Cryptobenthic crab assemblages are more distinct across a 90 m depth gradient than 2500 km of shallow marine habitat in the Hawaiian archipelago


  • Graham, N. A. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013).


    Google Scholar
     

  • Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: Beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).

    ADS 

    Google Scholar
     

  • Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).


    Google Scholar
     

  • Page, C. E. et al. Seeking resistance in coral reef ecosystems: The interplay of biophysical factors and bleaching resistance under a changing climate. BioEssays 41, 1800226 (2019).


    Google Scholar
     

  • Hughes, T. P. Community structure and diversity of coral reefs: The role of history. Ecology 70, 275–279 (1989).


    Google Scholar
     

  • Smith, J. E., Hunter, C. L. & Smith, C. M. The effects of top–down versus bottom–up control on benthic coral reef community structure. Oecologia 163, 497–507 (2010).

    ADS 

    Google Scholar
     

  • Brandl, S. J. et al. Coral reef ecosystem functioning: Eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).


    Google Scholar
     

  • Radice, V. Z. et al. Recent trends and biases in mesophotic ecosystem research. Biol. Let. 20, 20240465 (2024).


    Google Scholar
     

  • Pyle, R. L. Exploring deep coral reefs: How much biodiversity are we missing?. Glob. Biodivers. 6, 3–7 (1996).


    Google Scholar
     

  • Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic coral ecosystems (eds Loya, Y. et al.) 3–27 (Springer International Publishing, Cham, 2019).


    Google Scholar
     

  • Rouzé, H. et al. Symbiotic associations of the deepest recorded photosynthetic scleractinian coral (172 m depth). ISME J. 15, 1564–1568 (2021).


    Google Scholar
     

  • Hinderstein, L. M. et al. Theme section on ‘Mesophotic coral ecosystems: Characterization, ecology, and management’. Coral Reefs 29, 247–251 (2010).

    ADS 

    Google Scholar
     

  • Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275 (2010).


    Google Scholar
     

  • Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).

    ADS 

    Google Scholar
     

  • Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).


    Google Scholar
     

  • Smith, T. B., Glynn, P. W., Maté, J. L., Toth, L. T. & Gyory, J. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95, 1663–1673 (2014).


    Google Scholar
     

  • Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: Deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 12407 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Muir, P. R., Marshall, P. A., Abdulla, A. & Aguirre, J. D. Species identity and depth predict bleaching severity in reef-building corals: Shall the deep inherit the reef?. Proc. R. Soc. B Biol. Sci. 284, 20171551 (2017).


    Google Scholar
     

  • Diaz, C. et al. Light and temperature drive the distribution of mesophotic benthic communities in the Central Indian Ocean. Divers. Distrib. 29, 1578–1593 (2023).


    Google Scholar
     

  • Diaz, C. et al. Mesophotic coral bleaching associated with changes in thermocline depth. Nat. Commun. 14, 6528 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Hoban, M. L., Bunce, M. & Bowen, B. W. Plumbing the depths with environmental DNA (eDNA): Metabarcoding reveals biodiversity zonation at 45–60 m on mesophotic coral reefs. Mol. Ecol. 32, 5590–5608 (2023).

    CAS 

    Google Scholar
     

  • Hurley, K. K. C. et al. An assessment of shallow and mesophotic reef brachyuran crab assemblages on the south shore of O’ahu, Hawai’i. Coral Reefs 35, 103–112 (2016).

    ADS 

    Google Scholar
     

  • Kane, C., Kosaki, R. K. & Wagner, D. High levels of mesophotic reef fish endemism in the Northwestern Hawaiian Islands. Bull. Mar. Sci. 90, 693–703 (2014).


    Google Scholar
     

  • Pinheiro, H. T. et al. Deep reef fishes in the world’s epicenter of marine biodiversity. Coral Reefs 38, 985–995 (2019).

    ADS 

    Google Scholar
     

  • Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Montgomery, A. D., Fenner, D., Donahue, M. J. & Toonen, R. J. Community similarity and species overlap between habitats provide insight into the deep reef refuge hypothesis. Sci. Rep. 11, 23787 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Selkoe, K. A. et al. A map of human impacts to a ‘pristine’ coral reef ecosystem, the Papahānaumokuākea Marine National Monument. Coral Reefs 28, 635–650 (2009).

    ADS 

    Google Scholar
     

  • Benfield, S., Baxter, L., Guzman, H. M. & Mair, J. M. A comparison of coral reef and coral community fish assemblages in Pacific Panama and environmental factors governing their structure. J. Mar. Biol. Assoc. U.K. 88, 1331–1341 (2008).


    Google Scholar
     

  • Caballero-Aragón, H. et al. Wave exposure and temperature drive coral community structure at regional scale in the Cuban archipelago. Coral Reefs 42, 43–61 (2023).


