Graham, N. A. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013).
Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: Beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).
Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).
Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).
Page, C. E. et al. Seeking resistance in coral reef ecosystems: The interplay of biophysical factors and bleaching resistance under a changing climate. BioEssays 41, 1800226 (2019).
Hughes, T. P. Community structure and diversity of coral reefs: The role of history. Ecology 70, 275–279 (1989).
Smith, J. E., Hunter, C. L. & Smith, C. M. The effects of top–down versus bottom–up control on benthic coral reef community structure. Oecologia 163, 497–507 (2010).
Brandl, S. J. et al. Coral reef ecosystem functioning: Eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).
Radice, V. Z. et al. Recent trends and biases in mesophotic ecosystem research. Biol. Let. 20, 20240465 (2024).
Pyle, R. L. Exploring deep coral reefs: How much biodiversity are we missing?. Glob. Biodivers. 6, 3–7 (1996).
Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic coral ecosystems (eds Loya, Y. et al.) 3–27 (Springer International Publishing, Cham, 2019).
Rouzé, H. et al. Symbiotic associations of the deepest recorded photosynthetic scleractinian coral (172 m depth). ISME J. 15, 1564–1568 (2021).
Hinderstein, L. M. et al. Theme section on ‘Mesophotic coral ecosystems: Characterization, ecology, and management’. Coral Reefs 29, 247–251 (2010).
Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275 (2010).
Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).
Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).
Smith, T. B., Glynn, P. W., Maté, J. L., Toth, L. T. & Gyory, J. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95, 1663–1673 (2014).
Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: Deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 12407 (2015).
Muir, P. R., Marshall, P. A., Abdulla, A. & Aguirre, J. D. Species identity and depth predict bleaching severity in reef-building corals: Shall the deep inherit the reef?. Proc. R. Soc. B Biol. Sci. 284, 20171551 (2017).
Diaz, C. et al. Light and temperature drive the distribution of mesophotic benthic communities in the Central Indian Ocean. Divers. Distrib. 29, 1578–1593 (2023).
Diaz, C. et al. Mesophotic coral bleaching associated with changes in thermocline depth. Nat. Commun. 14, 6528 (2023).
Hoban, M. L., Bunce, M. & Bowen, B. W. Plumbing the depths with environmental DNA (eDNA): Metabarcoding reveals biodiversity zonation at 45–60 m on mesophotic coral reefs. Mol. Ecol. 32, 5590–5608 (2023).
Hurley, K. K. C. et al. An assessment of shallow and mesophotic reef brachyuran crab assemblages on the south shore of O’ahu, Hawai’i. Coral Reefs 35, 103–112 (2016).
Kane, C., Kosaki, R. K. & Wagner, D. High levels of mesophotic reef fish endemism in the Northwestern Hawaiian Islands. Bull. Mar. Sci. 90, 693–703 (2014).
Pinheiro, H. T. et al. Deep reef fishes in the world’s epicenter of marine biodiversity. Coral Reefs 38, 985–995 (2019).
Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).
Montgomery, A. D., Fenner, D., Donahue, M. J. & Toonen, R. J. Community similarity and species overlap between habitats provide insight into the deep reef refuge hypothesis. Sci. Rep. 11, 23787 (2021).
Selkoe, K. A. et al. A map of human impacts to a ‘pristine’ coral reef ecosystem, the Papahānaumokuākea Marine National Monument. Coral Reefs 28, 635–650 (2009).
Benfield, S., Baxter, L., Guzman, H. M. & Mair, J. M. A comparison of coral reef and coral community fish assemblages in Pacific Panama and environmental factors governing their structure. J. Mar. Biol. Assoc. U.K. 88, 1331–1341 (2008).
Caballero-Aragón, H. et al. Wave exposure and temperature drive coral community structure at regional scale in the Cuban archipelago. Coral Reefs 42, 43–61 (2023).
Kane, C. N. & Tissot, B. N. Trophic designation and live coral cover predict changes in reef-fish community structure along a shallow to mesophotic gradient in Hawaii. Coral Reefs 141, 1–11 (2017).
Lange, I. D. et al. Wave exposure shapes reef community composition and recovery trajectories at a remote coral atoll. Coral Reefs 40, 1819–1829 (2021).
van Lier, J. R., Wilson, S. K., Depczynski, M., Wenger, L. N. & Fulton, C. J. Habitat connectivity and complexity underpin fish community structure across a seascape of tropical macroalgae meadows. Landsc. Ecol. 33, 1287–1300 (2018).
Fautin, D. et al. An overview of marine biodiversity in United States waters. PLoS ONE 5, e11914 (2010).
Bellwood, D. R. & Hughes, T. P. Regional-scale assembly rules and biodiversity of coral reefs. Science 292, 1532–1535 (2001).
Graham, N. A. J., Evans, R. D. & Russ, G. R. The effects of marine reserve protection on the trophic relationships of reef fishes on the Great Barrier Reef. Environ. Conserv. 30, 200–208 (2003).
