Species loss in key habitats accelerates regional food web disruption


  • Kagata, H. & Ohgushi, T. Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol. Res. 21, 26–34 (2006).

    Article 

    Google Scholar
     

  • Kehoe, R., Frago, E. & Sanders, D. Cascading extinctions as a hidden driver of insect decline. Ecol. Entomol. 46, 743–756 (2021).

    Article 

    Google Scholar
     

  • Pearse, I. S. & Altermatt, F. Extinction cascades partially estimate herbivore losses in a complete Lepidoptera-plant food web. Ecology 94, 1785–1794 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Strona, G. & Bradshaw, C. J. A. Coextinctions dominate future vertebrate losses from climate and land use change. Sci. Adv. 8, eabn4345 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnes, A. D. et al. Energy Flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Gozlan, R. E., Karimov, B. K., Zadereev, E., Kuznetsova, D. & Brucet, S. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78–94 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).

    Article 

    Google Scholar
     

  • Gimmi, U., Lachat, T. & Bürgi, M. Reconstructing the collapse of wetland networks in the Swiss lowlands 1850-2000. Landsc. Ecol. 26, 1071–1083 (2011).

    Article 

    Google Scholar
     

  • Sandor, M. E., Elphick, C. S. & Tingley, M. W. Extinction of biotic interactions due to habitat loss could accelerate the current biodiversity crisis. Ecol. Appl. 32, e2608 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. A spatial fingerprint of land-water linkage of biodiversity uncovered by remote sensing and environmental DNA. Sci. Total Environ. 867, 161365 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devoto, M., Bailey, S. & Memmott, J. Ecological meta-networks integrate spatial and temporal dynamics of plant–bumble bee interactions. Oikos 123, 714–720 (2014).

    Article 

    Google Scholar
     

  • Schneider, G., Krauss, J., Boetzl, F. A., Fritze, M.-A. & Steffan-Dewenter, I. Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands. Oecologia 182, 1141–1150 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Frost, C. M., Didham, R. K., Rand, T. A., Peralta, G. & Tylianakis, J. M. Community-level net spillover of natural enemies from managed to natural forest. Ecology 96, 193–202 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

  • Breviglieri, C. P. B. & Romero, G. Q. Terrestrial vertebrate predators drive the structure and functioning of aquatic food webs. Ecology 98, 2069–2080 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Pace, M. L., Cole, J. J., Carpenter, S. R. & Kitchell, J. F. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahasrabudhe, S. & Motter, A. E. Rescuing ecosystems from extinction cascades through compensatory perturbations. Nat. Commun. 2, 170 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article 

    Google Scholar
     

  • Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: The role of connectance and size. Proc. Natl. Acad. Sci. 99, 12917–12922 (2002).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Holme, P., Kim, B. J., Yoon, C. N. & Han, S. K. Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002).

    Article 

    Google Scholar
     

  • Landi, P., Minoarivelo, H. O., Brännström, Å, Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).

    Article 

    Google Scholar
     

  • Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, (2017).

  • Gaichas, S. K. & Francis, R. C. Network models for ecosystem-based fishery analysis: a review of concepts and application to the Gulf of Alaska marine food web. Can. J. Fish. Aquat. Sci. 65, 1965–1982 (2008).

    Article 

    Google Scholar
     

  • Solé, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B Biol. Sci. 268, 2039–2045 (2001).

    Article 

    Google Scholar
     

  • Rodriguez, I. D. & Saravia, L. A. Potter Cove’s Heavyweights: Estimation of Species’ Interaction Strength of an Antarctic Food Web. Ecol. Evol. 14, e70389 (2024).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Piraveenan, M., Thedchanamoorthy, G., Uddin, S. & Chung, K. S. K. Quantifying topological robustness of networks under sustained targeted attacks. Soc. Netw. Anal. Min. 3, 939–952 (2013).

    Article 

    Google Scholar
     

  • Johnson, C. N. Species extinction and the relationship between distribution and abundance. Nature 394, 272–274 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B Biol. Sci. 267, 1947–1952 (2000).

    Article 
    CAS 

    Google Scholar
     

  • IŞIK, K. Rare and endemic species: why are they prone to extinction?. Turk. J. Bot. 35, 411–417 (2011).


    Google Scholar
     

  • Leitão, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B Biol. Sci. 283, 20160084 (2016).

    Article 

    Google Scholar
     

  • Basile, M. Rare species disproportionally contribute to functional diversity in managed forests. Sci. Rep. 12, 5897 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ho, H.-C. & Altermatt, F. Associating the structure of Lepidoptera-plant interaction networks across clades and life stages to environmental gradients. J. Biogeogr. 51, 725–738 (2024).

