Neighbourhood diversity increases tree growth in experimental forests more in wetter climates but not in wetter years

[ad_1]

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).

    PubMed 

    Google Scholar
     

  • Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. 15, e12829 (2022).


    Google Scholar
     

  • Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 11, 543–550 (2021).


    Google Scholar
     

  • Feng, Y. et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376, 865–868 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    PubMed 

    Google Scholar
     

  • Blondeel, H. et al. Tree diversity reduces variability in sapling survival under drought. J. Ecol. 112, 1164–1180 (2024).


    Google Scholar
     

  • Jucker, T., Bouriaud, O., Avacaritei, D. & Coomes, D. A. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol. Lett. 17, 1560–1569 (2014).

    PubMed 

    Google Scholar
     

  • Schnabel, F. et al. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Sci. Adv. 7, eabk1643 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fichtner, A. et al. Neighbourhood interactions drive overyielding in mixed-species tree communities. Nat. Commun. 9, 1144 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, W. et al. Systematic distributions of interaction strengths across tree interaction networks yield positive diversity–productivity relationships. Ecol. Lett. 27, e14338 (2024).

    PubMed 

    Google Scholar
     

  • Potvin, C. & Dutilleul, P. Neighborhood effects and size-asymmetric competition in a tree plantation varying in diversity. Ecology 90, 321–327 (2009).

    PubMed 

    Google Scholar
     

  • Fichtner, A. et al. Neighbourhood diversity mitigates drought impacts on tree growth. J. Ecol. 108, 865–875 (2020).


    Google Scholar
     

  • Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242, 344–347 (1973).


    Google Scholar
     

  • Muscarella, R., Messier, J., Condit, R., Hubbell, S. P. & Svenning, J.-C. Effects of biotic interactions on tropical tree performance depend on abiotic conditions. Ecology 99, 2740–2750 (2018).

    PubMed 

    Google Scholar
     

  • Jucker, T. et al. Climate modulates the effects of tree diversity on forest productivity. J. Ecol. 104, 388–398 (2016).


    Google Scholar
     

  • Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).

    PubMed 

    Google Scholar
     

  • Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).


    Google Scholar
     

  • Fei, S. et al. Impacts of climate on the biodiversity–productivity relationship in natural forests. Nat. Commun. 9, 5436 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).


    Google Scholar
     

  • Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).


    Google Scholar
     

  • Jactel, H. et al. Positive biodiversity–productivity relationships in forests: climate matters. Biol. Lett. 14, 20170747 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Change Biol. 25, 4257–4272 (2019).


    Google Scholar
     

  • Jansen, K., von Oheimb, G., Bruelheide, H., Hardtle, W. & Fichtner, A. Tree species richness modulates water supply in the local tree neighbourhood: evidence from wood δ13C signatures in a large-scale forest experiment. Proc. Biol. Sci. 288, 20203100 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossiord, C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. N. Phytol. 228, 42–49 (2020).


    Google Scholar
     

  • O’Brien, M. J., Reynolds, G., Ong, R. & Hector, A. Resistance of tropical seedlings to drought is mediated by neighbourhood diversity. Nat. Ecol. Evol. 1, 1643–1648 (2017).

    PubMed 

    Google Scholar
     

  • Cavin, L., Mountford, E. P., Peterken, G. F. & Jump, A. S. Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Funct. Ecol. 27, 1424–1435 (2013).


    Google Scholar
     

  • Serrano-León, H. et al. Multi-year drought strengthens positive and negative functional diversity effects on tree growth response. Preprint at bioRxiv https://doi.org/10.1101/2024.11.21.622593 (2024).

  • Schnabel, F. et al. Neighbourhood species richness and drought-tolerance traits modulate tree growth and δ13C responses to drought. Plant Biol. 26, 330–345 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Jucker, T. et al. Competition for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests. J. Ecol. 102, 1202–1213 (2014).


    Google Scholar
     

  • Shovon, T. A., Auge, H., Haase, J. & Nock, C. A. Positive effects of tree species diversity on productivity switch to negative after severe drought mortality in a temperate forest experiment. Glob. Change Biol. 30, e17252 (2024).

