Community phylogenetic diversity drives flowering synchrony among coexisting plant species even under drought conditions

[ad_1]

  • Bernal, M., Estiarte, M. & Peñuelas, J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol. 13, 252–257 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Montesinos-Navarro, A., Wig, J., Xavier Pico, F. & Tonsor, S. J. Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. New Phytol. 189, 282–294 (2011).

    PubMed 

    Google Scholar
     

  • Bucher, S. F. & Römermann, C. Flowering patterns change along elevational gradients and relate to life-history strategies in 29 herbaceous species. Alp. Bot. 130, 41–58 (2020).


    Google Scholar
     

  • Shavrukov, Y. et al. Early flowering as a drought escape mechanism in plants: How can it aid wheat production?. Front. Plant Sci. 8, 1950 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A. & Field, C. B. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl. Acad. Sci. 103, 13740–13744 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jagadish, S. V. K. et al. Implications of high temperature and elevated CO2 on flowering time in plants. Front. Plant Sci. 7, 913 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson, M. & Staiger, D. Time to flower: Interplay between photoperiod and the circadian clock. J. Exp. Bot. 66, 719–730 (2014).

    PubMed 

    Google Scholar
     

  • Rathcke, B. & Lacey, E. P. Phenological patterns of terrestrial plants. Annu. Rev. Ecol. Syst. 16, 179–214 (1985).


    Google Scholar
     

  • Lee, Z. et al. Regulation of flowering time by environmental factors in plants. Plants 12, 3680 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R. et al. PEP1 regulates perennial flowering in Arabis alpina. Nature 459, 423–427. https://doi.org/10.1038/nature07988 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McKeown, M., Schubert, M., Marcussen, T., Fjellheim, S. & Preston, J. C. Evidence for an early origin of vernalization responsiveness in temperate pooideae grasses. Plant Physiol. 172, 416–426. https://doi.org/10.1104/pp.16.01023 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuñez, F. D. B. & Yamada, T. Molecular regulation of flowering time in grasses. Agronomy 7, 17. https://doi.org/10.3390/agronomy7010017 (2017).

    CAS 

    Google Scholar
     

  • Peñuelas, J. et al. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol. 161, 837–846 (2004).

    PubMed 

    Google Scholar
     

  • Peralta, A. M., Sánchez, A. M., Luzuriaga, A. L., de Bello, F. & Escudero, A. Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach. J. Ecol. 107, 2772–2788 (2019).

    CAS 

    Google Scholar
     

  • Luzuriaga, A. L., Sánchez, A. M., Maestre, F. T. & Escudero, A. Assemblage of a semi-arid annual plant community: Abiotic and biotic filters act hierarchically. PLoS ONE 7, 1–9 (2012).


    Google Scholar
     

  • Luzuriaga, A. L., Ferrandis, P., Flores, J. & Escudero, A. Effect of aridity on species assembly in gypsum drylands: A response mediated by the soil affinity of species. AoB Plants 12, 1–8 (2020).


    Google Scholar
     

  • Sánchez, A. M., Peralta, A. M., Luzuriaga, A. L., Prieto, M. & Escudero, A. Climate change and biocrust disturbance synergistically decreased taxonomic, functional and phylogenetic diversity in annual communities on gypsiferous soils. Oikos 3, e08809 (2022).


    Google Scholar
     

  • Fitter, A. H. & Fitter, R. S. R. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kigel, J. et al. Relationships between flowering time and rainfall gradients across Mediterranean-desert transects. Isr. J. Ecol. Evol. 57, 91–109 (2011).


    Google Scholar
     

  • Franks, S. J. Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol. 190, 249–257 (2011).

    PubMed 

    Google Scholar
     

  • Mooney, H. A., Hobbs, R. J., Gorham, J. & Williams, K. Biomass accumulation and resource utilization in co-occurring grassland annuals. Oecologia 70, 555–558 (1986).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, S. & Frelich, L. E. Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. J. Ecol. 99, 991–1000 (2011).


    Google Scholar
     

  • Davis, C. C., Willis, C. G., Primack, R. B. & Miller-Rushing, A. J. The importance of phylogeny to the study of phenological response to global climate change. Philos. Trans. Roy. Soc. B Biol. Sci. 365, 3201–3213 (2010).


    Google Scholar
     

  • Craine, J. M., Wolkovich, E. M., Gene Towne, E. & Kembel, S. W. Flowering phenology as a functional trait in a tallgrass prairie. New Phytol. 193, 673–682 (2012).

