Standardized diversity estimation uncovers global distribution patterns and drivers of stream insects


  • Dijkstra, K.-D. B., Monaghan, M. T. & Pauls, S. U. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 59, 143–163 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Eggleton, P. The state of the World’s insects. Annu Rev. Environ. Resour. 45, 61–82 (2020).

    Article 

    Google Scholar
     

  • Van Klink, R., Bowler, D. E., Gongalsky, K. B., Swengel, A. B., Gentile, A. & Chase, J. M. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).

    Article 

    Google Scholar
     

  • Mammides, C. European Union’s conservation efforts are taxonomically biased. Biodivers. Conserv. 28, 1291–1296 (2019).

    Article 

    Google Scholar
     

  • Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article 

    Google Scholar
     

  • Gutiérrez-Cánovas, C., Millán, A., Velasco, J., Vaughan, I. P. & Ormerod, S. J. Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Glob. Ecol. Biogeogr. 22, 796–805 (2013).

    Article 

    Google Scholar
     

  • Haase, P. et al. The recovery of European freshwater biodiversity has come to a halt. Nature 620, 582–588 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rumschlag, S. L. et al. Density declines, richness increases, and composition shifts in stream macroinvertebrates. Sci. Adv. 9, eadf4896 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooke, S. J. et al. Can the planetary health concept save freshwater biodiversity and ecosystems?. Lancet Planet Health 8, e2–e3 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, R960–R967 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ferzoco, I. M. C. et al. Freshwater insect communities in urban environments around the globe: a review of the state of the field. Front. Ecol. Evol. 11, 1174166 (2023).

    Article 

    Google Scholar
     

  • Firmiano, K. R. et al. Land use and local environment affect macroinvertebrate metacommunity organization in Neotropical stream networks. J. Biogeogr. 48, 479–491 (2021).

    Article 

    Google Scholar
     

  • Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. USA115, E10397–E10406 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graco-Roza, C. et al. Distance decay 2.0—a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 31, 1399–1421 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brun, P. et al. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noriega, J. A. et al. Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification. Nat. Commun. 14, 8070 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pimiento, C. et al. Functional diversity of sharks and rays is highly vulnerable and supported by unique species and locations worldwide. Nat. Commun. 14, 7691 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl. Acad. Sci. USA 118, e2023989118 (2021).

  • Serra-Diaz, J. M., Enquist, B. J., Maitner, B., Merow, C. & Svenning, J.-C. Big data of tree species distributions: How big and how good?. Ecosyst 4, 30 (2018).

    Article 

    Google Scholar
     

  • Xu, W. et al. Global beta-diversity of angiosperm trees is shaped by Quaternary climate change. Sci. Adv. 9, eadd8553 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grigoropoulou, A. et al. The global EPTO database: worldwide occurrences of aquatic insects. Glob. Ecol. Biogeogr. 32, 642–655 (2023).

    Article 

    Google Scholar
     

  • Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).

    Article 

    Google Scholar
     

  • Chen, B. et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agr. For. Meteorol. 189, 11–18 (2014).

    Article 

    Google Scholar
     

  • Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article 

    Google Scholar
     

  • Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of Latitudinal Gradients in Marine Species Richness. Trends Ecol. Evol. 31, 670–676 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Gorta, S. et al. Multi-taxon biodiversity responses to the 2019–2020 Australian megafires. Glob. Change Biol. 29, 6727–6740 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Brodie, J. F. et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 620, 807–812 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cimatti, M., Chaplin-Kramer, R. & Di Marco, M. The role of high-biodiversity regions in preserving Nature’s Contributions to People. Nat. Sustain. 6, 1385–1393 (2023).

    Article 

    Google Scholar
     

  • Marin, F. R. et al. Protecting the Amazon forest and reducing global warming via agricultural intensification. Nat. Sustain. 5, 1018–1026 (2022).

    Article 

    Google Scholar
     

  • Alves, D. M. C. C. et al. Unveiling geographical gradients of species richness from scant occurrence data. Glob. Ecol. Biogeogr. 29, 748–759 (2020).

    Article 

    Google Scholar
     

  • Yang, W., Ma, K. & Kreft, H. Geographical sampling bias in a large distributional database and its effects on species richness–environment models. J. Biogeogr. 40, 1415–1426 (2013).