    Article 

    Google Scholar
     

  • Burner, R. C. et al. Functional structure of European forest beetle communities is enhanced by rare species. Biol. Conserv. 267, 109491 (2022).

    Article 

    Google Scholar
     

  • Winfree, R. et al. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Chapman, A. S. A., Tunnicliffe, V. & Bates, A. E. Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities. Divers. Distrib. 24, 568–578 (2018).

    Article 

    Google Scholar
     

  • Bellingeri, M., Cassi, D. & Vincenzi, S. Increasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food webs. Ecol. Model. 251, 1–8 (2013).

    Article 

    Google Scholar
     

  • McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Gaston, K. J. & Fuller, R. A. Biodiversity and extinction: losing the common and the widespread. Prog. Phys. Geogr. Earth Environ. 31, 213–225 (2007).

    Article 

    Google Scholar
     

  • Dunne, J. A. The network structure of food webs. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J.) 25–76 (Oxford University Press, Oxford, 2006).

  • Saravia, L. A., Marina, T. I., Kristensen, N. P., De Troch, M. & Momo, F. R. Ecological network assembly: How the regional metaweb influences local food webs. J. Anim. Ecol. 91, 630–642 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • O’Connor, L. M. J. et al. Unveiling the food webs of tetrapods across Europe through the prism of the Eltonian niche. J. Biogeogr. 47, 181–192 (2020).

  • Albouy, C. et al. The marine fish food web is globally connected. Nat. Ecol. Evol. 3, 1153–1161 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Reji Chacko, M. et al. trophiCH – a food web for Switzerland. EnviDat https://doi.org/10.16904/ENVIDAT.467 (2024).

    Article 

    Google Scholar
     

  • Statistisches Jahrbuch der Schweiz 1997. (NZZ Libro (NZZ_BUCHV), 1996).

  • Gonseth, Y., Klingl, T. & Nöthiger-Koch, U. Die Biogeographischen Regionen Der Schweiz: Erläuterungen Und Einteilungsstandard = Les Régions Biogéographiques de La Suisse: Explications et Division Standard. (Bezugsquelle: BUWAL, Dokumentation, Bern, 2001).

  • BAFU. Artenvielfalt in der Schweiz. Bundesamt für Umwelt BAFU https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/zustand-der-biodiversitaet-in-der-schweiz/zustand-der-artenvielfalt-in-der-schweiz.html (2023).

  • CSCF. info fauna | Data Server. info fauna Nationales Daten- und Informationszentrum der Schweizer Fauna https://lepus.infofauna.ch/tab/ (2017).

  • Reji Chacko, M. et al. A species-level multi-trophic metaweb for Switzerland. Sci. Data https://doi.org/10.1038/s41597-025-05487-7 (2025).

  • Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L. & Thuiller, W. TETRA-EU 1.0: A species-level trophic metaweb of European tetrapods. Glob. Ecol. Biogeogr. 29, 1452–1457 (2020).

    Article 

    Google Scholar
     

  • Morales-Castilla, I., Matias, M. G., Gravel, D. & Araújo, M. B. Inferring biotic interactions from proxies. Trends Ecol. Evol. 30, 347–356 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Landolt, E. et al. Flora indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Haupt Bern. 7, 378 (2010).


    Google Scholar
     

  • BAFU. Biogeographical regions of Switzerland (CH). (2022).

  • Chauvier, Y. et al. Resolution in species distribution models shapes spatial patterns of plant multifaceted diversity. EnviDat https://doi.org/10.16904/envidat.334 (2022).

    Article 

    Google Scholar
     

  • Külling, N. & Adde, A. SWECO25: Topographic (topo). Zenodo https://doi.org/10.5281/zenodo.7973960 (2023).

  • Delarze, R., Gonseth, Y., Eggenberg, S. & Vust, M. Lebensräume Der Schweiz: Ökologie – Gefährdung – Kennarten. (Ott-Verlag, Thun, 2015).

  • Price, B., Huber, N., Ginzler, C., Pazúr, R. & Rüetschi, M. The Habitat Map of Switzerland v1. Envidat https://doi.org/10.16904/envidat.262 (2021).

  • Gillies, S. Rasterio: geospatial raster I/O for Python programmers. Mapbox (2013).

  • Jordahl, K. et al. geopandas/geopandas: v0.8.1. Zenodo https://doi.org/10.5281/zenodo.3946761 (2020).