    Google Scholar
     

  • Kane, C. N. & Tissot, B. N. Trophic designation and live coral cover predict changes in reef-fish community structure along a shallow to mesophotic gradient in Hawaii. Coral Reefs 141, 1–11 (2017).


    Google Scholar
     

  • Lange, I. D. et al. Wave exposure shapes reef community composition and recovery trajectories at a remote coral atoll. Coral Reefs 40, 1819–1829 (2021).


    Google Scholar
     

  • van Lier, J. R., Wilson, S. K., Depczynski, M., Wenger, L. N. & Fulton, C. J. Habitat connectivity and complexity underpin fish community structure across a seascape of tropical macroalgae meadows. Landsc. Ecol. 33, 1287–1300 (2018).


    Google Scholar
     

  • Fautin, D. et al. An overview of marine biodiversity in United States waters. PLoS ONE 5, e11914 (2010).

    ADS 

    Google Scholar
     

  • Bellwood, D. R. & Hughes, T. P. Regional-scale assembly rules and biodiversity of coral reefs. Science 292, 1532–1535 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Graham, N. A. J., Evans, R. D. & Russ, G. R. The effects of marine reserve protection on the trophic relationships of reef fishes on the Great Barrier Reef. Environ. Conserv. 30, 200–208 (2003).


    Google Scholar
     

  • Connolly, S. R., Hughes, T. P., Bellwood, D. R. & Karlson, R. H. Community structure of corals and reef fishes at multiple scales. Science 309, 1363–1365 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).


    Google Scholar
     

  • Fletcher, R. J. Jr., Ries, L., Battin, J. & Chalfoun, A. D. The role of habitat area and edge in fragmented landscapes: Definitively distinct or inevitably intertwined?. Can. J. Zool. 85, 1017–1030 (2007).


    Google Scholar
     

  • Zimmerman, T. & Martin, J. Artificial reef matrix structures (ARMS): An inexpensive and effective method for collecting coral reef-associated invertebrates. Gulf Caribb. Res. 16, 59–64 (2004).


    Google Scholar
     

  • Brainard, R. et al. Autonomous Reef Monitoring Structures (ARMS): A tool for monitoring indices of biodiversity in the Pacific Islands. In 11th Pacific Science Inter-Congress, Papeete, Tahiti (2009).

  • Ransome, E. et al. The importance of standardization for biodiversity comparisons: A case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PLoS ONE 12, e0175066 (2017).


    Google Scholar
     

  • Knowlton, N. et al. Coral Reef Biodiversity. In Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 65–78. https://doi.org/10.1002/9781444325508.ch4 (2010).

  • Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Servis, J. A., Reid, B. N., Timmers, M. A., Stergioula, V. & Naro-Maciel, E. Characterizing coral reef biodiversity: Genetic species delimitation in brachyuran crabs of Palmyra Atoll, Central Pacific. Mitochondrial DNA Part A 31, 178–189 (2020).

    CAS 

    Google Scholar
     

  • Plaisance, L., Knowlton, N., Paulay, G. & Meyer, C. Reef-associated crustacean fauna: Biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28, 977–986 (2009).

    ADS 

    Google Scholar
     

  • Castro, P. Catalog of the anomuran and brachyuran crabs (Crustacea: Decapoda: Anomura, Brachyura) of the Hawaiian Islands. Zootaxa 2947, 1–154 (2011).


    Google Scholar
     

  • Ward, R. J. et al. Spatial variation and antecedent sea surface temperature conditions influence Hawaiian intertidal community structure. PLoS ONE 18, e0286136 (2023).

    CAS 

    Google Scholar
     

  • Selkoe, K. A. et al. The DNA of coral reef biodiversity: Predicting and protecting genetic diversity of reef assemblages. Proc. R. Soc. B: Biol. Sci. 283, 20160354 (2016).


    Google Scholar
     

  • Friedlander, A. M., Donovan, M. K., DeMartini, E. E. & Bowen, B. W. Dominance of endemics in the reef fish assemblages of the Hawaiian Archipelago. J. Biogeogr. 47, 2584–2596 (2020).


    Google Scholar
     

  • Baker, J. D., Polovina, J. J. & Howell, E. A. Effect of variable oceanic productivity on the survival of an upper trophic predator, the Hawaiian monk seal Monachus schauinslandi. Mar. Ecol. Prog. Ser. 346, 277–283 (2007).

    ADS 

    Google Scholar
     

  • Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Selkoe, K. A., Halpern, B. S. & Toonen, R. J. Evaluating anthropogenic threats to the Northwestern Hawaiian Islands. Aquat. Conserv. Mar. Freshwat. Ecosyst. 18, 1149–1165 (2008).