    PubMed 

    Google Scholar
     

  • Montesinos-Navarro, A. Nitrogen transfer between plant species with different temporal N-demand. Ecol. Lett. 26, 1676–1686 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Chase, J. & Laibold, M. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).


    Google Scholar
     

  • Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 14, 236–253 (2004).

    ADS 

    Google Scholar
     

  • Moeller, D. A. Facilitative interactions among plants via shared pollinators. Ecology 85, 3289–3301 (2004).


    Google Scholar
     

  • Ricketts, T. H. et al. Landscape effects on crop pollination services: Are there general patterns?. Ecol. Lett. 11, 499–515 (2008).

    PubMed 

    Google Scholar
     

  • Lázaro, A., Lundgren, R. & Totland, Ø. Co-flowering neighbors influence the diversity and identity of pollinator groups visiting plant species. Oikos 118, 691–702 (2009).

    ADS 

    Google Scholar
     

  • Elzinga, J. A. et al. Time after time: Flowering phenology and biotic interactions. Trends Ecol. Evol. 22, 432–439 (2007).

    PubMed 

    Google Scholar
     

  • Mitchell, R. J., Flanagan, R. J., Brown, B. J., Waser, N. M. & Karron, J. D. New frontiers in competition for pollination. Ann. Bot. 103, 1403–1413 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pauw, A. Can pollination niches facilitate plant coexistence?. Trends Ecol. Evol. 28, 30–37 (2013).

    PubMed 

    Google Scholar
     

  • Strauss, S. Y., Truszczinski, A. M. & Anacker, B. L. Do habitat shifts alter flowering phenology overlap in close relatives? Implications for local coexistence. Madroño 68, 406–415 (2021).


    Google Scholar
     

  • Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).


    Google Scholar
     

  • Ackerly, D. D. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164, 165–184 (2003).


    Google Scholar
     

  • Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

    PubMed 

    Google Scholar
     

  • Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).

    PubMed 

    Google Scholar
     

  • Gerhold, P., Cahill, J. F. Jr., Winter, M., Bartish, I. V. & Prinzing, A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29, 600–614 (2015).


    Google Scholar
     

  • Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).

    PubMed 

    Google Scholar
     

  • Lemos-Costa, P., Miller, Z. R. & Allesina, S. Phylogeny structures species’ interactions in experimental ecological communities. Ecol. Lett. 27, e14490 (2024).

    PubMed 

    Google Scholar
     

  • Godoy, O., Kraft, N. J. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).

    PubMed 

    Google Scholar
     

  • López-Angulo, J., Swenson, N. G., Cavieres, L. A. & Escudero, A. Interactions between abiotic gradients determine functional and phylogenetic diversity patterns in Mediterranean-type climate mountains in the Andes. J. Veg. Sci. 29, 245–254 (2018).


    Google Scholar
     

  • Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

    PubMed 

    Google Scholar
     

  • Valiente-Banuet, A. & Verdú, M. Facilitation can increase the phylogenetic diversity of plant communities. Ecol. Lett. 10, 1029–1036 (2007).

    PubMed 

    Google Scholar
     

  • Slingsby, J. A. & Verboom, G. A. Phylogenetic relatedness limits co-occurrence at fine spatial scales: Evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. Am. Naturalist 168, 14–27 (2006).


    Google Scholar
     

  • Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Kembel, S. W. & Hubbell, S. P. The phylogenetic structure of a neotropical forest tree community. Ecology 87, S86–S99 (2006).

    PubMed 

    Google Scholar
     

  • Swenson, N. G., Enquist, B. J., Pither, J., Thompson, J. & Zimmerman, J. K. The problem and promise of scale dependency in community phylogenetics. Ecology 87, 2418–2424 (2006).

    PubMed 

    Google Scholar
     

  • Kraft, N. J. B., Cornwell, W. K., Webb, C. O. & Ackerly, D. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170, 271–283 (2007).

    PubMed 

    Google Scholar
     

  • Feng, Y., Fouqueray, T. D. & van Kleunen, M. Linking Darwin’s naturalisation hypothesis and Elton’s diversity–invasibility hypothesis in experimental grassland communities. J. Ecol. 107, 794–805 (2019).


    Google Scholar
     

  • Galland, T. et al. Colonization resistance and establishment success along gradients of functional and phylogenetic diversity in experimental plant communities. J. Ecol. 107, 2090–2104 (2019).


