Species richness variation in marine and terrestrial fauna across widespread, fragmented territories: assessing inherent challenges of data scarcity at local and regional scales


  • IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Bonn, 2019).

  • Ceballos, G. & Ehrlich, P. R. Mutilation of the tree of life via mass extinction of animal genera. Proc. Natl. Acad. Sci. U. S. A. 120 e2306987120 (2023).

  • Gorman, C. E. et al. Reconciling climate action with the need for biodiversity protection, restoration and rehabilitation. Sci. Total Environ. 857, 159316 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, J. S. The biodiversity crisis: A multifaceted review. Curr. Sci. 82, 638–647 (2002).


    Google Scholar
     

  • Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. 114, 9635–9640 (2017).

  • Pilowsky, J. A., Colwell, R. K., Rahbek, C. & Fordham, D. A. Process-explicit models reveal the structure and dynamics of biodiversity patterns. Sci. Adv. 8, eabj2271 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating ecology as a Big-Data science: current advances, challenges, and solutions. BioScience 68, 563–576 (2018).

    Article 

    Google Scholar
     

  • Kays, R., McShea, W. J. & Wikelski, M. Born-digital biodiversity data: millions and billions. Divers. Distrib. 26, 644–648 (2020).

    Article 

    Google Scholar
     

  • Heberling, J. M., Miller, J. T., Noesgaard, D., Weingart, S. B. & Schigel, D. Data integration enables global biodiversity synthesis. Proc. Natl. Acad. Sci. U. S. A. 118 e2018093118 (2021).

  • Wieczorek, J. et al. Darwin core: an evolving Community-Developed biodiversity data standard. PLOS ONE. 7, e29715 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fegraus, E. H., Andelman, S., Jones, M. B. & Schildhauer, M. Maximizing the value of ecological data with structured metadata: an introduction to ecological metadata Language (EML) and principles for metadata creation. Bull. Ecol. Soc. Am. 86, 158–168 (2005).

    Article 

    Google Scholar
     

  • Güntsch, A., Berendsohn, W. G. & Mergen, P. The BioCASE Project – a Biological Collections Access Service for Europe. (2007).

  • Levin, N. et al. Biodiversity data requirements for systematic conservation planning in the mediterranean sea. Mar. Ecol. Prog Ser. 508, 261–281 (2014).

    Article 

    Google Scholar
     

  • Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in global biodiversity information and the role of citizen science. BioScience 66, 393–400 (2016).

    Article 

    Google Scholar
     

  • Underwood, E., Taylor, K. & Tucker, G. The use of biodiversity data in Spatial planning and impact assessment in Europe. RIO 4 e28045 (2018).

  • Lin, H., Caley, M. J. & Sisson, S. A. Estimating global species richness using symbolic data meta-analysis.pdf. Ecography e05617. (2022).

  • Takashina, N. & Kusumoto, B. A perspective on biodiversity data and applications for spatio-temporally robust Spatial planning for area-based conservation. Discov Sustain. 4, 1 (2023).

    Article 

    Google Scholar
     

  • Hortal, J. et al. Seven shortfalls that beset Large-Scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Article 

    Google Scholar
     

  • Troia, M. J. & McManamay, R. A. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the united States. Ecol. Evol. 6, 4654–4669 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Roselló, E., González-Dacosta, J. & Lobo, J. M. The biased distribution of existing information on biodiversity hinders its use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 283, 110118 (2023).

    Article 

    Google Scholar
     

  • Rocchini, D. et al. A quixotic view of Spatial bias in modelling the distribution of species and their diversity. Npj Biodivers. 2, 10 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiesari, L., Grillitsch, B. & Grillitsch, H. Biogeographic biases in research and their consequences for linking amphibian declines to pollution. Conserv. Biol. 21, 465–471 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Wüest, R. O. et al. Macroecology in the age of big Data – Where to go from here? J. Biogeogr. 47, 1–12 (2020).

    Article 

    Google Scholar
     

  • Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inf. 19, 10–15 (2014).

    Article 

    Google Scholar
     

  • König, C. et al. Biodiversity data integration—the significance of data resolution and domain. PLoS Biol. 17, e3000183 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadmon, R., Farber, O. & Danin, A. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol. Appl. 14, 401–413 (2004).