    ADS 

    Google Scholar
     

  • de Souza, M. R. et al. Importance of depth and temperature variability as drivers of coral symbiont composition despite a mass bleaching event. Sci. Rep. 13, 8957 (2023).

    ADS 

    Google Scholar
     

  • West, K. M. et al. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol. Ecol. 30, 246 (2020).


    Google Scholar
     

  • Williams, G. J. et al. Benthic communities at two remote Pacific coral reefs: Effects of reef habitat, depth, and wave energy gradients on spatial patterns. PeerJ 1, e81 (2013).


    Google Scholar
     

  • Srinivasan, M. Depth distributions of coral reef fishes: The influence of microhabitat structure, settlement, and post-settlement processes. Oecologia 137, 76–84 (2003).

    ADS 

    Google Scholar
     

  • Storlazzi, C. D., Cheriton, O. M., van Hooidonk, R., Zhao, Z. & Brainard, R. Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming. Sci. Rep. 10, 13435 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Steyaert, M. et al. Remote reef cryptobenthic diversity: Integrating autonomous reef monitoring structures and in situ environmental parameters. Front. Mar. Sci. 9, 932375 (2022).


    Google Scholar
     

  • Reyns, N. & Sponaugle, S. Patterns and processes of brachyuran crab settlement to Caribbean coral reefs. Mar. Ecol. Prog. Ser. 185, 155–170 (1999).

    ADS 

    Google Scholar
     

  • Lasley, R. M. Jr., Klaus, S. & Ng, P. K. L. Phylogenetic relationships of the ubiquitous coral reef crab subfamily Chlorodiellinae (Decapoda, Brachyura, Xanthidae). Zoolog. Scr. 44, 165–178 (2015).


    Google Scholar
     

  • Hazeri, G. et al. Latitudinal species diversity and density of cryptic crustacean (Brachyura and Anomura) in micro-habitat autonomous reef monitoring structures across Kepulauan Seribu, Indonesia. Biodivers. J. Biol. Divers. https://doi.org/10.13057/biodiv/d200540 (2019).


    Google Scholar
     

  • Slattery, M., Lesser, M. P., Rocha, L. A., Spalding, H. L. & Smith, T. B. Function and stability of mesophotic coral reefs. Trends Ecol. Evol. 39, 585 (2024).


    Google Scholar
     

  • Lesser, M. P., Slattery, M., Laverick, J. H., Macartney, K. J. & Bridge, T. C. Global community breaks at 60 m on mesophotic coral reefs. Glob. Ecol. Biogeogr. 5, 47 (2019).


    Google Scholar
     

  • Johnson, J. V., Chequer, A. D. & Goodbody-Gringley, G. Depth partitioning of mesophotic reef fish communities on Pickle Bank seamount. Front. Mar. Sci. 12, 1539066 (2025).


    Google Scholar
     

  • Pyle, R. L. et al. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4, e2475 (2016).


    Google Scholar
     

  • Kara, A. B., Rochford, P. A. & Hurlburt, H. E. An optimal definition for ocean mixed layer depth. J. Geophys. Res. Oceans 105, 16803–16821 (2000).

    ADS 

    Google Scholar
     

  • Hawaii Ocean Time-series HOT-DOGS application; University of Hawai’i at Mānoa. National Science Foundation Award # 1756517. HOT-DOGS application.

  • Huston, M. A. & DeAngelis, D. L. Competition and coexistence: The effects of resource transport and supply rates. Am. Nat. 144, 954–977 (1994).


    Google Scholar
     

  • Smith, R. S., Johnston, E. L. & Clark, G. F. The role of habitat complexity in community development is mediated by resource availability. PLoS ONE 9, e102920 (2014).

    ADS 

    Google Scholar
     

  • Sebens, K. P. Habitat structure and community dynamics in marine benthic systems. In Habitat structure: The physical arrangement of objects in space (eds Bell, S. S. et al.) 211–234 (Springer, Netherlands, Dordrecht, 1991).


    Google Scholar
     

  • Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).


    Google Scholar
     

  • Connell, J. H. Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle balanus balanoides. Ecol. Monogr. 31, 61–104 (1961).


    Google Scholar
     

  • Connell, J. H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710–723 (1961).


    Google Scholar
     

  • Denny, M. W. & Wethey, D. S. Physical processes that generate patterns in marine communities. In Marine community ecology (eds Bertness, M. D. et al.) 3–38 (Sinauer Associates, Sunderland, 2001).


    Google Scholar
     

  • Paine, R. T. Intertidal community structure. Oecologia 15, 93–120 (1974).