    CAS 

    Google Scholar
     

  • Haberstroh, S. & Werner, C. The role of species interactions for forest resilience to drought. Plant Biol. 24, 1098–1107 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Forrester, D. I. & Bauhus, J. A review of processes behind diversity–productivity relationships in forests. Curr. Rep. 2, 45–61 (2016).


    Google Scholar
     

  • Guerrero-Ramirez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hisano, M., Ghazoul, J., Chen, X. & Chen, H. Y. H. Functional diversity enhances dryland forest productivity under long-term climate change. Sci. Adv. 10, eadn4152 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fichtner, A. et al. From competition to facilitation: how tree species respond to neighbourhood diversity. Ecol. Lett. 20, 892–900 (2017).

    PubMed 

    Google Scholar
     

  • Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).

    PubMed 

    Google Scholar
     

  • Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).


    Google Scholar
     

  • Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed 

    Google Scholar
     

  • Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, L. et al. Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding. Nat. Commun. 15, 2078 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, L. J. Scaling the Effects of Interactions Among Plants from Individuals to Ecosystems in Experimental Tree Communities. PhD thesis, University of Minnesota (2018).

  • Kunstler, G. et al. Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol. Lett. 15, 831–840 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lasky, J. R., Uriarte, M., Boukili, V. K. & Chazdon, R. L. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proc. Natl Acad. Sci. USA 111, 5616–5621 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carroll, I. T., Cardinale, B. J. & Nisbet, R. M. Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology 92, 1157–1165 (2011).

    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Enhanced stability of grassland soil temperature by plant diversity. Nat. Geosci. 17, 44–50 (2024).


    Google Scholar
     

  • Schnabel, F. et al. Tree diversity increases forest temperature buffering via enhancing canopy density and structural diversity. Ecol. Lett. 28, e70096 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Net plant interactions are highly variable and weakly dependent on climate at the global scale. Ecol. Lett. 25, 1580–1593 (2022).

    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Positive effects of neighborhood complementarity on tree growth in a Neotropical forest. Ecology 97, 776–785 (2016).

    PubMed 

    Google Scholar
     

  • Huang, Z. et al. Functionally dissimilar neighbours increase tree water use efficiency through enhancement of leaf phosphorus concentration. J. Ecol. 110, 2179–2189 (2022).

    CAS 

    Google Scholar
     

  • Pornon, A., Escaravage, N. & Lamaze, T. Complementarity in mineral nitrogen use among dominant plant species in a subalpine community. Am. J. Bot. 94, 1778–1785 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Pretzsch, H., Schütze, G. & Uhl, E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol. 15, 483–495 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Martin-Benito, D. et al. Effects of drought on xylem anatomy and water-use efficiency of two co-occurring pine species. Forests 8, 332 (2017).


    Google Scholar
     

  • Belluau, M., Vitali, V., Parker, W. C., Paquette, A. & Messier, C. Overyielding in young tree communities does not support the stress‐gradient hypothesis and is favoured by functional diversity and higher water availability. J. Ecol. 109, 1790–1803 (2021).

    CAS 

    Google Scholar
     

  • Searle, E. B. & Chen, H. Y. H. Complementarity effects are strengthened by competition intensity and global environmental change in the central boreal forests of Canada. Ecol. Lett. 23, 79–87 (2020).

    PubMed 

    Google Scholar
     

  • Dimitrakopoulos, P. G. & Schmid, B. Biodiversity effects increase linearly with biotope space. Ecol. Lett. 7, 574–583 (2004).


    Google Scholar
     

  • Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Rodríguez-Castañeda, G. The world and its shades of green: a meta-analysis on trophic cascades across temperature and precipitation gradients. Glob. Ecol. Biogeogr. 22, 118–130 (2013).


    Google Scholar
     

  • Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol. 60, 133–149 (2011).


    Google Scholar
     

  • Weigelt, A. et al. An integrated framework of plant form and function: the belowground perspective. New Phytol. 232, 42–59 (2021).