    Article 

    Google Scholar
     

  • Engemann, K. et al. Limited sampling hampers big data Estimation of species richness in a tropical biodiversity hotspot. Ecol. Evol. 5, 807–820 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borges, P. A. V. et al. Global Island monitoring scheme (GIMS): a proposal for the long-term coordinated survey and monitoring of native Island forest biota. Biodivers. Conserv. 27, 2567–2586 (2018).

    Article 

    Google Scholar
     

  • Alves, C., João Aguuiar, C., Cristina, R., João Pradinho, H. & Ângela, L. Research data management in the field of ecology: an overview. Int. Conf. Dublin Core Metadata Appl. https://doi.org/10.23106/dcmi.952138986 (2018).

  • Stephenson, P. et al. Priorities for big biodiversity data. Front. Ecol. Environ. 15, 124–125 (2017).

    Article 

    Google Scholar
     

  • Hachich, N. F. et al. Island biogeography patterns of marine shallow-water organisms in the Atlantic. J. Biogeogr. 42, 1871–1882 (2015).

    Article 

    Google Scholar
     

  • Simberloff, D. Extinction-proneness of Island species-causes and management implications. Raffles Bull. Zool. 48, 1–9 (2000).


    Google Scholar
     

  • Russell, J. C. & Kueffer, C. Island biodiversity in the anthropocene. Annu. Rev. Environ. Resour. 44, 31–60 (2019).

    Article 

    Google Scholar
     

  • Warren, B. H. et al. Islands as model systems in ecology and evolution: prospects Fifty years after MacArthur-Wilson. Ecol. Lett. 18, 200–217 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: taking the long view of nature’s laboratories. Science 357, eaam8326 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Andréfouët, S. & Adjeroud, M. Chapter 38 – French polynesia. In world seas: an environmental evaluation volume II: Indian Ocean to the Pacific. 827–854 (2019).

  • Galzin, R. & Meyer, J. Y. H. Les 124 Îles de La polynésie française: types, superficies, noms et occupation humaine. Bull. De La. Société Des. Études Océaniennes 123–136 (2024).

  • Kulbicki, M. Biogeography of reef fishes of the French territories in the South Pacific. Cybium 31, 275–288 (2007).


    Google Scholar
     

  • Salvat, B. Dominant benthic mollusks in closed atolls, French Polynesia. Galaxea J. Coral Reef. Stud. 11, 197–206 (2009).

    Article 

    Google Scholar
     

  • Tröndlé, J. & Boutet, M. Inventory of marine molluscs of French Polynesia. Atoll Res. Bull. 1–87. https://doi.org/10.5479/si.00775630.570.1 (2009).

  • Delrieu-Trottin, E. et al. Shore fishes of the Marquesas islands, an updated checklist with new records and new percentage of endemic species. Cl 11, 1758 (2015).

    Article 

    Google Scholar
     

  • Delrieu-Trottin, E. et al. A DNA barcode reference library of French Polynesian shore fishes. Sci. Data. 6, 114 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salvat, B. & Tröndlé, J. Biogéographie des mollusques marins de polynésie Française. Revec 72, 215–257 (2017).

    Article 

    Google Scholar
     

  • Boutet, M., Gourguet, R. & Letourneux, J. Marine Molluscs of French Polynesia / Mollusques Marins De Polynésie Française (Au Vent Des Iles, 2020).

  • Vieira, C. et al. Global biogeography and diversification of a group of brown seaweeds (Phaeophyceae) driven by clade-specific evolutionary processes. J. Biogeogr. 48, 703–715 (2021).

    Article 

    Google Scholar
     

  • Vieira, C. et al. Diversity, systematics and biogeography of French Polynesian Lobophora (Dictyotales, Phaeophyceae). Eur. J. Phycol. 58, 226–253 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ramage, T. Checklist of the terrestrial and freshwater arthropods of French Polynesia (Chelicerata; myriapoda; crustacea; Hexapoda). Zoosystema 39, 213 (2017).

    Article 

    Google Scholar
     

  • Thibault, J. C., Cibois, A. & Lynx birds of Eastern Polynesia: A biogeographic atlas. (Barcelona, 2017).

  • Florence, J. Flore De La Polynésie Française 1 (IRD édition/MNHN, 1997).

  • Florence, J. Flore De La Polynésie Française 2 (IRD Éditions/MNHN, 2004).

  • Chevillotte, H., Ollier, C. & Meyer, J. Y. Base De Données Botaniques Nadeaud De l’Herbier De La Polynésie Française (PAP). Institut Louis Malardé, Délégation À La Recherche, Papeete, Tahiti http://nadeaud.ilm.pf (Institut Louis Malardé, 2019).

