Global evidence for a positive relationship between tree species richness and ecosystem photosynthesis


  • Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Chang. 11, 543–550 (2021).

    Article 

    Google Scholar
     

  • Wardle, D. A., Bardgett, R. D., Callaway, R. M. & Van Der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Fernández-Martínez, M. et al. Diagnosing destabilization risk in global land carbon sinks. Nature https://doi.org/10.1038/s41586-023-05725-1 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Fernández-Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Glob. Chang. Biol. 26, 7067–7078 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article 

    Google Scholar
     

  • Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).

    Article 

    Google Scholar
     

  • Hooper, D. U. & Vitousek, P. M. The effects of plant composition and diversity on ecosystem processes. Science 277, 1302–1305 (1997).

    Article 

    Google Scholar
     

  • Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Dronova, I. & Taddeo, S. Remote sensing of phenology: towards the comprehensive indicators of plant community dynamics from species to regional scales. J. Ecol. https://doi.org/10.1111/1365-2745.13897 (2022).

    Article 

    Google Scholar
     

  • Duarte, M. M. et al. High tree diversity enhances light interception in tropical forests. J. Ecol. 109, 2597–2611 (2021).

    Article 

    Google Scholar
     

  • Williams, L. J., Paquette, A., Cavender-Bares, J., Messier, C. & Reich, P. B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 1, 63 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature https://doi.org/10.1038/s41586-023-05941-9 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X., Chen, H. Y. H. & Chang, S. X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nat. Ecol. Evol. 6, 1112–1121 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Luo, X. & Keenan, T. F. Global evidence for the acclimation of ecosystem photosynthesis to light. Nat. Ecol. Evol. 4, 1351–1357 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Miao, W. et al. Effects of biodiversity, stand factors and functional identity on biomass and productivity during the restoration of subtropical forests in Central China. J. Plant Ecol. 15, 385–398 (2022).

    Article 

    Google Scholar
     

  • Lepš, J. What do the biodiversity experiments tell us about consequences of plant species loss in the real world? Basic Appl. Ecol. 5, 529–534 (2004).

    Article 

    Google Scholar
     

  • Wardle, D. A. & Jonsson, M. Biodiversity effects in real ecosystems – a response to Duffy. Front. Ecol. Environ. 8, 10–11 (2010).

    Article 

    Google Scholar
     

  • Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).

    Article 

    Google Scholar
     

  • Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl Acad. Sci. USA 111, E1327–E1333 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Y. et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 3, 477–493 (2022).

    Article 

    Google Scholar
     

  • Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, 1–6 (2017).

    Article 

    Google Scholar
     

  • Liang, J. et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01831-x (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar
     

  • Liu, D., Wang, T., Peñuelas, J. & Piao, S. Drought resistance enhanced by tree species diversity in global forests. Nat. Geosci. https://doi.org/10.1038/s41561-022-01026-w (2022).

    Article 

    Google Scholar
     

  • Doughty, R. et al. TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proc. Natl Acad. Sci. USA 116, 22393–22398 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Searle, E. B. & Chen, H. Y. H. Complementarity effects are strengthened by competition intensity and global environmental change in the central boreal forests of Canada. Ecol. Lett. 23, 79–87 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl Acad. Sci. USA 112, 2788–2793 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl Acad. Sci. USA 114, 10160–10165 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, A. A., Zavaleta, E. S. & Selmants, P. C. Flowering phenology shifts in response to biodiversity loss. Proc. Natl Acad. Sci. USA 114, 3463–3468 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gough, C. M., Atkins, J. W., Fahey, R. T. & Hardiman, B. S. High rates of primary production in structurally complex forests. Ecology 100, 1–6 (2019).

    Article 

    Google Scholar
     

  • Zhang, L., Liu, X., Zhou, S. & Shipley, B. Explaining variation in productivity requires intraspecific variability in plant height among communities. J. Plant Ecol. 15, 310–319 (2022).

    Article 

    Google Scholar
     

  • Godlee, J. L. et al. Structural diversity and tree density drives variation in the biodiversity–ecosystem function relationship of woodlands and savannas. New Phytol. 232, 579–594 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fahey, R. T. et al. Defining a spectrum of integrative trait-based vegetation canopy structural types. Ecol. Lett. 22, 2049–2059 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ishii, H. & Asano, S. The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests. Ecol. Res. 25, 715–722 (2010).

    Article 

    Google Scholar
     

  • Williams, L. J. et al. Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecol. Lett. 24, 996–1006 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, L. J., Cavender-Bares, J., Paquette, A., Messier, C. & Reich, P. B. Light mediates the relationship between community diversity and trait plasticity in functionally and phylogenetically diverse tree mixtures. J. Ecol. 108, 1617–1634 (2020).

    Article 

    Google Scholar
     

  • He, M. et al. Global spectrum of vegetation light‐use efficiency. Geophys. Res. Lett. 49, 1–9 (2022).

    Article 

    Google Scholar
     

  • Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 0048 (2017).

    Article 

    Google Scholar
     

  • Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, J. M. et al. Global datasets of leaf photosynthetic capacity for ecological and earth system research. Earth Syst. Sci. Data Discuss. 2022, 1–26 (2022).


    Google Scholar
     

  • Luo, X. et al. Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nat. Commun. 12, 1–10 (2021).

    Article 

    Google Scholar
     

  • Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Guiz, J. et al. Long-term effects of plant diversity and composition on plant stoichiometry. Oikos 125, 613–621 (2016).

    Article 

    Google Scholar
     

  • Sardans, J. et al. Empirical support for the biogeochemical niche hypothesis in forest trees. Nat. Ecol. Evol. 5, 184–194 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Peñuelas, J. et al. The bioelements, the elementome, and the biogeochemical niche. Ecology 100, 1–15 (2019).

