International Union for Conservation of Nature (IUCN). The IUCN Red List of Threatened Species. IUCN https://www.iucnredlist.org (2025).
Wilson, R. J. & Fox, R. Insect responses to global change offer signposts for biodiversity and conservation. Ecol. Entomol. 46, 699–717 (2021).
Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).
Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).
Stemkovski, M. et al. Disorder or a new order: how climate change affects phenological variability. Ecology 104, e3846 (2023).
Outhwaite, C. L., Cooke, R., Millard, J. & Bladon, A. J. in Routledge Handbook of Insect Conservation (eds Pryke, J. S. et al.) Ch. 8 (Routledge, 2024).
Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).
Ghisbain, G. et al. Projected decline in European bumblebee populations in the twenty-first century. Nature 628, 337–341 (2024).
Kemppinen, J. et al. Microclimate, an important part of ecology and biogeography. Glob. Ecol. Biogeogr. 33, e13834 (2024).
Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci. 122, 903–917 (2017).
De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).
Wright, A. J. & Francia, R. M. Plant traits, microclimate temperature and humidity: a research agenda for advancing nature-based solutions to a warming and drying climate. J. Ecol. 112, 2462–2470 (2024).
Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).
Pincebourde, S. & Woods, H. A. Climate uncertainty on leaf surfaces: the biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct. Ecol. 26, 844–853 (2012).
Stange, E. E. & Ayres, M. P. in eLS https://doi.org/10.1002/9780470015902.a0022555 (John Wiley & Sons, 2010).
Kingsolver, J. G. et al. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51, 719–732 (2011).
Shah, A. A., Dillon, M. E., Hotaling, S. & Woods, H. A. High elevation insect communities face shifting ecological and evolutionary landscapes. Curr. Opin. Insect Sci. 41, 1–6 (2020).
Bridle, J. et al. How should we bend the curve of biodiversity loss to build a just and sustainable future? Phil. Trans. R. Soc. B 380, 20230205 (2025).
Benk, G., Thompson, P. J., Hu, X. P. & Appel, A. G. Water loss and desiccation tolerance of the two yearly generations of adult and nymphal kudzu bugs, Megacopta cribraria (Hemiptera: Plataspidae). Environ. Entomol. 49, 651–659 (2020).
Klinges, D. H. et al. Proximal microclimate: moving beyond spatiotemporal resolution improves ecological predictions. Glob. Ecol. Biogeogr. 33, e13884 (2024).
Bowden, J. J. et al. High-Arctic butterflies become smaller with rising temperatures. Biol. Lett. 11, 20150574 (2015).
Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporating microclimate into species distribution models. Ecography 42, 1267–1279 (2019).
Greiser, C., von Schmalensee, L., Lindestad, O., Gotthard, K. & Lehmann, P. Microclimatic variation affects developmental phenology, synchrony and voltinism in an insect population. Funct. Ecol. 36, 3036–3048 (2022).
Budelli, G. et al. Ionotropic receptors specify the morphogenesis of phasic sensors controlling rapid thermal preference in Drosophila. Neuron 101, 738–747 (2019).
Enjin, A. Humidity sensing in insects — from ecology to neural processing. Curr. Opin. Insect Sci. 24, 1–6 (2017).
González-Tokman, D. et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 95, 802–821 (2020).
Kaun, K. R. et al. Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase. J. Exp. Biol. 210, 3547–3558 (2007).
Simões, J. M. et al. Robustness and plasticity in Drosophila heat avoidance. Nat. Commun. 12, 2044 (2021).
Parmesan, C. & Singer, M. C. Mosaics of climatic stress across species’ ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Phil. Trans. R. Soc. B 377, 20210003 (2022).
Kazenel, M. R., Wright, K. W., Griswold, T., Whitney, K. D. & Rudgers, J. A. Heat and desiccation tolerances predict bee abundance under climate change. Nature 628, 342–348 (2024).
Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).
Buckley, L. B., Huey, R. B. & Kingsolver, J. G. Asymmetry of thermal sensitivity and the thermal risk of climate change. Glob. Ecol. Biogeogr. 31, 2231–2244 (2022).
Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26, 2944–2955 (2020).
Benoit, J. B., McCluney, K. E., DeGennaro, M. J. & Dow, J. A. T. Dehydration dynamics in terrestrial arthropods: from water sensing to trophic interactions. Annu. Rev. Entomol. 68, 129–149 (2023).
