Effects of microclimate variation on insect persistence under global change


  • International Union for Conservation of Nature (IUCN). The IUCN Red List of Threatened Species. IUCN https://www.iucnredlist.org (2025).

  • Wilson, R. J. & Fox, R. Insect responses to global change offer signposts for biodiversity and conservation. Ecol. Entomol. 46, 699–717 (2021).


    Google Scholar
     

  • Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

    CAS 

    Google Scholar
     

  • Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    CAS 

    Google Scholar
     

  • Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).

    CAS 

    Google Scholar
     

  • Stemkovski, M. et al. Disorder or a new order: how climate change affects phenological variability. Ecology 104, e3846 (2023).


    Google Scholar
     

  • Outhwaite, C. L., Cooke, R., Millard, J. & Bladon, A. J. in Routledge Handbook of Insect Conservation (eds Pryke, J. S. et al.) Ch. 8 (Routledge, 2024).

  • Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).


    Google Scholar
     

  • Ghisbain, G. et al. Projected decline in European bumblebee populations in the twenty-first century. Nature 628, 337–341 (2024).

    CAS 

    Google Scholar
     

  • Kemppinen, J. et al. Microclimate, an important part of ecology and biogeography. Glob. Ecol. Biogeogr. 33, e13834 (2024).


    Google Scholar
     

  • Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci. 122, 903–917 (2017).


    Google Scholar
     

  • De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).


    Google Scholar
     

  • Wright, A. J. & Francia, R. M. Plant traits, microclimate temperature and humidity: a research agenda for advancing nature-based solutions to a warming and drying climate. J. Ecol. 112, 2462–2470 (2024).


    Google Scholar
     

  • Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).

    CAS 

    Google Scholar
     

  • Pincebourde, S. & Woods, H. A. Climate uncertainty on leaf surfaces: the biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct. Ecol. 26, 844–853 (2012).


    Google Scholar
     

  • Stange, E. E. & Ayres, M. P. in eLS https://doi.org/10.1002/9780470015902.a0022555 (John Wiley & Sons, 2010).

  • Kingsolver, J. G. et al. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51, 719–732 (2011).


    Google Scholar
     

  • Shah, A. A., Dillon, M. E., Hotaling, S. & Woods, H. A. High elevation insect communities face shifting ecological and evolutionary landscapes. Curr. Opin. Insect Sci. 41, 1–6 (2020).


    Google Scholar
     

  • Bridle, J. et al. How should we bend the curve of biodiversity loss to build a just and sustainable future? Phil. Trans. R. Soc. B 380, 20230205 (2025).


    Google Scholar
     

  • Benk, G., Thompson, P. J., Hu, X. P. & Appel, A. G. Water loss and desiccation tolerance of the two yearly generations of adult and nymphal kudzu bugs, Megacopta cribraria (Hemiptera: Plataspidae). Environ. Entomol. 49, 651–659 (2020).

    CAS 

    Google Scholar
     

  • Klinges, D. H. et al. Proximal microclimate: moving beyond spatiotemporal resolution improves ecological predictions. Glob. Ecol. Biogeogr. 33, e13884 (2024).


    Google Scholar
     

  • Bowden, J. J. et al. High-Arctic butterflies become smaller with rising temperatures. Biol. Lett. 11, 20150574 (2015).


    Google Scholar
     

  • Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporating microclimate into species distribution models. Ecography 42, 1267–1279 (2019).


    Google Scholar
     

  • Greiser, C., von Schmalensee, L., Lindestad, O., Gotthard, K. & Lehmann, P. Microclimatic variation affects developmental phenology, synchrony and voltinism in an insect population. Funct. Ecol. 36, 3036–3048 (2022).

    CAS 

    Google Scholar
     

  • Budelli, G. et al. Ionotropic receptors specify the morphogenesis of phasic sensors controlling rapid thermal preference in Drosophila. Neuron 101, 738–747 (2019).

