Genetic survey of crucian carp Carassius carassius populations in Hungary for a conservation project to establish live gene bank


  • Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Biggs, J., von Fumetti, S. & Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 793, 3–39. https://doi.org/10.1007/s10750-016-3007-0 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Céréghino, R., Biggs, J., Oertli, B. & Declerck, S. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597, 1–6. https://doi.org/10.1007/s10750-007-9225-8 (2008).

    Article 

    Google Scholar
     

  • Harper, L. R. et al. Assessing the impact of the threatened crucian carp (Carassius carassius) on pond invertebrate diversity: A comparison of conventional and molecular tools. Mol. Ecol. 30(13), 3252–3269. https://doi.org/10.1111/mec.15670 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Poléo, A. B., Schjolden, J., Sørensen, J. & Nilsson, G. E. The high tolerance to aluminium in crucian carp (Carassius carassius) is associated with its ability to avoid hypoxia. PLoS ONE 12(6), e0179519. https://doi.org/10.1371/journal.pone.0179519 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kottelat, M. & Freyhof, J. Handbook of European freshwater fishes. Kottelat, Cornol, Switzerland and Freyhof, Berlin, Germany (2007).

  • Copp, G. H. & Sayer, C. D. Demonstrating the practical impact of publications in aquatic conservation: The case of crucian carp (Carassius carassius) in the east of England. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30(9), 1753–1757. https://doi.org/10.1002/aqc.3353 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sayer, C. D. et al. Recovery of the crucian carp (Carassius carassius (L.)): Approach and early results of an English conservation project. Aquat. Conserv.: Mar. Freshw. Ecosyst. 30(12), 2240–2253. https://doi.org/10.1002/aqc.3422 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Tarkan, A. S., Copp, G. H., Zięba, G., Godard, M. J. & Cucherousset, J. Growth and reproduction of threatened native crucian carp (Carassius carassius) in small ponds of Epping Forest, south-East England. Aquat. Conserv. Mar. Freshwat. Ecosyst. 19(7), 797–805. https://doi.org/10.1002/aqc.1028 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Wheeler, A. C. Ponds and fishes in Epping forest, Essex. Lond. Naturalist 77, 107–146 (1998).

    MATH 

    Google Scholar
     

  • Wheeler, A. C. Status of the crucian carp, Carassius carassius (L.) in the UK. Fisheries Manag. Ecol., 7, 315–322 https://doi.org/10.1046/j.1365-2400.2000.007004315.x (2000).

  • Hänfling, B., Bolton, P., Harley, M. & Carvalho, G. R. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshw. Biol., 50(3), 403–417. https://doi.org/10.1111/j.1365-2427.2004.01330.x (2005).

  • Lyach, R. In situ management options to improve crucian carp (Carassius carassius, L.) and brown trout (Salmo trutta, L.) population status in Central Europe: A case study from the Czech Republic. Ecol. Evol. 12(7), e9107. https://doi.org/10.1002/ece3.9107 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lusk, S., Hanel, L., Lojkásek, B., Lusková, V. & Muška, M. The red list of lampreys and fishes of the Czech Republic. In Red list of threatened species of the Czech Republic, Vertebrates (eds Němec, M. & Chobot, K.) 51–82 (Příroda, 2017).


    Google Scholar
     

  • Copp, G. H., Tarkan, A. S., Godard, M. J., Edmonds, N. J. & Wesley, K. J. Preliminary assessment of feral goldfish impacts on ponds, with particular reference to native crucian carp. Aquat. Invasions 5(4), 413–422. https://doi.org/10.3391/ai.2010.5.4.11 (2010).

    Article 

    Google Scholar
     

  • Sayer, C. D. et al. Towards the conservation of crucian carp (Carassius carassius): Understanding the extent and causes of decline within part of its native English range. J. Fish Biol. 79, 1608–1624. https://doi.org/10.1111/j.1095-8649.2011.03059.x (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vetemaa, M., Eschbaum, R., Albert, A. & Saat, T. Distribution, sex ratio and growth of Carassius gibelio (Bloch) in coastal and inland waters of Estonia (north-eastern Baltic Sea). J. Appl. Ichthyol. 21, 287–291. https://doi.org/10.1111/j.1439-0426.2005.00680.x (2005).

    Article 

    Google Scholar
     

  • Tóth, B., Várkonyi, E., Hidas, A., Meleg, E. E. & Váradi, L. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J. Fish Biol. 66, 784–797. https://doi.org/10.1111/j.0022-1112.2005.00644.x (2005).

    Article 

    Google Scholar
     

  • Busst, G. M. A. & Britton, J. R. Quantifying the growth consequences for crucian carp (Carassius carassius) of competition from non-native fishes. Ecol Freshw Fish 24, 489–492. https://doi.org/10.1111/eff.12155 (2015).