  • Csárdi, G. et al. igraph: Network Analysis and Visualization in R. https://doi.org/10.5281/zenodo.7682609 (2024).

  • De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Harris et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hagberg, A., Swart, P. & S Chult, D. Exploring Network Structure, Dynamics, and Function Using NetworkX. (2008).

  • VanRossum, G., Drake, F. L. Python 3 Reference Manual. CreateSpace: Scotts Valley, CA, 2009.


    Google Scholar
     

  • RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC. (2020).

  • Dinno, A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. (2017).

  • Torchiano, M. effsize: Efficient Effect Size Computation. https://doi.org/10.5281/zenodo.1480624 (2020).

  • Shipley, J. R. et al. Agricultural practices and biodiversity: Conservation policies for semi-natural grasslands in Europe. Curr. Biol. 34, R753–R761 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Habel, J. C. et al. European grassland ecosystems: threatened hotspots of biodiversity. Biodivers. Conserv. 22, 2131–2138 (2013).

    Article 

    Google Scholar
     

  • Brändli, U. B., Abegg, M. & Düggelin, C. Biologische Vielfalt. in Schweizerisches Landesforstinventar. Ergebnisse der vierten Erhebung 2009–2017. 189–237 (Swiss Federal Institute for Forest, Snow and Landscape Research, Federal Office for the Environment, Birmensdorf, (2020).

  • Shipley, J. R., Gossner, M. M., Rigling, A. & Krumm, F. Conserving forest insect biodiversity requires the protection of key habitat features. Trends Ecol. Evol. 38, 788–791 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Mestre, F. et al. Disentangling food-web environment relationships: A review with guidelines. Basic Appl. Ecol. 61, 102–115 (2022).

    Article 

    Google Scholar
     

  • May, R. M. Will a Large Complex System be Stable?. Nature 238, 413–414 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braga, J. et al. Spatial analyses of multi-trophic terrestrial vertebrate assemblages in Europe. Glob. Ecol. Biogeogr. 28, 1636–1648 (2019).

    Article 

    Google Scholar
     

  • Shi, F. et al. Spatio-temporal dynamics of landscape connectivity and ecological network construction in Long Yangxia Basin at the Upper Yellow River. Land 9, 265 (2020).

    Article 

    Google Scholar
     

  • Santos, M. et al. Robustness of a meta-network to alternative habitat loss scenarios. Oikos 130, 133–142 (2021).

    Article 

    Google Scholar
     

  • Anderson, K. E. & Fahimipour, A. K. Body size dependent dispersal influences stability in heterogeneous metacommunities. Sci. Rep. 11, 17410 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schofield, K. A. et al. Biota connect aquatic habitats throughout freshwater ecosystem mosaics. JAWRA J. Am. Water Resour. Assoc. 54, 372–399 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Flinn, K. M., Lechowicz, M. J. & Waterway, M. J. Plant species diversity and composition of wetlands within an upland forest. Am. J. Bot. 95, 1216–1224 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).

    Article 

    Google Scholar
     

  • Ho, H.-C. et al. Blue and green food webs respond differently to elevation and land use. Nat. Commun. 13, 6415 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Vitekere, K., Hua, Y. & Jiang, G. Complexity, connectance and link density in continental food webs: dissimilarities in aquatic and terrestrial food webs and their habitats. Appl. Ecol. Environ. Res. 19, 817–831 (2021).

    Article 

    Google Scholar
     

  • Shipley, J. et al. Consumer biodiversity increases organic nutrient availability across aquatic and terrestrial ecosystems. Science 386, 335–340 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magrach, A., González-Varo, J. P., Boiffier, M., Vilà, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. 1, 1299–1307 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • McFadden, I. R. et al. Linking human impacts to community processes in terrestrial and freshwater ecosystems. Ecol. Lett. 26, 203–218 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Säterberg, T., Jonsson, T., Yearsley, J., Berg, S. & Ebenman, B. A potential role for rare species in ecosystem dynamics. Sci. Rep. 9, 11107 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Maurer, C., Sutter, L., Martínez-Núñez, C., Pellissier, L. & Albrecht, M. Different types of semi-natural habitat are required to sustain diverse wild bee communities across agricultural landscapes. J. Appl. Ecol. 59, 2604–2615 (2022).

    Article 

    Google Scholar
     

  • Albrecht, M., Padrón, B., Bartomeus, I. & Traveset, A. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proc. R. Soc. B Biol. Sci. 281, 20140773 (2014).