    Google Scholar
     

  • Chaves, R., Ferrandis, P., Escudero, A. & Luzuriaga, A. L. Diverse phylogenetic neighborhoods enhance community resistance to drought in experimental assemblages. Sci. Rep. 11, 1–12 (2021).


    Google Scholar
     

  • Ortiz, L., Luzuriaga, A. L. & Ferrandis, P. Functional diversity of experimental annual plant assemblages drives plant responses to biological soil crusts in gypsum systems. Funct. Ecol. 37, 488–503 (2023).

    CAS 

    Google Scholar
     

  • Pausas, J. G. & Verdú, M. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60, 614–625 (2010).


    Google Scholar
     

  • Caballero, I., Olano, J. M., Escudero, A. & Loidi, J. Seed bank spatial structure in semi-arid environments: Beyond the patch-bare area dichotomy. Plant Ecol. 195, 215–223 (2008).


    Google Scholar
     

  • Martínez-Duro, E., Luzuriaga, A. L., Ferrandis, P., Escudero, A. & Herranz, J. M. Does aboveground vegetation composition resemble soil seed bank during succession in specialized vegetation on gypsum soil?. Ecol. Res. 27, 43–51 (2012).


    Google Scholar
     

  • Peralta, A. M. L., Sánchez, A. M., Luzuriaga, A. L. & Escudero, A. Factors driving species assemblage in Mediterranean soil seed banks: From the large to the fine scale. Ann. Bot. 117, 1221–1228 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luzuriaga, A. L., Sánchez, A. M., López-Angulo, J. & Escudero, A. Habitat fragmentation determines diversity of annual plant communities at landscape and fine spatial scales. Basic Appl. Ecol. 29, 12–19 (2018).


    Google Scholar
     

  • Luzuriaga, A. L., González, J. M. & Escudero, A. Annual plant community assembly in edaphically heterogeneous environments. J. Veg. Sci. 26, 866–875 (2015).


    Google Scholar
     

  • Jin, Y. & Qian, H. V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).

    ADS 

    Google Scholar
     

  • Paradis, E. & Schliep, K. ape 50: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).


    Google Scholar
     

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Helmus, M. R., Bland, T. J., Williams, C. K. & Ives, A. R. Phylogenetic measures of biodiversity. Am. Nat. 169, 68–83 (2007).


    Google Scholar
     

  • de Avila Jr, R. S. & Pinheiro, M. Flowering segregation and pollinator distinctiveness contribute to coexistence in an extremely generalist plant group. Plant Ecol. Divers 14, 245–253 (2021).


    Google Scholar
     

  • Zuur, A. F., Ieno, E. N. & Meesters, E. H. A Beginner’s Guide to R (Springer, 2009).


    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2020).

  • Swenson, N. G. & Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451–459 (2007).

    PubMed 

    Google Scholar
     

  • Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J. & Davis, C. C. Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc. Natl. Acad. Sci. 105, 17029–17033 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraft, N. J. & Ackerly, D. D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol. Monogr. 80, 401–422 (2010).


    Google Scholar
     

  • Simon, A. D., Marx, H. E. & Starzomski, B. M. Phylogenetic restriction of plant invasion in drought-stressed environments: Implications for insect-pollinated plant communities in water-limited ecosystems. Ecol. Evol. 11, 10042–10053 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferguson, J. N. et al. Accelerated flowering time reduces lifetime water use without penalizing reproductive performance in Arabidopsis. Plant Cell Environ. 42, 1847–1867 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cozzolino, S. et al. Evidence for pollinator sharing in Mediterranean nectar-mimic orchids: Absence of premating barriers?. Proc. Roy. Soc. B Biol. Sci. 272, 1271–1278 (2005).


    Google Scholar
     

  • Aizen, M. A. & Vázquez, D. P. Flowering phenologies of hummingbird plants from the temperate forest of southern South America: Is there evidence of competitive displacement?. Ecography 29, 357–366 (2006).

    ADS 

    Google Scholar
     

  • Fantinato, E., Del Vecchio, S., Giovanetti, M., Acosta, A. T. R. & Buffa, G. New insights into plants co-existence in species-rich communities: The pollination interaction perspective. J. Veg. Sci. 29, 6–14 (2018).


    Google Scholar
     

  • Kazan, K. & Lyons, R. The link between flowering time and stress tolerance. J. Exp. Bot. 67, 47–60 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Gaudinier, A. & Blackman, B. K. Evolutionary processes from the perspective of flowering time diversity. New Phytol. 225, 1883–1898 (2020).

    PubMed 

    Google Scholar
     

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes
    spot_imgspot_img