    CAS 

    Google Scholar
     

  • Enjin, A. Humidity sensing in insects — from ecology to neural processing. Curr. Opin. Insect Sci. 24, 1–6 (2017).


    Google Scholar
     

  • González-Tokman, D. et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 95, 802–821 (2020).


    Google Scholar
     

  • Kaun, K. R. et al. Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase. J. Exp. Biol. 210, 3547–3558 (2007).

    CAS 

    Google Scholar
     

  • Simões, J. M. et al. Robustness and plasticity in Drosophila heat avoidance. Nat. Commun. 12, 2044 (2021).


    Google Scholar
     

  • Parmesan, C. & Singer, M. C. Mosaics of climatic stress across species’ ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Phil. Trans. R. Soc. B 377, 20210003 (2022).


    Google Scholar
     

  • Kazenel, M. R., Wright, K. W., Griswold, T., Whitney, K. D. & Rudgers, J. A. Heat and desiccation tolerances predict bee abundance under climate change. Nature 628, 342–348 (2024).

    CAS 

    Google Scholar
     

  • Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).

    CAS 

    Google Scholar
     

  • Buckley, L. B., Huey, R. B. & Kingsolver, J. G. Asymmetry of thermal sensitivity and the thermal risk of climate change. Glob. Ecol. Biogeogr. 31, 2231–2244 (2022).


    Google Scholar
     

  • Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26, 2944–2955 (2020).


    Google Scholar
     

  • Benoit, J. B., McCluney, K. E., DeGennaro, M. J. & Dow, J. A. T. Dehydration dynamics in terrestrial arthropods: from water sensing to trophic interactions. Annu. Rev. Entomol. 68, 129–149 (2023).

    CAS 

    Google Scholar
     

  • Sinclair, B. J., Saruhashi, S. & Terblanche, J. S. Integrating water balance mechanisms into predictions of insect responses to climate change. J. Exp. Biol. 227, jeb247167 (2024).


    Google Scholar
     

  • Sinclair, B. J., Williams, C. M. & Terblanche, J. S. Variation in thermal performance among insect populations. Physiol. Biochem. Zool. 85, 594–606 (2012).


    Google Scholar
     

  • MacLean, H. J. et al. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Phil. Trans. R. Soc. B 374, 20180548 (2019).


    Google Scholar
     

  • Franken, O., Huizinga, M., Ellers, J. & Berg, M. P. Heated communities: large inter- and intraspecific variation in heat tolerance across trophic levels of a soil arthropod community. Oecologia 186, 311–322 (2018).


    Google Scholar
     

  • Kerr, J. T. Racing against change: understanding dispersal and persistence to improve species’ conservation prospects. Proc. R. Soc. B 287, 20202061 (2020).

    CAS 

    Google Scholar
     

  • Bretzlaff, T., Kerr, J. T. & Darveau, C.-A. High temperature sensitivity of bumblebee castes and the colony-level costs of thermoregulation in Bombus impatiens. J. Therm. Biol. 117, 103710 (2023).


    Google Scholar
     

  • Watson, M. J. & Kerr, J. T. Climate-driven body size changes in birds and mammals reveal environmental tolerance limits. Glob. Change Biol. 31, e70241 (2025).

    CAS 

    Google Scholar
     

  • Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).


    Google Scholar
     

  • Diamond, S. E. et al. A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93, 2305–2312 (2012).


    Google Scholar
     

  • Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).


    Google Scholar
     

  • Lembrechts, J. J. et al. Comparing temperature data sources for use in species distribution models: from in-situ logging to remote sensing. Glob. Ecol. Biogeogr. 28, 1578–1596 (2019).


    Google Scholar
     

  • Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P. & Maclean, I. M. D. A method for computing hourly, historical, terrain-corrected microclimate anywhere on earth. Meth. Ecol. Evol. 11, 38–43 (2020).


    Google Scholar
     

  • Kearney, M. R. et al. Microclimate modelling at macro scales: a test of a general microclimate model integrated with gridded continental-scale soil and weather data. Meth. Ecol. Evol. 5, 273–286 (2014).