    Article 

    Google Scholar
     

  • Heleno, R. H., Ripple, W. J. & Traveset, A. Scientists’ warning on endangered food webs. Web Ecol. 20, 1–10 (2020).

    Article 

    Google Scholar
     

  • Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology 102, e03332 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).

    Article 

    Google Scholar
     

  • Rodríguez-Castañeda, G. et al. Tropical forests are not flat: how mountains affect herbivore diversity. Ecol. Lett. 13, 1348–1357 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Adhurya, S., Agasti, N. & Park, Y. Metaweb and its applications in understanding ecological interactions. Preprint at https://doi.org/10.32942/X2SW3V (2023).

  • Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grünig, M., Mazzi, D., Calanca, P., Karger, D. N. & Pellissier, L. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Commun. Biol. 3, (2020).

  • Pecuchet, L. et al. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web. Glob. Change Biol. 26, 4894–4906 (2020).

    Article 

    Google Scholar
     

  • Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. 115, E2264–E2273 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Aslan, C. E. Implications of non-native species for mutualistic network resistance and resilience. PLOS ONE 14, e0217498 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • InfoSpecies. Artinformationen, Verbreitungsdaten. InfoSpecies https://www.infospecies.ch/de/neobiota/artinformationen-verbreitungsdaten.html (2021).

  • Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Moorhouse-Gann, R. J., Kean, E. F., Parry, G., Valladares, S. & Chadwick, E. A. Dietary complexity and hidden costs of prey switching in a generalist top predator. Ecol. Evol. 10, 6395–6408 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yacine, Y., Allhoff, K. T., Weinbach, A. & Loeuille, N. Collapse and rescue of evolutionary food webs under global warming. J. Anim. Ecol. 90, 710–722 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Raubenheimer, D., Simpson, S. J. & Tait, A. H. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. Biol. Sci. 367, 1628–1646 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Valdovinos, F. S., Ramos-Jiliberto, R., Garay-Narváez, L., Urbani, P. & Dunne, J. A. Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecol. Lett. 13, 1546–1559 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).

    Article 

    Google Scholar
     

  • Ripple, W. J. & Beschta, R. L. Wolves and the Ecology of Fear: Can Predation Risk Structure Ecosystems?. BioScience 54, 755–766 (2004).

    Article 

    Google Scholar
     

  • Paine, R. T. Food Web Complexity and Species Diversity. Am. Nat. 100, 65–75 (1966).

    Article 

    Google Scholar
     

  • Ho, H.-C. & Altermatt, F. Predicted community consequences of spatially explicit global change-induced processes on plant–insect networks. Ecol. Evol. 14, e70272 (2024).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Carroll, C., Noss, R. F., Dreiss, L. M., Hamilton, H. & Stein, B. A. Four challenges to an effective national nature assessment. Conserv. Biol. 37, e14075 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Külling, N. et al. Nature’s contributions to people and biodiversity mapping in Switzerland: spatial patterns and environmental drivers. Ecol. Indic. 163, 112079 (2024).

    Article 

    Google Scholar
     

  • Jackson, S. T. et al. Toward a national, sustained US ecosystem assessment. Science 354, 838–839 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017).


    Google Scholar
     

  • Adde, A. et al. Projecting Untruncated Climate Change Effects on Species’ Climate Suitability: Insights From an Alpine Country. Glob. Change Biol. 30, e17557 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dallimer, M. & Strange, N. Why socio-political borders and boundaries matter in conservation. Trends Ecol. Evol. 30, 132–139 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Reji Chacko, M. et al. Simulation data and analyses of regional food web robustness under habitat loss. EnviDat https://doi.org/10.16904/envidat.642 (2025).



  • Source link

    More From Forest Beat

    Standardized diversity estimation uncovers global distribution patterns and drivers of stream...

    Dijkstra, K.-D. B., Monaghan, M. T. & Pauls, S. U. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 59, 143–163 (2014).Article  ...
    Biodiversity
    11
    minutes

    Biodiversity and human well-being trade-offs and synergies in villages

    Hanspach, J., Loos, J., Dorresteijn, I., Abson, D. J. & Fischer, J. Characterizing social–ecological units to inform biodiversity conservation in cultural landscapes. Divers....
    Biodiversity
    9
    minutes

    Biodiversity modeling to manage urban ecosystems for people and nature

    Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).Article  ...
    Biodiversity
    10
    minutes

    Multiple floods interactions shape riparian plant communities and diversity

    Study areaThe survey was conducted in the riparian area of the Akigawa River (Fig. 4), covering a regulated section spanning 33.57 km with a...
    Biodiversity
    7
    minutes
    spot_imgspot_img