Sinclair, B. J., Saruhashi, S. & Terblanche, J. S. Integrating water balance mechanisms into predictions of insect responses to climate change. J. Exp. Biol. 227, jeb247167 (2024).
Sinclair, B. J., Williams, C. M. & Terblanche, J. S. Variation in thermal performance among insect populations. Physiol. Biochem. Zool. 85, 594–606 (2012).
MacLean, H. J. et al. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Phil. Trans. R. Soc. B 374, 20180548 (2019).
Franken, O., Huizinga, M., Ellers, J. & Berg, M. P. Heated communities: large inter- and intraspecific variation in heat tolerance across trophic levels of a soil arthropod community. Oecologia 186, 311–322 (2018).
Kerr, J. T. Racing against change: understanding dispersal and persistence to improve species’ conservation prospects. Proc. R. Soc. B 287, 20202061 (2020).
Bretzlaff, T., Kerr, J. T. & Darveau, C.-A. High temperature sensitivity of bumblebee castes and the colony-level costs of thermoregulation in Bombus impatiens. J. Therm. Biol. 117, 103710 (2023).
Watson, M. J. & Kerr, J. T. Climate-driven body size changes in birds and mammals reveal environmental tolerance limits. Glob. Change Biol. 31, e70241 (2025).
Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).
Diamond, S. E. et al. A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93, 2305–2312 (2012).
Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).
Lembrechts, J. J. et al. Comparing temperature data sources for use in species distribution models: from in-situ logging to remote sensing. Glob. Ecol. Biogeogr. 28, 1578–1596 (2019).
Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P. & Maclean, I. M. D. A method for computing hourly, historical, terrain-corrected microclimate anywhere on earth. Meth. Ecol. Evol. 11, 38–43 (2020).
Kearney, M. R. et al. Microclimate modelling at macro scales: a test of a general microclimate model integrated with gridded continental-scale soil and weather data. Meth. Ecol. Evol. 5, 273–286 (2014).
Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: an R package for modelling meso- and microclimate. Meth. Ecol. Evol. 10, 280–290 (2019).
Kearney, M. R. & Porter, W. P. NicheMapR — an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).
Maclean, I. M. D. & Klinges, D. H. Microclimc: a mechanistic model of above, below and within-canopy microclimate. Ecol. Model. 451, 109567 (2021).
Kearney, M. R., Isaac, A. P. & Porter, W. P. microclim: global estimates of hourly microclimate based on long-term monthly climate averages. Sci. Data 1, 140006 (2014).
Ednie, G. & Kerr, J. T. High resolution thermal remote sensing and the limits of species’ tolerance. PeerJ 10, e13911 (2022).
Bramer, I. et al. in Advances in Ecological Research (eds Bohan, D. A. et al.) Ch. 3 (Academic Press, 2018).
De Frenne, P. et al. Ten practical guidelines for microclimate research in terrestrial ecosystems. Meth. Ecol. Evol. 16, 269–294 (2025).
Lembrechts, J. J. et al. SoilTemp: a global database of near-surface temperature. Glob. Change Biol. 26, 6616–6629 (2020).
Jayaramu, Y. et al. Sensing the dependable surficial signatures of temporal groundwater variations in arid coastal regions through geospatial techniques with respect to microclimate changes. Environ. Res. 250, 118483 (2024).
Faye, E., Rebaudo, F., Yánez-Cajo, D., Cauvy-Fraunié, S. & Dangles, O. A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Meth. Ecol. Evol. 7, 437–446 (2016).
Li, Z.-L. et al. Soil moisture retrieval from remote sensing measurements: current knowledge and directions for the future. Earth Sci. Rev. 218, 103673 (2021).
Rhodes, M. W., Bennie, J. J., Spalding, A., ffrench-Constant, R. H. & Maclean, I. M. D. Recent advances in the remote sensing of insects. Biol. Rev. 97, 343–360 (2022).
Kulu, E. Satellite constellations — 2024 survey, trends and economic sustainability. In 79th International Astronautical Congress, IAC-24.E6.1.13 (International Astronautical Federation, 2024).
Suggitt, A. J. et al. Conducting robust ecological analyses with climate data. Oikos 126, 1533–1541 (2017).