    Google Scholar
     

  • Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: an R package for modelling meso- and microclimate. Meth. Ecol. Evol. 10, 280–290 (2019).


    Google Scholar
     

  • Kearney, M. R. & Porter, W. P. NicheMapR — an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).


    Google Scholar
     

  • Maclean, I. M. D. & Klinges, D. H. Microclimc: a mechanistic model of above, below and within-canopy microclimate. Ecol. Model. 451, 109567 (2021).


    Google Scholar
     

  • Kearney, M. R., Isaac, A. P. & Porter, W. P. microclim: global estimates of hourly microclimate based on long-term monthly climate averages. Sci. Data 1, 140006 (2014).


    Google Scholar
     

  • Ednie, G. & Kerr, J. T. High resolution thermal remote sensing and the limits of species’ tolerance. PeerJ 10, e13911 (2022).


    Google Scholar
     

  • Bramer, I. et al. in Advances in Ecological Research (eds Bohan, D. A. et al.) Ch. 3 (Academic Press, 2018).

  • De Frenne, P. et al. Ten practical guidelines for microclimate research in terrestrial ecosystems. Meth. Ecol. Evol. 16, 269–294 (2025).


    Google Scholar
     

  • Lembrechts, J. J. et al. SoilTemp: a global database of near-surface temperature. Glob. Change Biol. 26, 6616–6629 (2020).


    Google Scholar
     

  • Jayaramu, Y. et al. Sensing the dependable surficial signatures of temporal groundwater variations in arid coastal regions through geospatial techniques with respect to microclimate changes. Environ. Res. 250, 118483 (2024).

    CAS 

    Google Scholar
     

  • Faye, E., Rebaudo, F., Yánez-Cajo, D., Cauvy-Fraunié, S. & Dangles, O. A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Meth. Ecol. Evol. 7, 437–446 (2016).


    Google Scholar
     

  • Li, Z.-L. et al. Soil moisture retrieval from remote sensing measurements: current knowledge and directions for the future. Earth Sci. Rev. 218, 103673 (2021).


    Google Scholar
     

  • Rhodes, M. W., Bennie, J. J., Spalding, A., ffrench-Constant, R. H. & Maclean, I. M. D. Recent advances in the remote sensing of insects. Biol. Rev. 97, 343–360 (2022).


    Google Scholar
     

  • Kulu, E. Satellite constellations — 2024 survey, trends and economic sustainability. In 79th International Astronautical Congress, IAC-24.E6.1.13 (International Astronautical Federation, 2024).

  • Suggitt, A. J. et al. Conducting robust ecological analyses with climate data. Oikos 126, 1533–1541 (2017).


    Google Scholar
     

  • Duffy, J. P., Anderson, K., Fawcett, D., Curtis, R. J. & Maclean, I. M. D. Drones provide spatial and volumetric data to deliver new insights into microclimate modelling. Landsc. Ecol. 36, 685–702 (2021).


    Google Scholar
     

  • Zellweger, F., Frenne, P. D., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).


    Google Scholar
     

  • Bonafoni, S., Anniballe, R., Gioli, B. & Toscano, P. Downscaling landsat land surface temperature over the urban area of Florence. Eur. J. Remote Sens. 49, 553–569 (2016).


    Google Scholar
     

  • Pu, R. Assessing scaling effect in downscaling land surface temperature in a heterogenous urban environment. Int. J. Appl. Earth Obs. Geoinf. 96, 102256 (2021).


    Google Scholar
     

  • Zawadzka, J., Corstanje, R., Harris, J. & Truckell, I. Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data. Int. J. Digital Earth 13, 899–914 (2020).


    Google Scholar
     

  • Zellweger, F. et al. Microclimate mapping using novel radiative transfer modelling. Biogeosciences 21, 605–623 (2024).


    Google Scholar
     

  • McLaughlin, B. C. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).