Connolly, S. R., Hughes, T. P., Bellwood, D. R. & Karlson, R. H. Community structure of corals and reef fishes at multiple scales. Science 309, 1363–1365 (2005).
Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).
Fletcher, R. J. Jr., Ries, L., Battin, J. & Chalfoun, A. D. The role of habitat area and edge in fragmented landscapes: Definitively distinct or inevitably intertwined?. Can. J. Zool. 85, 1017–1030 (2007).
Zimmerman, T. & Martin, J. Artificial reef matrix structures (ARMS): An inexpensive and effective method for collecting coral reef-associated invertebrates. Gulf Caribb. Res. 16, 59–64 (2004).
Brainard, R. et al. Autonomous Reef Monitoring Structures (ARMS): A tool for monitoring indices of biodiversity in the Pacific Islands. In 11th Pacific Science Inter-Congress, Papeete, Tahiti (2009).
Ransome, E. et al. The importance of standardization for biodiversity comparisons: A case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PLoS ONE 12, e0175066 (2017).
Knowlton, N. et al. Coral Reef Biodiversity. In Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 65–78. https://doi.org/10.1002/9781444325508.ch4 (2010).
Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).
Servis, J. A., Reid, B. N., Timmers, M. A., Stergioula, V. & Naro-Maciel, E. Characterizing coral reef biodiversity: Genetic species delimitation in brachyuran crabs of Palmyra Atoll, Central Pacific. Mitochondrial DNA Part A 31, 178–189 (2020).
Plaisance, L., Knowlton, N., Paulay, G. & Meyer, C. Reef-associated crustacean fauna: Biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28, 977–986 (2009).
Castro, P. Catalog of the anomuran and brachyuran crabs (Crustacea: Decapoda: Anomura, Brachyura) of the Hawaiian Islands. Zootaxa 2947, 1–154 (2011).
Ward, R. J. et al. Spatial variation and antecedent sea surface temperature conditions influence Hawaiian intertidal community structure. PLoS ONE 18, e0286136 (2023).
Selkoe, K. A. et al. The DNA of coral reef biodiversity: Predicting and protecting genetic diversity of reef assemblages. Proc. R. Soc. B: Biol. Sci. 283, 20160354 (2016).
Friedlander, A. M., Donovan, M. K., DeMartini, E. E. & Bowen, B. W. Dominance of endemics in the reef fish assemblages of the Hawaiian Archipelago. J. Biogeogr. 47, 2584–2596 (2020).
Baker, J. D., Polovina, J. J. & Howell, E. A. Effect of variable oceanic productivity on the survival of an upper trophic predator, the Hawaiian monk seal Monachus schauinslandi. Mar. Ecol. Prog. Ser. 346, 277–283 (2007).
Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).
Selkoe, K. A., Halpern, B. S. & Toonen, R. J. Evaluating anthropogenic threats to the Northwestern Hawaiian Islands. Aquat. Conserv. Mar. Freshwat. Ecosyst. 18, 1149–1165 (2008).
de Souza, M. R. et al. Importance of depth and temperature variability as drivers of coral symbiont composition despite a mass bleaching event. Sci. Rep. 13, 8957 (2023).
West, K. M. et al. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol. Ecol. 30, 246 (2020).
Williams, G. J. et al. Benthic communities at two remote Pacific coral reefs: Effects of reef habitat, depth, and wave energy gradients on spatial patterns. PeerJ 1, e81 (2013).
Srinivasan, M. Depth distributions of coral reef fishes: The influence of microhabitat structure, settlement, and post-settlement processes. Oecologia 137, 76–84 (2003).
Storlazzi, C. D., Cheriton, O. M., van Hooidonk, R., Zhao, Z. & Brainard, R. Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming. Sci. Rep. 10, 13435 (2020).
Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34 (2020).
Steyaert, M. et al. Remote reef cryptobenthic diversity: Integrating autonomous reef monitoring structures and in situ environmental parameters. Front. Mar. Sci. 9, 932375 (2022).
Reyns, N. & Sponaugle, S. Patterns and processes of brachyuran crab settlement to Caribbean coral reefs. Mar. Ecol. Prog. Ser. 185, 155–170 (1999).
Lasley, R. M. Jr., Klaus, S. & Ng, P. K. L. Phylogenetic relationships of the ubiquitous coral reef crab subfamily Chlorodiellinae (Decapoda, Brachyura, Xanthidae). Zoolog. Scr. 44, 165–178 (2015).
Hazeri, G. et al. Latitudinal species diversity and density of cryptic crustacean (Brachyura and Anomura) in micro-habitat autonomous reef monitoring structures across Kepulauan Seribu, Indonesia. Biodivers. J. Biol. Divers. https://doi.org/10.13057/biodiv/d200540 (2019).
Slattery, M., Lesser, M. P., Rocha, L. A., Spalding, H. L. & Smith, T. B. Function and stability of mesophotic coral reefs. Trends Ecol. Evol. 39, 585 (2024).