  • Gillespie, R. G., Claridge, E. M. & Goodacre, S. L. Biogeography of the fauna of French polynesia: diversification within and between a series of hot spot archipelagos. Phil Trans. R Soc. B. 363, 3335–3346 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hembry, D. H. Evolutionary biogeography of the terrestrial biota of the Marquesas islands, one of the world’s remotest archipelagos. J. Biogeogr. 45, 1713–1726 (2018).

    Article 

    Google Scholar
     

  • Fernandez-Palacios, J. M. et al. Scientists’ warning – The outstanding biodiversity of Islands is in peril. Global Ecol. Conserv. 31, e01847 (2021).

    Article 

    Google Scholar
     

  • Pebesma, E. & Bivand, R. Spatial Data Science: with Applications in R (Chapman and Hall/CRC, 2023).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

  • Chamberlain, S., Vanhoorne, B. & worrms World Register of Marine Species (WoRMS) Client. R package. (2023).

  • Chamberlain, S. et al. taxize: Taxonomic information from around the web. R package. (2020).

  • Grenié, M. & Gruson, H. rtaxref: An R Client for TAXREF the French taxonomical reference API. R package. (2022).

  • Maldonado, C. et al. Estimating species diversity and distribution in the era of B Ig D ata: to what extent can we trust public databases? Glob. Ecol. Biogeogr. 24, 973–984 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonnet-Lebrun, A. S. et al. Opportunities and limitations of large open biodiversity occurrence databases in the context of a marine ecosystem assessment of the Southern ocean. Front. Mar. Sci. 10, 1150603 (2023).

    Article 

    Google Scholar
     

  • Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lim, G. S., Balke, M. & Meier, R. Determining species boundaries in a world full of rarity: singletons, species delimitation methods. Syst. Biol. 61, 165–169 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).

    Article 

    Google Scholar
     

  • Montes, E. et al. Optimizing Large-Scale biodiversity sampling effort: toward an unbalanced survey design. Oceanog 34, 80–91 (2021).

    Article 

    Google Scholar
     

  • Soberón, J., Jiménez, R., Golubov, J. & Koleff, P. Assessing completeness of biodiversity databases at different Spatial scales. Ecography 30, 152–160 (2007).

    Article 

    Google Scholar
     

  • Deng, C., Daley, T. & Smith, A. Applications of species accumulation curves in large-scale biological data analysis. Quant. Biol. 3, 135–144 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oksanen, J. et al. Vegan: Community ecology package. (2024).

  • Chao, A. Nonparametric Estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).

    MathSciNet 

    Google Scholar
     

  • Chao, A. Estimating the population size for Capture-Recapture data with unequal catchability. Biometrics 43, 783 (1987).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Phil Trans. R Soc. Lond. B. 345, 101–118 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Chao, A. & Chun-Huo, C. Species richness: Estimation and Compariso. Wiley StatsRef: Stat. Ref. Online. 1, 26 (2016).


    Google Scholar
     

  • De Araujo, M. L., Quaresma, A. C. & Ramos, F. N. GBIF information is not enough: National database improves the inventory completeness of Amazonian epiphytes. Biodivers. Conserv. 31, 2797–2815 (2022).

    Article 

    Google Scholar
     

  • Ramírez, F., Sbragaglia, V., Soacha, K., Coll, M. & Piera, J. Challenges for marine ecological assessments: completeness of findable, accessible, interoperable, and reusable biodiversity data in European seas. Front. Mar. Sci. 8, 802235 (2022).

    Article 

    Google Scholar
     

  • Chanachai, J. et al. What remains to be discovered: A global assessment of tree species inventory completeness. Divers. Distrib. e13862 https://doi.org/10.1111/ddi.13862 (2024).

  • Soberón, J. & Peterson, T. Biodiversity informatics: managing and applying primary biodiversity data. Phil Trans. R Soc. Lond. B. 359, 689–698 (2004).

    Article 

    Google Scholar
     

  • Zizka, A., Antonelli, A. & Silvestro, D. sampbias, a method for quantifying geographic sampling biases in species distribution data. Ecography 44, 25–32 (2021).

    Article 

    Google Scholar
     

  • Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cornwell, W. K., Pearse, W. D., Dalrymple, R. L. & Zanne, A. E. What we (don’t) know about global plant diversity. Ecography 42, 1819–1831 (2019).