    Google Scholar
     

  • Lembrechts, J. J. et al. Global maps of soil temperature. Glob. Change Biol. 28, 3110–3144 (2022).

    CAS 

    Google Scholar
     

  • Thorat, L. & Nath, B. B. Insects with survival kits for desiccation tolerance under extreme water deficits. Front. Physiol. 9, 1843 (2018).


    Google Scholar
     

  • Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E. & Jetz, W. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 8, 307 (2021).


    Google Scholar
     

  • Karthikeyan, L. & Mishra, A. K. Multi-layer high-resolution soil moisture estimation using machine learning over the United States. Remote Sens. Environ. 266, 112706 (2021).


    Google Scholar
     

  • Diamond, S. E. & Yilmaz, A. R. The role of tolerance variation in vulnerability forecasting of insects. Curr. Opin. Insect Sci. 29, 85–92 (2018).


    Google Scholar
     

  • Riddell, E. A., Mutanen, M. & Ghalambor, C. K. Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle. Glob. Change Biol. 29, 5184–5198 (2023).

    CAS 

    Google Scholar
     

  • Vives-Ingla, M. et al. Interspecific differences in microhabitat use expose insects to contrasting thermal mortality. Ecol. Monogr. 93, e1561 (2023).


    Google Scholar
     

  • Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).


    Google Scholar
     

  • Storlie, C. et al. Stepping inside the niche: microclimate data are critical for accurate assessment of species’ vulnerability to climate change. Biol. Lett. 10, 20140576 (2014).


    Google Scholar
     

  • Mosedale, J. R. et al. Mechanistic microclimate models and plant pest risk modelling. J. Pest. Sci. 97, 1749–1766 (2024).


    Google Scholar
     

  • Ma, G. & Ma, C.-S. Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models. Curr. Opin. Insect Sci. 49, 15–21 (2022).


    Google Scholar
     

  • Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).

    CAS 

    Google Scholar
     

  • Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).


    Google Scholar
     

  • Sgrò, C. M., Terblanche, J. S. & Hoffmann, A. A. What can plasticity contribute to insect responses to climate change? Annu. Rev. Entomol. 61, 433–451 (2016).


    Google Scholar
     

  • Stewart, J. E. et al. Phenological variation in biotic interactions shapes population dynamics and distribution in a range-shifting insect herbivore. Proc. R. Soc. B 291, 20240529 (2024).


    Google Scholar
     

  • Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLOS Biol. 8, e1000357 (2010).


    Google Scholar
     

  • Leung, C., Grulois, D., Quadrana, L. & Chevin, L.-M. Phenotypic plasticity evolves at multiple biological levels in response to environmental predictability in a long-term experiment with a halotolerant microalga. PLOS Biol. 21, e3001895 (2023).

    CAS 

    Google Scholar
     

  • West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).

  • Kleynhans, E., Mitchell, K. A., Conlong, D. E. & Terblanche, J. S. Evolved variation in cold tolerance among populations of Eldana saccharina (Lepidoptera: Pyralidae) in South Africa. J. Evol. Biol. 27, 1149–1159 (2014).

    CAS 

    Google Scholar
     

  • Weldon, C. W., Nyamukondiwa, C., Karsten, M., Chown, S. L. & Terblanche, J. S. Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Sci. Rep. 8, 9849 (2018).


    Google Scholar
     

  • Birrell, J. H., Frakes, J. I., Shah, A. A. & Woods, H. A. Mechanisms underlying thermal breadth differ by species in insects from adjacent but thermally distinct streams — a test of the climate variability hypothesis. J. Therm. Biol. 112, 103435 (2023).


    Google Scholar
     

  • Dongmo, M. A. K. et al. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats. Biol. Open. 10, bio058619 (2021).


    Google Scholar
     

  • Terblanche, J. S., Klok, C. J., Krafsur, E. S. & Chown, S. L. Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. Am. J. Trop. Med. Hyg. 74, 786–794 (2006).


