Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).
Biggs, J., von Fumetti, S. & Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 793, 3–39. https://doi.org/10.1007/s10750-016-3007-0 (2016).
Céréghino, R., Biggs, J., Oertli, B. & Declerck, S. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597, 1–6. https://doi.org/10.1007/s10750-007-9225-8 (2008).
Harper, L. R. et al. Assessing the impact of the threatened crucian carp (Carassius carassius) on pond invertebrate diversity: A comparison of conventional and molecular tools. Mol. Ecol. 30(13), 3252–3269. https://doi.org/10.1111/mec.15670 (2020).
Poléo, A. B., Schjolden, J., Sørensen, J. & Nilsson, G. E. The high tolerance to aluminium in crucian carp (Carassius carassius) is associated with its ability to avoid hypoxia. PLoS ONE 12(6), e0179519. https://doi.org/10.1371/journal.pone.0179519 (2017).
Kottelat, M. & Freyhof, J. Handbook of European freshwater fishes. Kottelat, Cornol, Switzerland and Freyhof, Berlin, Germany (2007).
Copp, G. H. & Sayer, C. D. Demonstrating the practical impact of publications in aquatic conservation: The case of crucian carp (Carassius carassius) in the east of England. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30(9), 1753–1757. https://doi.org/10.1002/aqc.3353 (2020).
Sayer, C. D. et al. Recovery of the crucian carp (Carassius carassius (L.)): Approach and early results of an English conservation project. Aquat. Conserv.: Mar. Freshw. Ecosyst. 30(12), 2240–2253. https://doi.org/10.1002/aqc.3422 (2020).
Tarkan, A. S., Copp, G. H., Zięba, G., Godard, M. J. & Cucherousset, J. Growth and reproduction of threatened native crucian carp (Carassius carassius) in small ponds of Epping Forest, south-East England. Aquat. Conserv. Mar. Freshwat. Ecosyst. 19(7), 797–805. https://doi.org/10.1002/aqc.1028 (2009).
Wheeler, A. C. Ponds and fishes in Epping forest, Essex. Lond. Naturalist 77, 107–146 (1998).
Wheeler, A. C. Status of the crucian carp, Carassius carassius (L.) in the UK. Fisheries Manag. Ecol., 7, 315–322 https://doi.org/10.1046/j.1365-2400.2000.007004315.x (2000).
Hänfling, B., Bolton, P., Harley, M. & Carvalho, G. R. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshw. Biol., 50(3), 403–417. https://doi.org/10.1111/j.1365-2427.2004.01330.x (2005).
Lyach, R. In situ management options to improve crucian carp (Carassius carassius, L.) and brown trout (Salmo trutta, L.) population status in Central Europe: A case study from the Czech Republic. Ecol. Evol. 12(7), e9107. https://doi.org/10.1002/ece3.9107 (2022).
Lusk, S., Hanel, L., Lojkásek, B., Lusková, V. & Muška, M. The red list of lampreys and fishes of the Czech Republic. In Red list of threatened species of the Czech Republic, Vertebrates (eds Němec, M. & Chobot, K.) 51–82 (Příroda, 2017).
Copp, G. H., Tarkan, A. S., Godard, M. J., Edmonds, N. J. & Wesley, K. J. Preliminary assessment of feral goldfish impacts on ponds, with particular reference to native crucian carp. Aquat. Invasions 5(4), 413–422. https://doi.org/10.3391/ai.2010.5.4.11 (2010).
Sayer, C. D. et al. Towards the conservation of crucian carp (Carassius carassius): Understanding the extent and causes of decline within part of its native English range. J. Fish Biol. 79, 1608–1624. https://doi.org/10.1111/j.1095-8649.2011.03059.x (2011).
Vetemaa, M., Eschbaum, R., Albert, A. & Saat, T. Distribution, sex ratio and growth of Carassius gibelio (Bloch) in coastal and inland waters of Estonia (north-eastern Baltic Sea). J. Appl. Ichthyol. 21, 287–291. https://doi.org/10.1111/j.1439-0426.2005.00680.x (2005).
Tóth, B., Várkonyi, E., Hidas, A., Meleg, E. E. & Váradi, L. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J. Fish Biol. 66, 784–797. https://doi.org/10.1111/j.0022-1112.2005.00644.x (2005).