Duffy, J. P., Anderson, K., Fawcett, D., Curtis, R. J. & Maclean, I. M. D. Drones provide spatial and volumetric data to deliver new insights into microclimate modelling. Landsc. Ecol. 36, 685–702 (2021).
Zellweger, F., Frenne, P. D., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).
Bonafoni, S., Anniballe, R., Gioli, B. & Toscano, P. Downscaling landsat land surface temperature over the urban area of Florence. Eur. J. Remote Sens. 49, 553–569 (2016).
Pu, R. Assessing scaling effect in downscaling land surface temperature in a heterogenous urban environment. Int. J. Appl. Earth Obs. Geoinf. 96, 102256 (2021).
Zawadzka, J., Corstanje, R., Harris, J. & Truckell, I. Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data. Int. J. Digital Earth 13, 899–914 (2020).
Zellweger, F. et al. Microclimate mapping using novel radiative transfer modelling. Biogeosciences 21, 605–623 (2024).
McLaughlin, B. C. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).
Lembrechts, J. J. et al. Global maps of soil temperature. Glob. Change Biol. 28, 3110–3144 (2022).
Thorat, L. & Nath, B. B. Insects with survival kits for desiccation tolerance under extreme water deficits. Front. Physiol. 9, 1843 (2018).
Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E. & Jetz, W. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 8, 307 (2021).
Karthikeyan, L. & Mishra, A. K. Multi-layer high-resolution soil moisture estimation using machine learning over the United States. Remote Sens. Environ. 266, 112706 (2021).
Diamond, S. E. & Yilmaz, A. R. The role of tolerance variation in vulnerability forecasting of insects. Curr. Opin. Insect Sci. 29, 85–92 (2018).
Riddell, E. A., Mutanen, M. & Ghalambor, C. K. Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle. Glob. Change Biol. 29, 5184–5198 (2023).
Vives-Ingla, M. et al. Interspecific differences in microhabitat use expose insects to contrasting thermal mortality. Ecol. Monogr. 93, e1561 (2023).
Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).
Storlie, C. et al. Stepping inside the niche: microclimate data are critical for accurate assessment of species’ vulnerability to climate change. Biol. Lett. 10, 20140576 (2014).
Mosedale, J. R. et al. Mechanistic microclimate models and plant pest risk modelling. J. Pest. Sci. 97, 1749–1766 (2024).
Ma, G. & Ma, C.-S. Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models. Curr. Opin. Insect Sci. 49, 15–21 (2022).
Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).
Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).
Sgrò, C. M., Terblanche, J. S. & Hoffmann, A. A. What can plasticity contribute to insect responses to climate change? Annu. Rev. Entomol. 61, 433–451 (2016).
Stewart, J. E. et al. Phenological variation in biotic interactions shapes population dynamics and distribution in a range-shifting insect herbivore. Proc. R. Soc. B 291, 20240529 (2024).
Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLOS Biol. 8, e1000357 (2010).
Leung, C., Grulois, D., Quadrana, L. & Chevin, L.-M. Phenotypic plasticity evolves at multiple biological levels in response to environmental predictability in a long-term experiment with a halotolerant microalga. PLOS Biol. 21, e3001895 (2023).
West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).
Kleynhans, E., Mitchell, K. A., Conlong, D. E. & Terblanche, J. S. Evolved variation in cold tolerance among populations of Eldana saccharina (Lepidoptera: Pyralidae) in South Africa. J. Evol. Biol. 27, 1149–1159 (2014).
Weldon, C. W., Nyamukondiwa, C., Karsten, M., Chown, S. L. & Terblanche, J. S. Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Sci. Rep. 8, 9849 (2018).
Birrell, J. H., Frakes, J. I., Shah, A. A. & Woods, H. A. Mechanisms underlying thermal breadth differ by species in insects from adjacent but thermally distinct streams — a test of the climate variability hypothesis. J. Therm. Biol. 112, 103435 (2023).
Dongmo, M. A. K. et al. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats. Biol. Open. 10, bio058619 (2021).
Terblanche, J. S., Klok, C. J., Krafsur, E. S. & Chown, S. L. Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. Am. J. Trop. Med. Hyg. 74, 786–794 (2006).
Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).
Chown, S. L., Addo-Bediako, A. & Gaston, K. J. Physiological variation in insects: large-scale patterns and their implications. Comp. Biochem. Physiol. B 131, 587–602 (2002).