    Google Scholar
     

  • Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).


    Google Scholar
     

  • Chown, S. L., Addo-Bediako, A. & Gaston, K. J. Physiological variation in insects: large-scale patterns and their implications. Comp. Biochem. Physiol. B 131, 587–602 (2002).

    CAS 

    Google Scholar
     

  • García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl Acad. Sci. USA 113, 680–685 (2016).


    Google Scholar
     

  • Weaving, H., Terblanche, J. S., Pottier, P. & English, S. Meta-analysis reveals weak but pervasive plasticity in insect thermal limits. Nat. Commun. 13, 5292 (2022).

    CAS 

    Google Scholar
     

  • van, Heerwaarden, B., Sgrò, C. & Kellermann, V. M. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity. Proc. R. Soc. B 291, 20232700 (2024).


    Google Scholar
     

  • Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).


    Google Scholar
     

  • Rohr, J. R. et al. The complex drivers of thermal acclimation and breadth in ectotherms. Ecol. Lett. 21, 1425–1439 (2018).


    Google Scholar
     

  • Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042–1045 (2021).

    CAS 

    Google Scholar
     

  • Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    CAS 

    Google Scholar
     

  • Marta, S., Brunetti, M., Manenti, R., Provenzale, A. & Ficetola, G. F. Climate and land-use changes drive biodiversity turnover in arthropod assemblages over 150 years. Nat. Ecol. Evol. 5, 1291–1300 (2021).


    Google Scholar
     

  • Lawson, C. R., Bennie, J. J., Thomas, C. D., Hodgson, J. A. & Wilson, R. J. Local and landscape management of an expanding range margin under climate change. J. Appl. Ecol. 49, 552–561 (2012).


    Google Scholar
     

  • Bennie, J. et al. Range expansion through fragmented landscapes under a variable climate. Ecol. Lett. 16, 921–929 (2013).


    Google Scholar
     

  • DiLeo, M. F., Nonaka, E., Husby, A. & Saastamoinen, M. Effects of environment and genotype on dispersal differ across departure, transfer and settlement in a butterfly metapopulation. Proc. R. Soc. B 289, 20220322 (2022).


    Google Scholar
     

  • Legrand, D. et al. Ranking the ecological causes of dispersal in a butterfly. Ecography 38, 822–831 (2015).


    Google Scholar
     

  • Terlau, J. F. et al. Microhabitat conditions remedy heat stress effects on insect activity. Glob. Change Biol. 29, 3747–3758 (2023).

    CAS 

    Google Scholar
     

  • Eilers, S., Pettersson, L. B. & Öckinger, E. Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin. Ecol. Entomol. 38, 183–192 (2013).


    Google Scholar
     

  • Alston, J. M., Joyce, M. J., Merkle, J. A. & Moen, R. A. Temperature shapes movement and habitat selection by a heat-sensitive ungulate. Landsc. Ecol. 35, 1961–1973 (2020).


    Google Scholar
     

  • Knight, S. M., Pitman, G. M., Flockhart, D. T. T. & Norris, D. R. Radio-tracking reveals how wind and temperature influence the pace of daytime insect migration. Biol. Lett. 15, 20190327 (2019).


    Google Scholar
     

  • Kissling, D. W., Pattemore, D. E. & Hagen, M. Challenges and prospects in the telemetry of insects. Biol. Rev. 89, 511–530 (2014).


    Google Scholar
     

  • Bell, F., Botham, M., Brereton, T. M., Fenton, A. & Hodgson, J. Grizzled skippers stuck in the south: population-level responses of an early-successional specialist butterfly to climate across its UK range over 40 years. Divers. Distrib. 27, 962–972 (2021).


    Google Scholar
     

  • Tampucci, D. et al. Debris-covered glaciers as habitat for plant and arthropod species: environmental framework and colonization patterns. Ecol. Complex. 32, 42–52 (2017).


    Google Scholar
     

  • Jackson, H. M. et al. Climate change winners and losers among North American bumblebees. Biol. Lett. 18, 20210551 (2022).