    Article 

    Google Scholar
     

  • Moudrý, V. & Devillers, R. Quality and usability challenges of global marine biodiversity databases: an example for marine mammal data. Ecol. Inf. 56, 101051 (2020).

    Article 

    Google Scholar
     

  • Clements, J. F. et al. The eBird/Clements checklist of birds of the world. (2024).

  • Bacchet, P., Zysman, T. & Lefevre, Y. Guide Des poissons de Tahiti et Ses Îles. (Éditions Au Vent des Îles, Tahiti (Polynésie Francaise), 2017).

  • Siu, G. et al. Shore fishes of French Polynesia. Cybium 41, 245–278 (2017).


    Google Scholar
     

  • Porch, N., Smith, T. R. & Greig, K. Five new Pycnomerus Erichson (Coleoptera: zopheridae: Pycnomerini) from Raivavae. Fr. Polynesia Zootaxa. 4718, 239–250 (2020).


    Google Scholar
     

  • Rocha-Ortega, M., Rodriguez, P. & Córdoba-Aguilar, A. Geographical, Temporal and taxonomic biases in insect GBIF data on biodiversity and extinction. Ecol. Entomol. 46, 718–728 (2021).

    Article 

    Google Scholar
     

  • Liebherr, J. The first precinctive Carabidae from moorea, society islands: new Mecyclothorax spp. (Coleoptera) from the summit of Mont Tohiea. ZK 224, 37–80 (2012).

    Article 

    Google Scholar
     

  • Mora, C., Tittensor, D. P. & Myers, R. A. The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes. Proc. R Soc. B. 275, 149–155 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Sánchez-Fernández, D., Fox, R., Dennis, R. L. H. & Lobo, J. M. How complete are insect inventories? An assessment of the British butterfly database highlighting the influence of dynamic distribution shifts on sampling completeness. Biodivers. Conserv. 30, 889–902 (2021).

    Article 

    Google Scholar
     

  • Stokes, D. L. Things we like: human preferences among similar organisms and implications for conservation. Hum. Ecol. 35, 361–369 (2007).

    Article 

    Google Scholar
     

  • Ducarme, F., Luque, G. M. & Courchamp, F. What are charismatic species for conservation biologists?. BioSci. Master Rev. (2013).

  • De Pinho, J. R., Grilo, C., Boone, R. B., Galvin, K. A. & Snodgrass, J. G. Influence of aesthetic appreciation of wildlife species on attitudes towards their conservation in Kenyan agropastoralist communities. PLoS ONE. 9, e88842 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomolino, M. V. Conservation biogeography. in Frontiers of Biogeography: New Directions in the Geography of Nature (eds Lomolino, M. V. & Heaney, L. R.) 293–296 (Sinauer Associates, Sunderland, MA, (2004).


    Google Scholar
     

  • Kusumoto, B. et al. Occurrence-based diversity estimation reveals macroecological and conservation knowledge gaps for global woody plants. Sci. Adv. 9 (2023).

  • Shirey, V., Belitz, M. W., Barve, V. & Guralnick, R. A complete inventory of North American butterfly occurrence data: narrowing data gaps, but increasing bias. Ecography 44, 537–547 (2021).

    Article 

    Google Scholar
     

  • Biodiversité, T. et Marine des Îles marquises, polynésie française. (Paris, 2016).

  • Reisser, C. M. O. et al. Population connectivity and genetic assessment of exploited and natural populations of Pearl oysters within a French Polynesian Atoll lagoon. Genes 11, 426 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittermeier, R. A. et al. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions (The University of Chicago Press, 2005).

  • Williams, J. T., Delrieu-Trottin, E. & Planes, S. A new species of Indo-Pacific fish, Canthigaster criobe, with comments on other Canthigaster (Tetraodontiformes: Tetraodontidae) at the Gambier Archipelago. Zootaxa 3523, (2012).

  • Zimmermann, G., Gargominy, O. & Fontaine, B. Quatre espèces nouvelles d’endodontidae (Mollusca, Pulmonata) Éteints de Rurutu (Îles australes, polynésie française). Zoosystema 31, 791–805 (2009).

    Article 

    Google Scholar
     

  • Richling, I. & Bouchet, P. Extinct even before scientific recognition: a remarkable radiation of helicinid snails (Helicinidae) on the gambier islands, French Polynesia. Biodivers. Conserv. 22, 2433–2468 (2013).

    Article 

    Google Scholar
     

  • Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).