    Article 

    Google Scholar
     

  • Kusumoto, B., Chao, A., Eiserhardt, W. L., Svenning, J.-C., Shiono, T. & Kubota, Y. Occurrence-based diversity estimation reveals macroecological and conservation knowledge gaps for global woody plants. Sci. Adv. 9, eadh9719 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leclercq, N. et al. European bee diversity: taxonomic and phylogenetic patterns. J. Biogeogr. 50, 1244–1256 (2023).

    Article 

    Google Scholar
     

  • Pearson, R. G. & Boyero, L. Gradients in regional diversity of freshwater taxa. J.North Am. Benthol. Soc. 28, 504–514 (2009).

    Article 

    Google Scholar
     

  • Vinson, M. R. & Hawkins, C. P. Broad-scale geographical patterns in local stream insect genera richness. Ecography 26, 751–767 (2003).

    Article 

    Google Scholar
     

  • Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Saupe, E. E. et al. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 3, 1419–1429 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Vinson, M. R. & Hawkins, C. P. Biodiversity of stream insects: variation at local, basin, and regional scales. Annu Rev. Entomol. 43, 271–293 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menegotto, A. & Rangel, T. F. Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness. Nat. Commun. 9, 4713 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menegotto, A., Tittensor, D. P., Colwell, R. K. & Rangel, T. F. Sampling simulation in a virtual ocean reveals strong sampling effect in marine diversity patterns. Glob. Ecol. Biogeogr. 34, e13952 (2025).

    Article 

    Google Scholar
     

  • Schmidt-Kloiber, A. et al. Aquatic biodiversity in Europe: a unique dataset on the distribution of Trichoptera species with important implications for conservation. Hydrobiologia 797, 11–27 (2017).

    Article 

    Google Scholar
     

  • Twardochleb, L., Hiltner, E., Pyne, M. & Zarnetske, P. Freshwater insects CONUS: a database of freshwater insect occurrences and traits for the contiguous United States. Glob. Ecol. Biogeogr. 30, 826–841 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arle, J., Mohaupt, V. & Kirst, I. Monitoring of surface waters in germany under the water framework directive-a review of approaches, methods and results. Water 8, 217 (2016).

    Article 

    Google Scholar
     

  • Buss, D. F. et al. Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environ. Monit. Assess. 187, 4132 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Rosenzweig, M., Turner, W., Cox, J. & Ricketts, T. Estimating diversity in unsampled habitats of a biogeographical province. Conserv. Biol. 17, 864–874 (2003).

    Article 

    Google Scholar
     

  • Kouki, J. Latitudinal gradients in species richness in northern areas: some exceptional patterns. Ecol. Bull 40, 30–37 (1999).


    Google Scholar
     

  • Laland, K., Matthews, B. & Feldman, M. W. An introduction to niche construction theory. Evol. Ecol. 30, 191–202 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B-Biol. Sci. 283, 20152013 (2016).

    Article 

    Google Scholar
     

  • Brown, L. E., Hannan, D. M. & Milner, A. M. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Glob. Change Biol. 13, 958–966 (2007).

    Article 

    Google Scholar
     

  • Finn, D. S., Räsänen, K. & Robinson, C. T. Physical and biological changes to a lengthening stream gradient following a decade of rapid glacial recession. Glob. Change Biol. 16, 3314–3326 (2010).

    Article 

    Google Scholar
     

  • Chao, A. et al. Measuring temporal change in alpha diversity: a framework integrating taxonomic, phylogenetic and functional diversity and the iNEXT.3D standardization. Methods Ecol. Evol. 12, 1926–1940 (2021).

    Article 

    Google Scholar
     

  • Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Article 

    Google Scholar
     

  • Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140 (2011).

    Article 

    Google Scholar
     

  • Musonge, P. S. L., Boets, P., Lock, K. & Goethals, P. L. M. Drivers of benthic macroinvertebrate assemblages in equatorial alpine rivers of the Rwenzoris (Uganda). Water 12, 1668 (2020).

    Article 

    Google Scholar
     

  • Dallas, H. F. & Rivers-Moore, N. A. Critical thermal maxima of aquatic macroinvertebrates: towards identifying bioindicators of thermal alteration. Hydrobiologia 679, 61–76 (2012).

    Article 

    Google Scholar
     

  • Stewart, B. A., Close, P. G., Cook, P. A. & Davies, P. M. Upper thermal tolerances of key taxonomic groups of stream invertebrates. Hydrobiologia 718, 131–140 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Gillard, M., Aroviita, J. & Alahuhta, J. Same species, same habitat preferences? The distribution of aquatic plants is not explained by the same predictors in lakes and streams. Freshwater Biol. 65, 878–892 (2020).