    Google Scholar
     

  • Lenoir, J. & Comte, L. Rapid range shifters show unexpected population dynamics. Nat. Ecol. Evol. 8, 850–851 (2024).


    Google Scholar
     

  • Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).


    Google Scholar
     

  • Lawlor, J. A. et al. Mechanisms, detection and impacts of species redistributions under climate change. Nat. Rev. Earth Environ. 5, 351–368 (2024).


    Google Scholar
     

  • Brodie, J. F., Freeman, B. G., Mannion, P. D. & Hargreaves, A. L. Shifting, expanding, or contracting? Range movement consequences for biodiversity. Trends Ecol. Evol. 40, 439–448 (2025).


    Google Scholar
     

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS 

    Google Scholar
     

  • Maclean, I. M. D. & Wilson, R. J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl Acad. Sci. USA 108, 12337–12342 (2011).

    CAS 

    Google Scholar
     

  • Stickley, S. F. & Fraterrigo, J. M. Microclimate species distribution models estimate lower levels of climate-related habitat loss for salamanders. J. Nat. Conserv. 72, 126333 (2023).


    Google Scholar
     

  • Maclean, I. M. D. & Early, R. Macroclimate data overestimate range shifts of plants in response to climate change. Nat. Clim. Change 13, 484–490 (2023).


    Google Scholar
     

  • Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).


    Google Scholar
     

  • Watts, M. E. et al. Marxan with zones: software for optimal conservation based land- and sea-use zoning. Environ. Model. Softw. 24, 1513–1521 (2009).


    Google Scholar
     

  • de Alves, W. F. et al. Connectivity and climate influence diversity–stability relationships across spatial scales in European butterfly metacommunities. Glob. Ecol. Biogeogr. 33, e13896 (2024).


    Google Scholar
     

  • Thomas, J. Why did the large blue become extinct in Britain? Oryx 15, 243–247 (1980).


    Google Scholar
     

  • Munguira, M. L. & Martín, J. Action Plan for Maculinea Butterflies in Europe (Council of Europe, 1999).

  • Ausden, M. Climate change adaptation: putting principles into practice. Environ. Manag. 54, 685–698 (2014).


    Google Scholar
     

  • Słowińska, S., Słowiński, M., Marcisz, K. & Lamentowicz, M. Long-term microclimate study of a peatland in central Europe to understand microrefugia. Int. J. Biometeorol. 66, 817–832 (2022).


    Google Scholar
     

  • Prober, S. M., Doerr, V. A. J., Broadhurst, L. M., Williams, K. J. & Dickson, F. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333 (2019).


    Google Scholar
     

  • Ebersole, J. L., Liss, W. J. & Frissell, C. A. Cold water patches in warm streams: physicochemical characteristics and the influence of shading. JAWRA J. Am. Water Resour. Assoc. 39, 355–368 (2003).


    Google Scholar
     

  • Mejia, F. H. et al. Closing the gap between science and management of cold-water refuges in rivers and streams. Glob. Change Biol. 29, 5482–5508 (2023).

    CAS 

    Google Scholar
     

  • Edwards, C. B. et al. Rapid butterfly declines across the United States during the 21st century. Science 387, 1090–1094 (2025).

    CAS 

    Google Scholar
     

  • McCain, C. M. & Garfinkel, C. F. Climate change and elevational range shifts in insects. Curr. Opin. Insect Sci. 47, 111–118 (2021).


    Google Scholar
     

  • Garcia-Rosello, E., Gonzalez-Dacosta, J., Guisande, C. & Lobo, J. M. GBIF falls short of providing a representative picture of the global distribution of insects. Syst. Entomol. 48, 489–497 (2023).


    Google Scholar
     

  • Urban, M. C. Climate change extinctions. Science 386, 1123–1128 (2024).

    CAS 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).