Busst, G. M. A. & Britton, J. R. Quantifying the growth consequences for crucian carp (Carassius carassius) of competition from non-native fishes. Ecol Freshw Fish 24, 489–492. https://doi.org/10.1111/eff.12155 (2015).
Tichopád, T. et al. Spermatozoa morphology and reproductive potential in F1 hybrids of common carp (Cyprinus carpio) and gibel carp (Carassius gibelio). Aquaculture 521, 735092. https://doi.org/10.1016/j.aquaculture.2020.735092 (2020).
Keszte, S. et al. Mitochondrial sequence diversity reveals the hybrid origin of invasive gibel carp (Carassius gibelio) populations in Hungary. PeerJ 9, e12441. https://doi.org/10.7717/peerj.12441 (2021).
Rylková, K., Kalous, L., Bohlen, J., Lamatsch, D. K. & Petrtýl, M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture 380–383, 13–20. https://doi.org/10.1016/j.aquaculture.2012.11.027 (2013).
Fedorčák, J., Križek, P. & Koščo, J. Which factors influence spatio–temporal changes in the distribution of invasive and native species of genus Carassius?. Aquat. Invasions 18(2), 219–230. https://doi.org/10.3391/ai.2023.18.2.105240 (2023).
Takács, P. et al. Non-native fish species in Hungarian waters: historical overview, potential sources and recent trends in their distribution. Hydrobiologia 795, 1–22. https://doi.org/10.1007/s10750-017-3147-x (2017).
Demeny, F. et al. Observations of the crucian carp (Carassius carassius) pond culture. In: Marković Z (ed) Proceedings of the IV International Conference “Fishery”, May 27–29, 2009. Reinforcement of Sustainable Aquaculture. University of Belgrade, Belgrade, pp 138–144 (2009).
Copp, G. H., Černý, J. & Kováč, V. Growth and morphology of an endangered native freshwater fish, crucian carp (Carassius carassius), in an English ornamental pond. Aquat. Conserv.: Mar. Freshw. Ecosyst. 18(1), 32–43. https://doi.org/10.1002/aqc.820 (2008).
Sikorska, J. et al. Effect of four rearing water temperatures on some performance parameters of larval and juvenile crucian carp (Carassius carassius) under controlled conditions. Aquacult. Res. 49(12), 3874–3880. https://doi.org/10.1111/are.13855 (2018).
Demény, F., Józsa, V. & Müller, T. A széles kárász (in Hungarian) in Müller T., Urbányi B. & Staszny Á. (editors) Veszélyeztetett lápi halak megóvása. p.: 121–122 (2020)
Hurt, C. & Hedrick, P. Conservation genetics in aquatic species: General approaches and case studies in fishes and springsnails of arid lands. Aquat. Sci. 66(4), 402–413. https://doi.org/10.1007/s00027-004-0726-5 (2004).
Hanfling, B. & Harley, M. A molecular approach to detect hybridization between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius auratus and Cyprinus carpio) in UK waters, including a consideration of the taxonomic status of the giebel carp (Carassius spp.). Environment Agency R&D Technical Report W2–077/TR (2003).
Janson, S., Wouters, J., Bonow, M., Svanberg, I. & Olsén, K. H. Population genetic structure of crucian carp (Carassius carassius) in man-made ponds and wild populations in Sweden. Aquacult. Int. 23, 359–368. https://doi.org/10.1007/s10499-014-9820-4 (2015).
Ivanova, N. V., Zemlak, T. S., Hanner, R. H. & Hebert, P. D. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes 7(4), 544–548 (2007).
Zheng, W., Stacey, N. E., Coffin, J. & Strobeck, C. Isolation and characterization of microsatellite loci in the goldfish Carassius auratus. Mol. Ecol. 4(6), 791–792. https://doi.org/10.1111/j.1365-294X.1995.tb00282.x (1995).
Crooijmans, R. P. M. A., Bierbooms, V. A. F., Komen, J., Van der Poel, J. J. & Groenen, M. A. M. Microsatellite markers in common carp (Cyprinus carpio L.). Anim. Genet. 28(2), 129–134. https://doi.org/10.1111/j.1365-2052.1997.00097 (1997).
Yue, G. H. & Orban, L. Polymorphic microsatellites from silver crucian carp (Carassius auratus gibelio Bloch) and cross-amplification in common carp (Cyprinus carpio L.). Mol. Ecol. Notes 2(4), 534–536. https://doi.org/10.1046/j.1471-8286.2002.00308.x (2002).