    Article 

    Google Scholar
     

  • Hall, K. A. et al. Affinities of sponges (Porifera) of the Marquesas and society islands, French Polynesia. Pac. Sci. 67, 493–511 (2013).

    Article 

    Google Scholar
     

  • Terrestrial biodiversity of the Austral Islands, french polynesia. (Muséum d’Histoire Naturelle, 2014).

  • Adjeroud, M. et al. Reefs at the edge: coral community structure around rapa, southernmost French Polynesia. Mar. Ecol. 37, 565–575 (2016).

    Article 

    Google Scholar
     

  • Soulé, M. E. What is conservation biology?? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems. BioScience 35, 727–734 (1985).


    Google Scholar
     

  • Raffaelli, D., Solan, M. & Webb, T. J. Do marine and terrestrial ecologists do it differently? Mar. Ecol. Prog. Ser. 304, 283–289 (2005).


    Google Scholar
     

  • Munguia, P. & Ojanguren, A. F. Bridging the gap in marine and terrestrial studies. Ecosphere 6, 1–4 (2015).

    Article 

    Google Scholar
     

  • Álvarez-Romero, J. G. et al. Integrated Land-Sea conservation planning: the missing links. Annu. Rev. Ecol. Evol. Syst. 42, 381–409 (2011).

    Article 

    Google Scholar
     

  • Gillett, R. & Tauati, M. I. Fisheries of the Pacific islands. Regional and National information. FAO Fisheries Aquaculture Tech. Paper. 625, 401 (2018).


    Google Scholar
     

  • Hanafi-Portier, M. & Samedi, S. Les monts sous-marins de polynésie française, etat des lieux des connaissances et recommandations scientifiques. https://hal.science/hal-04713244 (2024).

  • Mangiacotti, M. et al. Assessing the Spatial scale effect of anthropogenic factors on species distribution. PLoS ONE. 8, e67573 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrett, R. L., Taputuarai, R., Meyer, J. Y. H., Bruhl, J. J. & Wilson, K. L. Reassessment of the taxonomic status of Cyperaceae on Rapa iti, Austral islands, French polynesia, with a new combination, Morelotia involuta. Telopea 24, 171–187 (2021).

    Article 

    Google Scholar
     

  • Reddy, S. & Dávalos, L. M. Geographical sampling bias and its implications for conservation priorities in in Africa. J. Biogeogr. 30, 1719–1727 (2003).

    Article 

    Google Scholar
     

  • Mair, L. & Ruete, A. Explaining Spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE. 11, e0147796 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freitag, S., Hobson, C., Biggs, H. C. & Van Jaarsveld, A. Testing for potential survey bias: the effect of roads, urban areas and nature reserves on a Southern African mammal data set. Anim. Conserv. 1, 119–127 (1998).

    Article 

    Google Scholar
     

  • Cardoso, M. N. M. et al. Causes and effects of sampling bias on marine Western Atlantic biodiversity knowledge. Divers. Distrib. 30, e13839 (2024).

    Article 

    Google Scholar
     

  • Ivanova, N. V. & Shashkov, M. P. The possibilities of GBIF data use in ecological research. Russ J. Ecol. 52, 1–8 (2021).

    Article 

    Google Scholar
     

  • Isaac, N. J. B., Van Strien, A. J., August, T. A., De Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).

    Article 

    Google Scholar
     

  • Fan, H. et al. Conservation priorities for global marine biodiversity across multiple dimensions. Natl. Sci. Rev. 10, nwac241 (2023).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Analysis of medium-term impact of multifunctional living mulches on soil biological...

    Effect of living mulches on soil nutrient levelsSoil nutrients level was found to be significantly affected by the season (Table S1), but not...
    Biodiversity
    11
    minutes

    Testing the effect of host availability on endobiont diversity: proposing the...

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeographyvol. 1 (Princeton University Press, 1967).Gillespie, R. G. & Baldwin, B. G....
    Biodiversity
    8
    minutes

    Global land cover maps do not reveal mining pressures to biodiversity

    Global land cover maps are used as inputs to the indicators and metrics informing major risks and opportunities for biodiversity conservation, including those...
    Biodiversity
    8
    minutes

    Climate change will cause the spatial mismatch between sexually deceptive beetle...

    Wang, Z. et al. Biodiversity conservation in the context of climate change: facing challenges and management strategies. Sci. Total Environ. 937, 173377. https://doi.org/10.1016/j.scitotenv.2024.173377...
    Biodiversity
    12
    minutes
    spot_imgspot_img