[ad_1]
Guo, P. Y., Sun, F. Q. & Han, X. Y. Study on comprehensive evaluation of environmental pollution treatment effect in coal mine subsidence area: taking Xinglongzhuang mining area of Yanzhou energy as an example. Environ. Sci. Pollut. Res. 30, 6132–6145. https://doi.org/10.1007/s11356-022-22532-9 (2023).
Lei, K., Pan, H. Y. & Lin, C. Y. A landscape approach towards ecological restoration and sustainable development of mining areas. Ecol. Eng. 90, 320–325. https://doi.org/10.1016/j.ecoleng.2016.01.080. (2016).
Xu, W. J., Yao, W. L., Bai, Z. K., Yang, J. Z. & Li, L. Ecological risk evaluation and ecological restoration model of mining in the source area of the yellow river basin. Land 12, 933. https://doi.org/10.3390/land12040933 (2023).
Li, T., Wu, M. H., Duan, C. Q., Li, S. Y. & Liu, C. E. The effect of different restoration approaches on vegetation development in metal mines. Sci. Total Environ. 806, 150626. https://doi.org/10.1016/j.scitotenv.2021.150626 (2022).
Alday, J. G., Marrs, R. H. & Martínez-Ruiz, C. Soil and vegetation development during early succession on restored coal wastes: a six-year permanent plot study. Plant. Soil. 353, 305–320. https://doi.org/10.1007/s11104-011-1033-2 (2012).
Chen, Z. X. et al. Ecological restoration in mining areas in the context of the belt and road initiative: capability and challenges. Environ. Impact Assess. Rev. 95, 106767. https://doi.org/10.1016/j.eiar.2022.106767 (2022).
Levi, N. et al. Soil quality index for assessing phosphate mining restoration in a hyper-arid environment. Ecol. Ind. 125, 107571. https://doi.org/10.1016/j.ecolind.2021.107571 (2021).
Yang, X. J. et al. Global patterns of potential future plant diversity hidden in soil seed banks. Nat. Commun. 12, 27379. https://doi.org/10.1038/s41467-021-27379-1 (2021).
Iberl, K., Poschlod, P. & Reisch, C. A source of hidden diversity: soil seed bank and aboveground populations of a common herb contain similar levels of genetic variation. J. Plant. Biology. 25, 1035–1045. https://doi.org/10.1111/plb.13571 (2023).
Zivec, P., Sheldon, F. & Capon, S. Regenerative capacity of old-fields on semi‐arid floodplains in the Northern Murray–Darling basin. Restor. Ecol., 31(2), e13781. (2023).
Ma, M. J., Walck, J. L., Ma, Z., Wang, L. P. & Du, G. Z. Grazing disturbance increases transient but decreases persistent soil seed bank. Ecol. Appl. 28, 1020–1031. https://doi.org/10.1002/eap.1706 (2018).
Shi, Y. F. et al. A global meta-analysis of grazing effects on soil seed banks. Land Degrad. Dev. 33, 1892–1900. https://doi.org/10.1002/ldr.4271 (2022).
Gomaa, N. H. Soil seed bank in different habitats of the Eastern desert of Egypt. Saudi J. Biol. Sci. 19, 211–220. https://doi.org/10.1016/j.sjbs.2012.01.002 (2012).
Cao, D. C., Baskin, C. C., Baskin, J. M., Yang, F. & Huang, Z. Y. Dormancy cycling and persistence of seeds in soil of a cold desert halophyte shrub. Ann. Botany. 113, 171–179. https://doi.org/10.1093/aob/mct256 (2014).
Yan, R. R. et al. Effects of different grassland utilization methods on the germinable soil seed bank of the Hulunbuir meadow steppe. Front. Plant Sci. 14, 1230725. https://doi.org/10.3389/fpls.2023.1230725 (2023).
An, H., Baskin, C. C. & Ma, M. J. Nonlinear response of the soil seed bank and its role in plant community regeneration with increased grazing disturbance. J. Appl. Ecol. 59, 2593–2603. https://doi.org/10.1111/1365-2664.14259 (2022).
Guo, N. et al. Long-term active restoration of degraded grasslands enhances vegetation resilience by altering the soil seed bank. Agron. Sustain. Dev. 43, 00862. https://doi.org/10.1007/s13593-022-00862-9 (2023).
Larson, J. E. & Suding, K. N. Seed bank bias: differential tracking of functional traits in the seed bank and vegetation across a gradient. Ecology 103, 3651. https://doi.org/10.1002/ecy.3651 (2022).