    ADS 
    CAS 

    Google Scholar
     

  • Brady, K. U., Kruckeberg, A. R. & Bradshaw, H.D Jr. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst. 36, 243–266 (2005).


    Google Scholar
     

  • Moore, K. A. & Elmendorf, S. C. 10. Plant competition and facilitation in systems with strong environmental gradients. In Serpentine: The evolution and ecology of a model system (eds Harrison, S. & Rajakaruna, N.) 223–236 (University of California Press, Oakland, 2011).


    Google Scholar
     

  • Wishingrad, V. & Thomson, R. C. Temperate zone isolation by climate: An extension of Janzen’s 1967 hypothesis. Am. Nat. 201, 302–314 (2023).


    Google Scholar
     

  • Bellwood, D. R., Hughes, T. P., Connolly, S. R. & Tanner, J. Environmental and geometric constraints on Indo-Pacific coral reef biodiversity. Ecol. Lett. 8, 643–651 (2005).


    Google Scholar
     

  • Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).

    CAS 

    Google Scholar
     

  • Carr, M. H., Anderson, T. W. & Hixon, M. A. Biodiversity, population regulation, and the stability of coral-reef fish communities. Proc. Natl. Acad. Sci. 99, 11241–11245 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Connolly, S. R., Bellwood, D. R. & Hughes, T. P. Indo-Pacific biodiversity of coral reefs: Deviations from a mid-domain model. Ecology 84, 2178–2190 (2003).


    Google Scholar
     

  • Dornelas, M., Connolly, S. R. & Hughes, T. P. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440, 80–82 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

    ADS 

    Google Scholar
     

  • Komyakova, V., Munday, P. L. & Jones, G. P. Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS ONE 8, e83178 (2013).

    ADS 

    Google Scholar
     

  • Vellend, M. Effects of diversity on diversity: Consequences of competition and facilitation. Oikos 117, 1075–1085 (2008).

    ADS 

    Google Scholar
     

  • Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. USA 112, 2076–2081 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Poore, G. C. B. & Ahyong, S. T. Marine Decapod Crustacea: A guide to families and genera of the world (CSIRO Publishing, Collingwood, 2023).


    Google Scholar
     

  • Lasley Jr, R.M. An Integrative Systematic Revision of the Chlorodiellinae Ng & Holthuis, 2006 (Crustacea: Decapoda: Brachyura: Xanthidae). (Dissertation. National University of Singapore, Singapore, 2014).

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2021).

  • McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Oksanen, J. et al. vegan: Community ecology package. (2022).

  • Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).

    ADS 

    Google Scholar
     

  • Rao, C. R. A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió 19, 23–63 (1995).

    MathSciNet 

    Google Scholar
     

  • Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).


    Google Scholar
     

  • Kindt, R., Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. (World Agroforestry Centre (ICRAF), 2005).

  • Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).

    ADS 

    Google Scholar
     

  • NASA Goddard Space Flight Center, Ocean Ecology Laboratory & Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua {AQUA MODIS Level-3 Binned Chlorophyll, Version 2022} Data; NASA OB.DAAC, Greenbelt, MD, USAAQUA MODIS Level-3 Binned Chlorophyll, Version 2022. NASA Ocean Biology Distributed Active Archive Center https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2022 (2022).

  • NASA OBPG. MODIS Aqua Global Level 3 Mapped SST. Ver. 2019.0. PO.DAAC, CA, USA. NASA Physical Oceanography Distributed Active Archive Center https://doi.org/10.5067/MODSA-MO4D9 (2020).

  • Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Frazier, M. Recent pace of change in human impact on the world’s ocean: Cumulative impacts. https://doi.org/10.5063/F12B8WBS (2019).



  • Source link

    More From Forest Beat

    Terrestrial land cover shapes fish diversity in a major subtropical river...

    The study was conducted in the Chao Phraya River catchment located in Northern and Central Thailand, covering rivers in both mountainous and plain...
    Biodiversity
    16
    minutes

    Trade-off strategies between drought resistance and growth rate of dominant tree...

    Study siteThe Guangxi Nonggang National Nature Reserve (The Nonggang Reserve), situated in the eastern Longzhou County and northern Ningming County, Guangxi Zhuang Autonomous...
    Biodiversity
    9
    minutes

    Passive acoustic monitoring reveals seasonal patterns in European green toad calling...

    Study siteThe study sites were located within the urban area of Poznań, a city in western Poland with a human population of over...
    Biodiversity
    8
    minutes

    Changes with time post-restoration in the relationships between soil seed bank...

    Guo, P. Y., Sun, F. Q. & Han, X. Y. Study on comprehensive evaluation of environmental pollution treatment effect in coal mine subsidence...
    Biodiversity
    8
    minutes
    spot_imgspot_img