García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl Acad. Sci. USA 113, 680–685 (2016).
Weaving, H., Terblanche, J. S., Pottier, P. & English, S. Meta-analysis reveals weak but pervasive plasticity in insect thermal limits. Nat. Commun. 13, 5292 (2022).
van, Heerwaarden, B., Sgrò, C. & Kellermann, V. M. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity. Proc. R. Soc. B 291, 20232700 (2024).
Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).
Rohr, J. R. et al. The complex drivers of thermal acclimation and breadth in ectotherms. Ecol. Lett. 21, 1425–1439 (2018).
Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042–1045 (2021).
Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).
Marta, S., Brunetti, M., Manenti, R., Provenzale, A. & Ficetola, G. F. Climate and land-use changes drive biodiversity turnover in arthropod assemblages over 150 years. Nat. Ecol. Evol. 5, 1291–1300 (2021).
Lawson, C. R., Bennie, J. J., Thomas, C. D., Hodgson, J. A. & Wilson, R. J. Local and landscape management of an expanding range margin under climate change. J. Appl. Ecol. 49, 552–561 (2012).
Bennie, J. et al. Range expansion through fragmented landscapes under a variable climate. Ecol. Lett. 16, 921–929 (2013).
DiLeo, M. F., Nonaka, E., Husby, A. & Saastamoinen, M. Effects of environment and genotype on dispersal differ across departure, transfer and settlement in a butterfly metapopulation. Proc. R. Soc. B 289, 20220322 (2022).
Legrand, D. et al. Ranking the ecological causes of dispersal in a butterfly. Ecography 38, 822–831 (2015).
Terlau, J. F. et al. Microhabitat conditions remedy heat stress effects on insect activity. Glob. Change Biol. 29, 3747–3758 (2023).
Eilers, S., Pettersson, L. B. & Öckinger, E. Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin. Ecol. Entomol. 38, 183–192 (2013).
Alston, J. M., Joyce, M. J., Merkle, J. A. & Moen, R. A. Temperature shapes movement and habitat selection by a heat-sensitive ungulate. Landsc. Ecol. 35, 1961–1973 (2020).
Knight, S. M., Pitman, G. M., Flockhart, D. T. T. & Norris, D. R. Radio-tracking reveals how wind and temperature influence the pace of daytime insect migration. Biol. Lett. 15, 20190327 (2019).
Kissling, D. W., Pattemore, D. E. & Hagen, M. Challenges and prospects in the telemetry of insects. Biol. Rev. 89, 511–530 (2014).
Bell, F., Botham, M., Brereton, T. M., Fenton, A. & Hodgson, J. Grizzled skippers stuck in the south: population-level responses of an early-successional specialist butterfly to climate across its UK range over 40 years. Divers. Distrib. 27, 962–972 (2021).
Tampucci, D. et al. Debris-covered glaciers as habitat for plant and arthropod species: environmental framework and colonization patterns. Ecol. Complex. 32, 42–52 (2017).
Jackson, H. M. et al. Climate change winners and losers among North American bumblebees. Biol. Lett. 18, 20210551 (2022).
Lenoir, J. & Comte, L. Rapid range shifters show unexpected population dynamics. Nat. Ecol. Evol. 8, 850–851 (2024).
Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).
Lawlor, J. A. et al. Mechanisms, detection and impacts of species redistributions under climate change. Nat. Rev. Earth Environ. 5, 351–368 (2024).
Brodie, J. F., Freeman, B. G., Mannion, P. D. & Hargreaves, A. L. Shifting, expanding, or contracting? Range movement consequences for biodiversity. Trends Ecol. Evol. 40, 439–448 (2025).
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Maclean, I. M. D. & Wilson, R. J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl Acad. Sci. USA 108, 12337–12342 (2011).
Stickley, S. F. & Fraterrigo, J. M. Microclimate species distribution models estimate lower levels of climate-related habitat loss for salamanders. J. Nat. Conserv. 72, 126333 (2023).
Maclean, I. M. D. & Early, R. Macroclimate data overestimate range shifts of plants in response to climate change. Nat. Clim. Change 13, 484–490 (2023).
Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).
Watts, M. E. et al. Marxan with zones: software for optimal conservation based land- and sea-use zoning. Environ. Model. Softw. 24, 1513–1521 (2009).
de Alves, W. F. et al. Connectivity and climate influence diversity–stability relationships across spatial scales in European butterfly metacommunities. Glob. Ecol. Biogeogr. 33, e13896 (2024).