    Google Scholar
     

  • The Global Biodiversity Information Facility (GBIF). GBIF occurrence download. GBIF https://doi.org/10.15468/dl.hjmu6m (2025).

  • Pateman, R. M., Thomas, C. D., Hayward, S. A. L. & Hill, J. K. Macro- and microclimatic interactions can drive variation in species’ habitat associations. Glob. Change Biol. 22, 556–566 (2016).


    Google Scholar
     

  • Turlure, C., Choutt, J., Baguette, M. & Van Dyck, H. Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Glob. Change Biol. 16, 1883–1893 (2010).


    Google Scholar
     

  • Carlson, C. J., Bannon, E., Mendenhall, E., Newfield, T. & Bansal, S. Rapid range shifts in African Anopheles mosquitoes over the last century. Biol. Lett. 19, 20220365 (2023).


    Google Scholar
     

  • Patterson, T. A., Grundel, R., Dzurisin, J. D. K., Knutson, R. L. & Hellmann, J. J. Evidence of an extreme weather-induced phenological mismatch and a local extirpation of the endangered Karner blue butterfly. Conserv. Sci. Pract. 2, e147 (2020).


    Google Scholar
     

  • Packer, L. in Karner Blue Butterfly: a Symbol of Vanishing Landscape (eds. Andow, D. A. et al.) 143–151 (Univ. Minnesota, 1994).

  • Velu, R. M. et al. Ecological niche modeling of aedes and culex mosquitoes: a risk map for chikungunya and West Nile viruses in Zambia. Viruses 15, 1900 (2023).


    Google Scholar
     

  • Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).


    Google Scholar
     

  • Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).


    Google Scholar
     

  • Chan, S.-F., Shih, W.-K., Chang, A.-Y., Shen, S.-F. & Chen, I.-C. Contrasting forms of competition set elevational range limits of species. Ecol. Lett. 22, 1668–1679 (2019).


    Google Scholar
     

  • Chan, S.-F. et al. Higher temperature variability in deforested mountain regions impacts the competitive advantage of nocturnal species. Proc. R. Soc. B 290, 20230529 (2023).


    Google Scholar
     

  • Tsai, H.-Y. et al. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife 9, e57022 (2020).

    CAS 

    Google Scholar
     

  • Sun, S.-J. et al. Climate-mediated cooperation promotes niche expansion in burying beetles. eLife 3, e02440 (2014).


    Google Scholar
     

  • Chan, S.-F. et al. Land-use changes influence climate resilience through altered population demography in a social insect. Ecol. Monogr. 95, e1638 (2025).


    Google Scholar
     

  • Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: the once and future niche. Proc. Natl Acad. Sci. USA 106, 19651–19658 (2009).

    CAS 

    Google Scholar
     

  • Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).


    Google Scholar
     

  • Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).


    Google Scholar
     

  • Chen, I.-C., Shen, S.-F. & Chan, S.-F. Niche theory and species range limits along elevational gradients: perspectives and future directions. Annu. Rev. Ecol. Evol. Syst. 55, 449–469 (2024).


    Google Scholar
     



  • Source link

    More From Forest Beat

    Reconsidering space-for-time substitution in climate change ecology

    Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USAMargaret E. K. EvansDepartment of Wildland Resources, Utah State University, Logan, UT, USAPeter B....
    Biodiversity
    0
    minutes

    Rethinking composite quantification by capturing biological and ecological diversity across multiple...

    We propose new measures to expand the conceptual and methodological framework of life–environment diversity. Our approach combines the variability in community structure with...
    Biodiversity
    30
    minutes

    ‘Darkening’ cities is as important for wildlife as greening them

    For billions of years, life has depended on Earth’s rhythm of day and night. DNA codifies body clocks in...
    Biodiversity
    4
    minutes

    The giant cuttlefish’s technicolour mating display is globally unique. The SA...

    Every year off the South Australian coast, giant Australian cuttlefish come together in huge numbers to breed. They put...
    Biodiversity
    3
    minutes
    spot_imgspot_img