    Article 

    Google Scholar
     

  • Tichopád, T. et al. Spermatozoa morphology and reproductive potential in F1 hybrids of common carp (Cyprinus carpio) and gibel carp (Carassius gibelio). Aquaculture 521, 735092. https://doi.org/10.1016/j.aquaculture.2020.735092 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Keszte, S. et al. Mitochondrial sequence diversity reveals the hybrid origin of invasive gibel carp (Carassius gibelio) populations in Hungary. PeerJ 9, e12441. https://doi.org/10.7717/peerj.12441 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rylková, K., Kalous, L., Bohlen, J., Lamatsch, D. K. & Petrtýl, M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture 380–383, 13–20. https://doi.org/10.1016/j.aquaculture.2012.11.027 (2013).

    Article 

    Google Scholar
     

  • Fedorčák, J., Križek, P. & Koščo, J. Which factors influence spatio–temporal changes in the distribution of invasive and native species of genus Carassius?. Aquat. Invasions 18(2), 219–230. https://doi.org/10.3391/ai.2023.18.2.105240 (2023).

    Article 

    Google Scholar
     

  • Takács, P. et al. Non-native fish species in Hungarian waters: historical overview, potential sources and recent trends in their distribution. Hydrobiologia 795, 1–22. https://doi.org/10.1007/s10750-017-3147-x (2017).

    Article 
    MATH 

    Google Scholar
     

  • Demeny, F. et al. Observations of the crucian carp (Carassius carassius) pond culture. In: Marković Z (ed) Proceedings of the IV International Conference “Fishery”, May 27–29, 2009. Reinforcement of Sustainable Aquaculture. University of Belgrade, Belgrade, pp 138–144 (2009).

  • Copp, G. H., Černý, J. & Kováč, V. Growth and morphology of an endangered native freshwater fish, crucian carp (Carassius carassius), in an English ornamental pond. Aquat. Conserv.: Mar. Freshw. Ecosyst. 18(1), 32–43. https://doi.org/10.1002/aqc.820 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Sikorska, J. et al. Effect of four rearing water temperatures on some performance parameters of larval and juvenile crucian carp (Carassius carassius) under controlled conditions. Aquacult. Res. 49(12), 3874–3880. https://doi.org/10.1111/are.13855 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Demény, F., Józsa, V. & Müller, T. A széles kárász (in Hungarian) in Müller T., Urbányi B. & Staszny Á. (editors) Veszélyeztetett lápi halak megóvása. p.: 121–122 (2020)

  • Hurt, C. & Hedrick, P. Conservation genetics in aquatic species: General approaches and case studies in fishes and springsnails of arid lands. Aquat. Sci. 66(4), 402–413. https://doi.org/10.1007/s00027-004-0726-5 (2004).

    Article 

    Google Scholar
     

  • Hanfling, B. & Harley, M. A molecular approach to detect hybridization between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius auratus and Cyprinus carpio) in UK waters, including a consideration of the taxonomic status of the giebel carp (Carassius spp.). Environment Agency R&D Technical Report W2–077/TR (2003).

  • Janson, S., Wouters, J., Bonow, M., Svanberg, I. & Olsén, K. H. Population genetic structure of crucian carp (Carassius carassius) in man-made ponds and wild populations in Sweden. Aquacult. Int. 23, 359–368. https://doi.org/10.1007/s10499-014-9820-4 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Ivanova, N. V., Zemlak, T. S., Hanner, R. H. & Hebert, P. D. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes 7(4), 544–548 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, W., Stacey, N. E., Coffin, J. & Strobeck, C. Isolation and characterization of microsatellite loci in the goldfish Carassius auratus. Mol. Ecol. 4(6), 791–792. https://doi.org/10.1111/j.1365-294X.1995.tb00282.x (1995).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Crooijmans, R. P. M. A., Bierbooms, V. A. F., Komen, J., Van der Poel, J. J. & Groenen, M. A. M. Microsatellite markers in common carp (Cyprinus carpio L.). Anim. Genet. 28(2), 129–134. https://doi.org/10.1111/j.1365-2052.1997.00097 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Yue, G. H. & Orban, L. Polymorphic microsatellites from silver crucian carp (Carassius auratus gibelio Bloch) and cross-amplification in common carp (Cyprinus carpio L.). Mol. Ecol. Notes 2(4), 534–536. https://doi.org/10.1046/j.1471-8286.2002.00308.x (2002).

    Article 
    CAS 

    Google Scholar
     

  • Baerwald, M. R. & May, B. Characterization of microsatellite loci for five members of the minnow family cyprinidae found in the sacramento-san joaquin delta and its tributaries. Mol. Ecol. Notes 4(3), 385–390. https://doi.org/10.1111/j.1471-8286.2004.00661.x (2004).

