
Singer, R. A., Ellis, S. & Page, L. M. Awareness and use of biodiversity collections by fish biologists. Journal of Fish Biology 96(2), 297–306 (2020).
Lendemer, J. et al. The extended specimen network: A strategy to enhance US biodiversity collections, promote research and education. BioScience 70(1), 23–30, https://doi.org/10.1093/biosci/biz140 (2020).
Kelly, J. A., Farrell, S. L., Hendrickson, L. G., Luby, J. & Mastel, K. L. A critical literature review of historic scientific analog data: uses, successes, and challenges. Data Science Journal 21, 14–14 (2022).
Hamad, K., & Kaya, M. A detailed analysis of optical character recognition technology. International Journal of Applied Mathematics Electronics and Computers, (Special Issue-1), 244-249 (2016).
Cox, J. et al. Defining and Measuring Success in Online Citizen Science: A Case Study of Zooniverse Projects. in Computing in Science & Engineering 17(no. 4), 28–41, https://doi.org/10.1109/MCSE.2015.65 (2015).
Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Frontiers in Ecology and the Environment 10(6), 291–297, https://doi.org/10.1890/110236 (2012).
Grabda, E. E. et al. Mismatch between climate-based bioenergetics model of fish growth and long-term and regional-scale empirical data. Canadian Journal of Fisheries and Aquatic Sciences 82, 1–15, https://doi.org/10.1139/cjfas-2024-0266 (2025).
Zooniverse. Panoptes-cli. v1.1.5. Github repository. https://github.com/zooniverse/panoptes-cli (2021).
Alofs, K. M. et al. Community science brings together natural history collections and historical survey data to understand changing ecological patterns. Bioscience https://doi.org/10.1093/biosci/biae131 (2024).
Krawczyk, C., Langley, A., Allen, C., McMaster, A. & Wolfenbarger, Z. zooniverse/aggregation-for-caesar: Version 4.0.0 (v4.0.0). Zenodo https://doi.org/10.5281/zenodo.6979588 (2022).
Bailey, R. M., William, C. L., & Smith, G. R. An Atlas of Michigan Fishes with Keys and Illustrations for Their Identification. Miscellaneous Publications, Museum of Zoology, University of Michigan. No. 192, pp5-10. ISSN 0076-8405 (2004).
Michigan Department of Natural Resources (MDNR). FISHHUB Service, FISH Hydro Polygons. Downloaded 15 Nov 2024. https://midnr.maps.arcgis.com/home/item.html?id=3e5ecc59566c409d8b38c86f7ca62e08&sublayer=3 (2024).
Open Knowledge Foundation. reconcile-csv-0.1.2 https://okfnlabs.org/reconcile-csv/ (2013).
King, K. et al. CHANGES Project – Lake Summary Curated Data [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/72e8-ka38 (2025).
King, K. et al. CHANGES Project – Fish Collection Curated Data [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/1pz4-x763 (2025).
King, K. et al. CHANGES Project – Fish Growth Curated Data [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/h8hp-gw58 (2025).
Alofs, K. et al. Collections, Heterogeneous data, and Next Generation Ecological Studies (CHANGES) – Michigan Lake Surveys. University of Michigan – Deep Blue Data. https://doi.org/10.7302/ggk0-sx94 (2024).
Alofs, K. et al. CHANGES Project – Lake Summary (SUMM) [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/k18b-m416 (2024).
Alofs, K. et al. CHANGES Project – Fish Collection (FISHc) [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/mr06-c572 (2024).
Alofs, K. et al. CHANGES Project – Fish Growth Analysis (GROW) [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/w1a0-8t39 (2024).
Cheruvelil, K. S. et al. LAGOS-US LOCUS v1.0: Data module of location, identifiers, and physical characteristics of lakes and their watersheds in the conterminous U.S. Limnology and Oceanography Letters 6(5), 270–292, https://doi.org/10.1002/lol2.10203 (2021).
Winslow, L. A., Hansen, G. J. A., Read, J. S. & Notaro, M. Large-scale modeled contemporary and future water temperature estimates for 10774 Midwestern U.S. Lakes. Scientific Data 4, 170053, https://doi.org/10.1038/sdata.2017.53 (2017).
Hansen, G. J. A., Wehrly, K. E., Vitense, K., Walsh, J. R. & Jacobson, P. C. Quantifying the Resilience of Coldwater Lake Habitat to Climate and Land Use Change to Prioritize Watershed Conservation. Ecosphere 13(7), e4172, https://doi.org/10.1002/ecs2.4172 (2022).
Rypel, A. L., Lyons, J., Griffin, J. D. T. & Simonson, T. D. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries 41(5), 230–243, https://doi.org/10.1080/03632415.2016.1160894 (2016).
Loewen, C. J. G. et al. Bioregions are predominantly climatic for fishes of northern lakes. Global Ecology and Biogeography 31, 233–246, https://doi.org/10.1111/geb.13424 (2022).
Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philosophical Transactions of the Royal Society 374(1763), 20170386374 (2018).
Turner, T. F. et al. Long-term ecological research in freshwaters enabled by regional biodiversity collections, stable isotope analysis, and environmental informatics. BioScience 73(7), 479–493 (2023).
Nanglu, K. et al. The nature of science: The fundamental role of natural history in ecology, evolution, conservation, and education. Ecology and Evolution. 13, e10621 (2023).
Perrine, J. D. & Patton, J. L. Letters to the Future. In Canfield M. R. (Ed) Field Notes on Science & Nature. Harvard University Press, Cambridge, Massachusetts (2011).
R Core Team. R: a language and environment for statistical computing version 4.4.0. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/ (2024).
King, K. CHANGES-UM/summ_fishc_grow: Lake summary, fish collection, and fish growth data (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.15389937 (2025).