De Agostini, A. et al. Seed bank conservation and incipient seed development in orchids colonizing mining wastes: results of a field pilot experiment. Plants 11 (23). https://doi.org/10.3390/plants11233315 (2022).
Golos, P. J. & Dixon, K. W. Waterproofing topsoil stockpiles minimizes viability decline in the soil seed bank in an arid environment. Restor. Ecol. 22, 495–501. https://doi.org/10.1111/rec.12090 (2014).
Huang, L., Zhang, P., Hu, Y. & Zhao, Y. Vegetation and soil restoration in refuse dumps from open pit coal mines. Ecol. Eng. 94, 638–646. https://doi.org/10.1016/j.ecoleng.2016.06.108 (2016).
Qi, L., Zhou, P., Yang, L. & Gao, M. Effects of land reclamation on the physical, chemical, and microbial quantity and enzyme activity properties of degraded agricultural soils. J. Soils Sediments. 20 (2), 973–981. https://doi.org/10.1007/s11368-019-02432-1 (2020).
Lu, R. K. Analytical Methods of Agricultural Chemistry in Soil (China Agricultural Scientech, 2000). (In Chinese).
Jackson, R. B., Anderson, L. J. & Pockman, W. T. Measuring water availability and uptake in ecosystem studies. In: (eds Sala, O. E., Jackson, R. B., Mooney, H. A. & Howarth, R. W.) Methods in Ecosystem Science. Springer, New York, 199–214. (2000).
Wang, J., Ren, H., Yang, L., Li, D. Y. & Guo, Q. F. Soil seed banks in four 22-year-old plantations in South china: implications for restoration. For. Ecol. Manag. 258, 2000–2006. https://doi.org/10.1016/j.foreco.2009.07.049 (2009).
Zhao, Y. T. et al. Direct and indirect effects of soil salinization on soil seed banks in salinizing wetlands in the Songnen plain, China. Sci. Total Environ. 819, 152035. https://doi.org/10.1016/j.scitotenv.2021.152035 (2022).
Medeiros-Sarmento, P. S. D., Ferreira, L. V. & Gastauer, M. Natural regeneration triggers compositional and functional shifts in soil seed banks. Sci. Total Environ. 753, 141934. https://doi.org/10.1016/j.scitotenv.2020.141934 (2021).
Liu, D., Wang, H. L., An, S. S., Bhople, P. & Davlatbekov, F. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese loess plateau soils. Sci. Total Environ. 660, 1058–1069. https://doi.org/10.1016/j.scitotenv.2019.01.097 (2019).
Jia, P. et al. Long-term Spartina alterniflora invasion simplified soil seed bank and regenerated community in a coastal marsh wetland. Ecol. Appl. e2754. https://doi.org/10.1002/eap.2754 (2022).
Miao, R. H. et al. Soil seed bank and plant community development in passive restoration of degraded sandy grasslands. Sustainability 8, 581. https://doi.org/10.3390/su8060581 (2016).
Li, C., Xiao, B., Wang, Q. H., Zheng, R. L. & Wu, J. Y. Responses of soil seed bank and vegetation to the increasing intensity of human disturbance in a Semi-Arid region of Northern China. Sustainability 9, 1837. https://doi.org/10.3390/su9101837 (2017).
Luo, C., Guo, X. P., Feng, C. D. & Xiao, C. Q. Soil seed bank responses to anthropogenic disturbances and its vegetation restoration potential in the arid mining area. Ecol. Ind. 154, 110549. https://doi.org/10.1016/j.ecolind.2023.110549 (2023).
Gasperini, C. et al. Edge effects on the realised soil seed bank along microclimatic gradients in temperate European forests. Sci. Total Environ. 798, 149373. https://doi.org/10.1016/j.scitotenv.2021.149373 (2021).
Benvenuti, S. & Mazzoncini, M. Active weed seed bank: soil texture and seed weight as key factors of Burial-Depth Inhibition. Agronomy 11, 210. https://doi.org/10.3390/agronomy11020210 (2021).
Middleton, B. A. Soil seed banks and the potential restoration of forested wetlands after farming. J. Appl. Ecol. 40, 1025–1034. https://doi.org/10.1111/j.1365-2664.2003.00866.x (2003).