    Article 

    Google Scholar
     

  • Pérez-Burillo, J. et al. Stream diatom community assembly processes in islands and continents: a global perspective. J. Biogeogr. 51, 382–393 (2023).

    Article 

    Google Scholar
     

  • Pound, K. L., Larson, C. A. & Passy, S. I. Current distributions and future climate-driven changes in diatoms, insects and fish in U.S. streams. Glob. Ecol. Biogeogr. 30, 63–78 (2021).

    Article 

    Google Scholar
     

  • Kuussaari, M., Heliölä, J., Pöyry, J. & Saarinen, K. Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J. Insect Conserv. 11, 351–366 (2007).

    Article 

    Google Scholar
     

  • Feng, L., Ma, X. M., Hughes, A. C. & Feng, G. Elevation range and contemporary climate determine the taxonomic, functional and phylogenetic diversity of forest mammals. Biodivers. Conserv. 32, 4651–4664 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Brumberg, H. et al. Riparian buffer length is more influential than width on river water quality: A case study in southern Costa Rica. J. Environ. Manag. 286, 112132 (2021).

    Article 

    Google Scholar
     

  • Kreye, M. M., Adams, D. C. & Escobedo, F. J. The value of forest conservation for water quality protection. Forests 5, 862–884 (2014).

    Article 

    Google Scholar
     

  • Nessimian, J. L. et al. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614, 117–131 (2008).

    Article 

    Google Scholar
     

  • Carrasco, L. R., Webb, E. L., Symes, W. S., Koh, L. P. & Sodhi, N. S. Global economic trade-offs between wild nature and tropical agriculture. PLoS Biol. 15, e2001657 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clausnitzer, V. et al. Focus on African freshwaters: hotspots of dragonfly diversity and conservation concern. Front. Ecol. Environ. 10, 129–134 (2012).

    Article 

    Google Scholar
     

  • Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain. 6, 1237–1247 (2023).

    Article 

    Google Scholar
     

  • Dolédec, S., Olivier, J.-M. & Statzner, B. Accurate description of the abundance of taxa and their biological traits in stream invertebrate communities: effects of taxonomic and spatial resolution. Arch. fur Hydrobiol. 148, 25–43 (2000).

    Article 

    Google Scholar
     

  • Gayraud, S. et al. Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshwater Biol. 48, 2045–2064 (2003).

    Article 

    Google Scholar
     

  • Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process 27, 2171–2186 (2013).

    Article 

    Google Scholar
     

  • Heino, J. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biol. 50, 1578–1587 (2005).

    Article 

    Google Scholar
     

  • Poff, N. et al. Functional trait Niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. North Am. Benthol. Soc. 25, 730–755 (2006).

    Article 

    Google Scholar
     

  • Sarremejane, R. et al. DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Sci. Data 7, 386 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282 (2015).

    Article 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. & Sun, F. Global gridded GDP data set consistent with the shared socioeconomic pathways. Sci. Data 9, 221 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagelkerke, N. J. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).

    Article 

    Google Scholar
     

  • Cliff, A. D. & Ord, J. K. Spatial processes: models & applications. Q. Rev. Biol. 57, 236–236 (1982).

    Article 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org (2020).

  • Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article 

    Google Scholar
     

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R. & Wagner, H. H. vegan Community Ecology Package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).

  • Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).

  • Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Machine learning-based mapping of Acidobacteriota and Planctomycetota using 16 S rRNA gene...

    Jiao, S., Xu, Y., Zhang, J., Hao, X. & Lu, Y. Core microbiota in agricultural soils and their potential associations with nutrient cycling....
    Biodiversity
    10
    minutes

    Species loss in key habitats accelerates regional food web disruption

    Kagata, H. & Ohgushi, T. Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol. Res. 21, 26–34 (2006).Article  ...
    Biodiversity
    14
    minutes

    Biodiversity and human well-being trade-offs and synergies in villages

    Hanspach, J., Loos, J., Dorresteijn, I., Abson, D. J. & Fischer, J. Characterizing social–ecological units to inform biodiversity conservation in cultural landscapes. Divers....
    Biodiversity
    9
    minutes

    Biodiversity modeling to manage urban ecosystems for people and nature

    Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).Article  ...
    Biodiversity
    10
    minutes
    spot_imgspot_img