Thomas, J. Why did the large blue become extinct in Britain? Oryx 15, 243–247 (1980).
Munguira, M. L. & Martín, J. Action Plan for Maculinea Butterflies in Europe (Council of Europe, 1999).
Ausden, M. Climate change adaptation: putting principles into practice. Environ. Manag. 54, 685–698 (2014).
Słowińska, S., Słowiński, M., Marcisz, K. & Lamentowicz, M. Long-term microclimate study of a peatland in central Europe to understand microrefugia. Int. J. Biometeorol. 66, 817–832 (2022).
Prober, S. M., Doerr, V. A. J., Broadhurst, L. M., Williams, K. J. & Dickson, F. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333 (2019).
Ebersole, J. L., Liss, W. J. & Frissell, C. A. Cold water patches in warm streams: physicochemical characteristics and the influence of shading. JAWRA J. Am. Water Resour. Assoc. 39, 355–368 (2003).
Mejia, F. H. et al. Closing the gap between science and management of cold-water refuges in rivers and streams. Glob. Change Biol. 29, 5482–5508 (2023).
Edwards, C. B. et al. Rapid butterfly declines across the United States during the 21st century. Science 387, 1090–1094 (2025).
McCain, C. M. & Garfinkel, C. F. Climate change and elevational range shifts in insects. Curr. Opin. Insect Sci. 47, 111–118 (2021).
Garcia-Rosello, E., Gonzalez-Dacosta, J., Guisande, C. & Lobo, J. M. GBIF falls short of providing a representative picture of the global distribution of insects. Syst. Entomol. 48, 489–497 (2023).
Urban, M. C. Climate change extinctions. Science 386, 1123–1128 (2024).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
The Global Biodiversity Information Facility (GBIF). GBIF occurrence download. GBIF https://doi.org/10.15468/dl.hjmu6m (2025).
Pateman, R. M., Thomas, C. D., Hayward, S. A. L. & Hill, J. K. Macro- and microclimatic interactions can drive variation in species’ habitat associations. Glob. Change Biol. 22, 556–566 (2016).
Turlure, C., Choutt, J., Baguette, M. & Van Dyck, H. Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Glob. Change Biol. 16, 1883–1893 (2010).
Carlson, C. J., Bannon, E., Mendenhall, E., Newfield, T. & Bansal, S. Rapid range shifts in African Anopheles mosquitoes over the last century. Biol. Lett. 19, 20220365 (2023).
Patterson, T. A., Grundel, R., Dzurisin, J. D. K., Knutson, R. L. & Hellmann, J. J. Evidence of an extreme weather-induced phenological mismatch and a local extirpation of the endangered Karner blue butterfly. Conserv. Sci. Pract. 2, e147 (2020).
Packer, L. in Karner Blue Butterfly: a Symbol of Vanishing Landscape (eds. Andow, D. A. et al.) 143–151 (Univ. Minnesota, 1994).
Velu, R. M. et al. Ecological niche modeling of aedes and culex mosquitoes: a risk map for chikungunya and West Nile viruses in Zambia. Viruses 15, 1900 (2023).
Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).
Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).
Chan, S.-F., Shih, W.-K., Chang, A.-Y., Shen, S.-F. & Chen, I.-C. Contrasting forms of competition set elevational range limits of species. Ecol. Lett. 22, 1668–1679 (2019).
Chan, S.-F. et al. Higher temperature variability in deforested mountain regions impacts the competitive advantage of nocturnal species. Proc. R. Soc. B 290, 20230529 (2023).
Tsai, H.-Y. et al. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife 9, e57022 (2020).
Sun, S.-J. et al. Climate-mediated cooperation promotes niche expansion in burying beetles. eLife 3, e02440 (2014).
Chan, S.-F. et al. Land-use changes influence climate resilience through altered population demography in a social insect. Ecol. Monogr. 95, e1638 (2025).
Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: the once and future niche. Proc. Natl Acad. Sci. USA 106, 19651–19658 (2009).
Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).
Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).
Chen, I.-C., Shen, S.-F. & Chan, S.-F. Niche theory and species range limits along elevational gradients: perspectives and future directions. Annu. Rev. Ecol. Evol. Syst. 55, 449–469 (2024).