Baerwald, M. R. & May, B. Characterization of microsatellite loci for five members of the minnow family cyprinidae found in the sacramento-san joaquin delta and its tributaries. Mol. Ecol. Notes 4(3), 385–390. https://doi.org/10.1111/j.1471-8286.2004.00661.x (2004).
Guo, W. & Gui, J. F. Microsatellite marker isolation and cultured strain identification in Carassius auratus gibelio. Aquacult. Int. 16(6), 497–510. https://doi.org/10.1007/s10499-007-9161-7 (2008).
Zheng, X. H. et al. A set of polymorphic trinucleotide and tetranucleotide microsatellite markers for silver crucian carp (Carassius auratus gibelio) and cross-amplification in crucian carp. Biochem. Genet. 48(7–8), 624–635. https://doi.org/10.1007/s10528-010-9344-1 (2010).
Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol. 18(2), 233–234 (2000).
Blacket, M. J., Robin, C., Good, R. T., Lee, S. F. & Miller, A. D. Universal primers for fluorescent labelling of PCR fragments: An efficient and cost-effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 12(3), 456–463 (2012).
Van Oosterhout, C., Weetman, D. & Hutchinson, W. F. Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol. Ecol. Notes 6, 255–256. https://doi.org/10.1111/j.1471-8286.2005.01082.x (2006).
Peakall, R. & Smouse, P. E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
Kalinowski, S. T. HP-Rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. 5, 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x (2005).
Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014. https://doi.org/10.1093/genetics/144.4.2001 (1996).
Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214. https://doi.org/10.1111/1755-0998.12157 (2014).
Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10(2), 305–318. https://doi.org/10.1046/j.1365-294x.2001.01190.x (2001).
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).
Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631. https://doi.org/10.1093/molbev/msl191 (2007).
Langella, O. Populations 1.2.32: Population genetic software (individuals or population distances, phylogenetic trees). Available from http://www.bioinformatics.org/project/?group_id=84 (2011).
Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027. https://doi.org/10.1093/molbev/msab120 (2021).
Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. https://doi.org/10.1093/genetics/155.2.945 (2000).
Falush, D., Stephens, M. & Pritchard, J. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. https://doi.org/10.1093/genetics/164.4.1567 (2003).
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
Li, Y. L. & Liu, J. X. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177. https://doi.org/10.1111/1755-0998.12719 (2018).
Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).
Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475. https://doi.org/10.1002/ece3.2096 (2016).
Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius L. Mol. Ecol. 25(13), 2997–3018. https://doi.org/10.1111/mec.13613 (2016).
Tapkir, S. et al. Invasive gibel carp (Carassius gibelio) outperforms threatened native crucian carp (Carassius carassius) in growth rate and effectiveness of resource use: Field and experimental evidence. Aquat. Conserv.: Mar. Freshw. Ecosyst. 32(12), 1901–1912. https://doi.org/10.1002/aqc.3894 (2022).
Tapkir, S. et al. Invasive gibel carp use vacant space and occupy lower trophic niche compared to endangered native crucian carp. Biol. Invasions 25(9), 2917–2928. https://doi.org/10.1007/s10530-023-03081-9 (2023).
Jeffries, D. L. et al. Genetic evidence challenges the native status of a threatened freshwater fish (Carassius carassius) in England. Ecol. Evol. 7(9), 2871–2882. https://doi.org/10.1002/ece3.2831 (2017).
Takács, P. et al. Population genetic patterns of threatened European Mudminnow (Umbra krameri Walbaum, 1792) in a fragmented landscape: implications for conservation management. PLoS One 10(9), e0138640. https://doi.org/10.1371/journal.pone.0138640 (2015).
Al Fatle, F. A. et al. Genetic structure and diversity of native tench (Tinca tinca L. 1758) populations in Hungary—Establishment of basic knowledge base for a breeding program. Diversity 14(5), 336. https://doi.org/10.3390/d14050336 (2022).
Pavlov, D. A. Life history of two carassius (Cyprinidae) species in the conditions of sympatry. J. Ichthyol. 62(6), 1100–1115. https://doi.org/10.1134/S0032945222060212 (2022).
Olsén, K. H. & Bonow, M. Crucian carp (Carassius carassius (L.)), an anonymous fish with great skills. Ichthyol. Res. 70(3), 313–331. https://doi.org/10.1007/s10228-022-00892-z (2023).