Zhao, Y., Li, M., Deng, J. Y. & Wang, B. T. Afforestation affects soil seed banks by altering soil properties and understory plants on the Eastern loess plateau, China. Ecol. Ind. 126, 107670. https://doi.org/10.1016/j.ecolind.2021.107670 (2021).
Xu, Q., Xu, H. L., Wei, Y. & Aili, A. Restoration effects of supplementary planting measures on the abandoned mining areas in the Altay mountain, Northwest China. Sustainability 15, 14974. https://doi.org/10.3390/su152014974 (2023).
Yan, D. M., Zhao, F. Y. & Sun, O. J. Assessment of vegetation establishment on tailings dam at an Iron ore mining site of suburban beijing, china, 7 years after reclamation with contrasting site treatment methods. Environ. Manage. 52, 748–757. https://doi.org/10.1007/s00267-013-0092-y (2013).
Fisher, J. L., Loneragan, W. A., Dixon, K. & Veneklaas, E. J. Soil seed bank compositional change constrains biodiversity in an invaded species-rich woodland. Biol. Conserv. 142, 256–269. https://doi.org/10.1016/j.biocon.2008.10.019 (2009).
Zylberberg, T., Rotem, G. & Ziv, Y. Evaluating soil seed banks of phosphate mining restoration in the hyper-arid Negev desert. Restor. Ecol. 13938. https://doi.org/10.1111/rec.13938 (2023).
Zhao, Y. T. et al. Seed limitation and saline-alkaline stress restrict wetland restoration potential in the Songnen plain, Northeastern China. Ecol. Ind. 129, 107998. https://doi.org/10.1016/j.ecolind.2021.107998 (2021).
Facelli, J. M., Chesson, P. & Barnes, N. Differences in seed biology of annual plants in arid lands: A key ingredient of the storage effect. Ecology 86, 2998–3006. https://doi.org/10.1890/05-0304 (2005).
Guan, B. et al. Soil seed bank and vegetation differences following channel diversion in the yellow river Delta. Sci. Total Environ. 693, 133600. https://doi.org/10.1016/j.scitotenv.2019.133600 (2019).
Arroyo, A. I., Pueyo, Y., Reiné, R., Giner, M. L. & Alados, C. L. Effects of the allelopathic plant Artemisia herba-alba Asso on the soil seed bank of a semi-arid plant community. J. Plant. Ecol. 10, 927–936. https://doi.org/10.1093/jpe/rtw120 (2017).
De Villiers, A. J., Van Rooyen, M. W. & Theron, G. K. Similarity between the soil seed bank and the standing vegetation in the strandveld succulent karoo, South Africa. Land Degrad. Dev. 14, 527–540. https://doi.org/10.1002/ldr.582 (2003).
Schellenberger, J. et al. Soil seed banks of continental grasslands with different water Regimes-A comparative study from the aspect of recovery potential. Agronomy 12, 2830. https://doi.org/10.3390/agronomy12112830 (2022).
DeMalach, N., Kigel, J. & Sternberg, M. The soil seed bank can buffer long-term compositional changes in annual plant communities. J. Ecol. 109, 1275–1283. https://doi.org/10.1111/1365-2745.13555 (2021).
López-Mariño, A., Luis-Calabuig, E., Fillat, F. & Bermúdez, F. F. Floristic composition of established vegetation and the soil seed bank in pasture communities under different traditional management regimes. Agric. Ecosyst. Environ. 78, 273–282. https://doi.org/10.1016/S0167-8809(99)00137-1 (2000).
Huang, Y. et al. Relationships between vegetation and soil seed banks along a center-to-edge gradient on a tropical coral Island. Ecol. Ind. 117, 106689. https://doi.org/10.1016/j.ecolind.2020.106689 (2020).
Zhu, T. et al. Diversity of soil seed bank and influencing factors in the nascent wetland of the yellow river Delta. Front. Plant Sci. 14, 1249139. https://doi.org/10.3389/fpls.2023.1249139 (2023).
Mi, J. X. et al. Vegetation patterns on a landslide after five years of natural restoration in the loess plateau mining area in China. Ecol. Eng. 136, 46–54. https://doi.org/10.1016/j.ecoleng.2019.05.022 (2019).
Lennon, J. T., den Hollander, F., Wilke-Berenguer, M. & Blath, J. Principles of seed banks and the emergence of complexity from dormancy. Nat. Commun. 12, 4807. https://doi.org/10.1038/s41467-021-24733-1 (2021).
[ad_2]
Source link