    Article 
    CAS 

    Google Scholar
     

  • Guo, W. & Gui, J. F. Microsatellite marker isolation and cultured strain identification in Carassius auratus gibelio. Aquacult. Int. 16(6), 497–510. https://doi.org/10.1007/s10499-007-9161-7 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. H. et al. A set of polymorphic trinucleotide and tetranucleotide microsatellite markers for silver crucian carp (Carassius auratus gibelio) and cross-amplification in crucian carp. Biochem. Genet. 48(7–8), 624–635. https://doi.org/10.1007/s10528-010-9344-1 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol. 18(2), 233–234 (2000).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Blacket, M. J., Robin, C., Good, R. T., Lee, S. F. & Miller, A. D. Universal primers for fluorescent labelling of PCR fragments: An efficient and cost-effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 12(3), 456–463 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Oosterhout, C., Weetman, D. & Hutchinson, W. F. Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol. Ecol. Notes 6, 255–256. https://doi.org/10.1111/j.1471-8286.2005.01082.x (2006).

    Article 
    MATH 

    Google Scholar
     

  • Peakall, R. & Smouse, P. E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kalinowski, S. T. HP-Rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. 5, 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x (2005).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014. https://doi.org/10.1093/genetics/144.4.2001 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214. https://doi.org/10.1111/1755-0998.12157 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10(2), 305–318. https://doi.org/10.1046/j.1365-294x.2001.01190.x (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631. https://doi.org/10.1093/molbev/msl191 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Langella, O. Populations 1.2.32: Population genetic software (individuals or population distances, phylogenetic trees). Available from http://www.bioinformatics.org/project/?group_id=84 (2011).

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027. https://doi.org/10.1093/molbev/msab120 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. https://doi.org/10.1093/genetics/155.2.945 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Falush, D., Stephens, M. & Pritchard, J. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. https://doi.org/10.1093/genetics/164.4.1567 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, Y. L. & Liu, J. X. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177. https://doi.org/10.1111/1755-0998.12719 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475. https://doi.org/10.1002/ece3.2096 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius L. Mol. Ecol. 25(13), 2997–3018. https://doi.org/10.1111/mec.13613 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Tapkir, S. et al. Invasive gibel carp (Carassius gibelio) outperforms threatened native crucian carp (Carassius carassius) in growth rate and effectiveness of resource use: Field and experimental evidence. Aquat. Conserv.: Mar. Freshw. Ecosyst. 32(12), 1901–1912. https://doi.org/10.1002/aqc.3894 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tapkir, S. et al. Invasive gibel carp use vacant space and occupy lower trophic niche compared to endangered native crucian carp. Biol. Invasions 25(9), 2917–2928. https://doi.org/10.1007/s10530-023-03081-9 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Jeffries, D. L. et al. Genetic evidence challenges the native status of a threatened freshwater fish (Carassius carassius) in England. Ecol. Evol. 7(9), 2871–2882. https://doi.org/10.1002/ece3.2831 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Takács, P. et al. Population genetic patterns of threatened European Mudminnow (Umbra krameri Walbaum, 1792) in a fragmented landscape: implications for conservation management. PLoS One 10(9), e0138640. https://doi.org/10.1371/journal.pone.0138640 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Al Fatle, F. A. et al. Genetic structure and diversity of native tench (Tinca tinca L. 1758) populations in Hungary—Establishment of basic knowledge base for a breeding program. Diversity 14(5), 336. https://doi.org/10.3390/d14050336 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pavlov, D. A. Life history of two carassius (Cyprinidae) species in the conditions of sympatry. J. Ichthyol. 62(6), 1100–1115. https://doi.org/10.1134/S0032945222060212 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Olsén, K. H. & Bonow, M. Crucian carp (Carassius carassius (L.)), an anonymous fish with great skills. Ichthyol. Res. 70(3), 313–331. https://doi.org/10.1007/s10228-022-00892-z (2023).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Ecological novelty is the new norm on our planet

    Kerr, M. R. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-025-02662-2 (2025).Article  ...
    Biodiversity
    0
    minutes

    Reconciling empathy with the utilitarian approach to biodiversity conservation

    Convincing policymakers of the importance and urgency of protecting nature is a common challenge faced by ecologists and conservation scientists. The different priorities...
    Biodiversity
    1
    minute

    Legacies of temperature fluctuations promote stability in marine biofilm communities

    Study siteThe study was performed along the coast of Calafuria (Livorno, 43° 30’N, 10°19’ E) between May and September 2018. The coast is...
    Biodiversity
    14
    minutes

    Preserving microbial functional biodiversity | Nature Reviews Biodiversity

    When thinking of conservation, people often picture elephants roaming the savannah, sea turtles on beaches, or lush rainforests. Although these species and ecosystems...
    Biodiversity
    1
    minute
    spot_imgspot_img