    PubMed 

    Google Scholar
     

  • Walker, T. W. N. et al. Leaf metabolic traits reveal hidden dimensions of plant form and function. Sci. Adv. 9, eadi4029 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hisano, M. & Chen, H. Y. H. Spatial variation in climate modifies effects of functional diversity on biomass dynamics in natural forests across Canada. Glob. Ecol. Biogeogr. 29, 682–695 (2020).


    Google Scholar
     

  • Baert, J. M., Eisenhauer, N., Janssen, C. R. & De Laender, F. Biodiversity effects on ecosystem functioning respond unimodally to environmental stress. Ecol. Lett. 21, 1191–1199 (2018).

    PubMed 

    Google Scholar
     

  • Grossiord, C. et al. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation. J. Hydrol. 519, 3511–3519 (2014).


    Google Scholar
     

  • Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bretfeld, M., Ewers, B. E. & Hall, J. S. Plant water use responses along secondary forest succession during the 2015–2016 El Niño drought in Panama. New Phytol. 219, 885–899 (2018).

    PubMed 

    Google Scholar
     

  • Jucker, T. et al. Good things take time—diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 108, 2198–2211 (2020).


    Google Scholar
     

  • Chen, C. et al. Neighborhood dissimilarity consistently attenuates competition stress on tree growth under altered water availability in a natural boreal forest. Agric. Meteorol. 324, 109101 (2022).


    Google Scholar
     

  • Paquette, A., Vayreda, J., Coll, L., Messier, C. & Retana, J. Climate change could negate positive tree diversity effects on forest productivity: a study across five climate types in Spain and Canada. Ecosystems 21, 960–970 (2018).


    Google Scholar
     

  • Trogisch, S. et al. The significance of tree–tree interactions for forest ecosystem functioning. Basic Appl. Ecol. 55, 33–52 (2021).


    Google Scholar
     

  • Verheyen, K. et al. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45, 29–41 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Paquette, A. et al. A million and more trees for science. Nat. Ecol. Evol. 2, 763–766 (2018).

    PubMed 

    Google Scholar
     

  • Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).


    Google Scholar
     

  • United Nations Environmental Programme. World Atlas of Desertification (Edward Arnold, 1992).

  • Beguería, S. sbegueria/SPEIbase: version 2.7. Zenodo https://doi.org/10.5281/zenodo.5864391 (2022).

  • Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).


    Google Scholar
     

  • Maitner, B. S. et al. The bien R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).


    Google Scholar
     

  • Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).

  • Wambsganss, J. et al. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct. Ecol. 35, 1886–1902 (2021).

    CAS 

    Google Scholar
     

  • Williams, L. J. et al. Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecol. Lett. 24, 996–1006 (2021).

    PubMed 

    Google Scholar
     

  • Benavides, R., Valladares, F., Wirth, C., Müller, S. & Scherer-Lorenzen, M. Intraspecific trait variability of trees is related to canopy species richness in European forests. Perspect. Plant Ecol. Evol. Syst. 36, 24–32 (2019).


    Google Scholar
     

  • Serrano-León, H., Nitschke, R., Scherer-Lorenzen, M. & Forrester, D. I. Intra-specific leaf trait variability of F. sylvatica, Q. petraea and P. abies in response to inter-specific competition and implications for forest functioning. Tree Physiol. 42, 253–272 (2022).

    PubMed 

    Google Scholar
     

  • Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).


    Google Scholar
     

  • Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    PubMed 

    Google Scholar
     

  • Grossman, J. J. et al. Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. J. Ecol. 107, 1492–1505 (2018).


    Google Scholar
     

  • Britton, T. G., Richards, S. A. & Hovenden, M. J. Quantifying neighbour effects on tree growth: Are common ‘competition’ indices biased? J. Ecol. 111, 1270–1280 (2023).


    Google Scholar
     

  • Clark, J. S. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8, 2–14 (2005).


    Google Scholar
     

  • van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).


    Google Scholar
     

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).


    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian graphical models using MCMC. CRAN https://CRAN.R-project.org/package=rjags (2024).

  • Zheng, L. Data and code from: Neighbourhood diversity increases tree growth in experimental forests more in wetter climates but not in wetter years. figshare https://doi.org/10.6084/m9.figshare.29274887 (2025).

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes
    spot_imgspot_img