    Article 

    Google Scholar
     

  • Fernández-Martínez, M. et al. Bryophyte C:N:P stoichiometry, biogeochemical niches and elementome plasticity driven by environment and coexistence. Ecol. Lett. 24, 1375–1386 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 1–10 (2019).

    Article 

    Google Scholar
     

  • Zhang, W. P. et al. Interspecific interactions affect N and P uptake rather than N:P ratios of plant species: evidence from intercropping. J. Plant Ecol. 15, 223–236 (2022).

    Article 

    Google Scholar
     

  • Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01702-5 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Brun, P. et al. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pau, S., Gillespie, T. W. & Wolkovich, E. M. Dissecting NDVI-species richness relationships in Hawaiian dry forests. J. Biogeogr. 39, 1678–1686 (2012).

    Article 

    Google Scholar
     

  • Madonsela, S., Cho, M. A., Ramoelo, A., Mutanga, O. & Naidoo, L. Estimating tree species diversity in the savannah using NDVI and woody canopy cover. Int. J. Appl. Earth Obs. Geoinf. 66, 106–115 (2018).


    Google Scholar
     

  • Barry, K. E. et al. A graphical null model for scaling biodiversity–ecosystem functioning relationships. J. Ecol. 109, 1549–1560 (2021).

    Article 

    Google Scholar
     

  • Zhang, Z., Zhang, Y. & Zhang, Y. Generating high-resolution total canopy SIF emission from TROPOMI data: algorithm and application. Remote Sens. Environ. 295, 113699 (2023).

    Article 

    Google Scholar
     

  • Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make ‘Functional Types’ more functional. Glob. Chang. Biol. 28, 2541–2554 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Fisher, R. A. et al. Vegetation demographics in Earth System Models: a review of progress and priorities. Glob. Chang. Biol. 24, 35–54 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Chang. 6, 1032–1036 (2016).

    Article 

    Google Scholar
     

  • Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B 375, 20190128 (2020).

    Article 

    Google Scholar
     

  • Luby, I. H., Miller, S. J. & Polasky, S. When and where to protect forests. Nature 609, 89–93 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Global patterns of potential future plant diversity hidden in soil seed banks. Nat. Commun. 12, 1–8 (2021).

    Article 

    Google Scholar
     

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porcar-Castell, A. et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 7, 998–1009 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2. Geophys. Res. Lett. 45, 456–10,463 (2018).

    Article 

    Google Scholar
     

  • Magney, T. S., Barnes, M. L. & Yang, X. On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophys. Res. Lett. 47, 1–7 (2020).

    Article 

    Google Scholar
     

  • Ryu, Y., Jiang, C., Kobayashi, H. & Detto, M. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sens. Environ. 204, 812–825 (2018).

    Article 

    Google Scholar
     

  • Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 1–22 (2020).

    Article 

    Google Scholar
     

  • Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).

    Article 

    Google Scholar
     

  • Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).

    Article 

    Google Scholar
     

  • Roerink, G. J., Menenti, M. & Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens. 21, 1911–1917 (2000).

    Article 

    Google Scholar
     

  • Dechant, B. et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 241, 111733 (2020).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Sensitivity of estimated total canopy SIF emission to remotely sensed LAI and BRDF products. J. Remote Sens. 2021, 1–18 (2021).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. The potential of satellite FPAR product for GPP estimation: an indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111686 (2020).

    Article 

    Google Scholar
     

  • Moreno-Martínez, Á. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 218, 69–88 (2018).

    Article 

    Google Scholar
     

  • Yang, H. et al. Climatic and biotic factors influencing regional declines and recovery of tropical forest biomass from the 2015/16 El Niño. Proc. Natl Acad. Sci. USA 119, e2101388119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marselis, S. M., Keil, P., Chase, J. M. & Dubayah, R. The use of GEDI canopy structure for explaining variation in tree species richness in natural forests. Environ. Res. Lett. 17, 045003 (2022).

    Article 

    Google Scholar
     

  • Ehbrecht, M. et al. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 12, 1–12 (2021).

    Article 

    Google Scholar
     

  • Zhai, L., Coyle, D. R., Li, D. & Jonko, A. Fire, insect and disease-caused tree mortalities increased in forests of greater structural diversity during drought. J. Ecol. https://doi.org/10.1111/1365-2745.13830 (2022).

  • Besnard, S. et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data 13, 4881–4896 (2021).

    Article 

    Google Scholar
     

  • Dormann, F. C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    Article 

    Google Scholar
     

  • Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norton, A. J. et al. Hydrologic connectivity drives extremes and high variability in vegetation productivity across Australian arid and semi-arid ecosystems. Remote Sens. Environ. 272, 112937 (2022).

    Article 

    Google Scholar
     

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Biodiversity modeling to manage urban ecosystems for people and nature

    Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).Article  ...
    Biodiversity
    10
    minutes

    Multiple floods interactions shape riparian plant communities and diversity

    Study areaThe survey was conducted in the riparian area of the Akigawa River (Fig. 4), covering a regulated section spanning 33.57 km with a...
    Biodiversity
    7
    minutes

    First detection and entomological characterisation of invasive malaria vector Anopheles stephensi...

    Study site and samplingOur team from the Ecology, Health, and Environment (ECOSEN) group, Université André Salifou, Zinder, embarked on a study of biodiversity...
    Biodiversity
    4
    minutes

    Morphological and molecular assessment of muscle metacercariae infecting tench Tinca tinca...

    Waikagul, J. & Thaenkham, U. Approaches To Research on the Systematics of Fish Borne Trematodes1–16 (Academic, 2014).Chai, J. & Jung, B. Epidemiology of...
    Biodiversity
    11
    minutes
    spot_imgspot_img