Lesser, M. P., Slattery, M., Laverick, J. H., Macartney, K. J. & Bridge, T. C. Global community breaks at 60 m on mesophotic coral reefs. Glob. Ecol. Biogeogr. 5, 47 (2019).
Johnson, J. V., Chequer, A. D. & Goodbody-Gringley, G. Depth partitioning of mesophotic reef fish communities on Pickle Bank seamount. Front. Mar. Sci. 12, 1539066 (2025).
Pyle, R. L. et al. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4, e2475 (2016).
Kara, A. B., Rochford, P. A. & Hurlburt, H. E. An optimal definition for ocean mixed layer depth. J. Geophys. Res. Oceans 105, 16803–16821 (2000).
Hawaii Ocean Time-series HOT-DOGS application; University of Hawai’i at Mānoa. National Science Foundation Award # 1756517. HOT-DOGS application.
Huston, M. A. & DeAngelis, D. L. Competition and coexistence: The effects of resource transport and supply rates. Am. Nat. 144, 954–977 (1994).
Smith, R. S., Johnston, E. L. & Clark, G. F. The role of habitat complexity in community development is mediated by resource availability. PLoS ONE 9, e102920 (2014).
Sebens, K. P. Habitat structure and community dynamics in marine benthic systems. In Habitat structure: The physical arrangement of objects in space (eds Bell, S. S. et al.) 211–234 (Springer, Netherlands, Dordrecht, 1991).
Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).
Connell, J. H. Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle balanus balanoides. Ecol. Monogr. 31, 61–104 (1961).
Connell, J. H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710–723 (1961).
Denny, M. W. & Wethey, D. S. Physical processes that generate patterns in marine communities. In Marine community ecology (eds Bertness, M. D. et al.) 3–38 (Sinauer Associates, Sunderland, 2001).
Paine, R. T. Intertidal community structure. Oecologia 15, 93–120 (1974).
Brady, K. U., Kruckeberg, A. R. & Bradshaw, H.D Jr. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst. 36, 243–266 (2005).
Moore, K. A. & Elmendorf, S. C. 10. Plant competition and facilitation in systems with strong environmental gradients. In Serpentine: The evolution and ecology of a model system (eds Harrison, S. & Rajakaruna, N.) 223–236 (University of California Press, Oakland, 2011).
Wishingrad, V. & Thomson, R. C. Temperate zone isolation by climate: An extension of Janzen’s 1967 hypothesis. Am. Nat. 201, 302–314 (2023).
Bellwood, D. R., Hughes, T. P., Connolly, S. R. & Tanner, J. Environmental and geometric constraints on Indo-Pacific coral reef biodiversity. Ecol. Lett. 8, 643–651 (2005).
Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).
Carr, M. H., Anderson, T. W. & Hixon, M. A. Biodiversity, population regulation, and the stability of coral-reef fish communities. Proc. Natl. Acad. Sci. 99, 11241–11245 (2002).
Connolly, S. R., Bellwood, D. R. & Hughes, T. P. Indo-Pacific biodiversity of coral reefs: Deviations from a mid-domain model. Ecology 84, 2178–2190 (2003).
Dornelas, M., Connolly, S. R. & Hughes, T. P. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440, 80–82 (2006).
Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).
Komyakova, V., Munday, P. L. & Jones, G. P. Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS ONE 8, e83178 (2013).
Vellend, M. Effects of diversity on diversity: Consequences of competition and facilitation. Oikos 117, 1075–1085 (2008).
Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. USA 112, 2076–2081 (2015).
Poore, G. C. B. & Ahyong, S. T. Marine Decapod Crustacea: A guide to families and genera of the world (CSIRO Publishing, Collingwood, 2023).
Lasley Jr, R.M. An Integrative Systematic Revision of the Chlorodiellinae Ng & Holthuis, 2006 (Crustacea: Decapoda: Brachyura: Xanthidae). (Dissertation. National University of Singapore, Singapore, 2014).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2021).
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Oksanen, J. et al. vegan: Community ecology package. (2022).
Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).
Rao, C. R. A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió 19, 23–63 (1995).
Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).
Kindt, R., Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. (World Agroforestry Centre (ICRAF), 2005).
Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).
NASA Goddard Space Flight Center, Ocean Ecology Laboratory & Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua {AQUA MODIS Level-3 Binned Chlorophyll, Version 2022} Data; NASA OB.DAAC, Greenbelt, MD, USAAQUA MODIS Level-3 Binned Chlorophyll, Version 2022. NASA Ocean Biology Distributed Active Archive Center https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2022 (2022).
NASA OBPG. MODIS Aqua Global Level 3 Mapped SST. Ver. 2019.0. PO.DAAC, CA, USA. NASA Physical Oceanography Distributed Active Archive Center https://doi.org/10.5067/MODSA-MO4D9 (2020).
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
Frazier, M. Recent pace of change in human impact on the world’s ocean: Cumulative impacts. https://doi.org/10.5063/F12B8WBS (2019).