Assessing, monitoring and mitigating the effects of offshore wind farms on biodiversity

[ad_1]

  • Global Wind Energy Council. Global wind report 2024. GWEC https://www.gwec.net/reports/globaloffshorewindreport/2024#Download (2024).

  • IRENA & GWEC. Enabling frameworks for offshore wind scaleup: innovations in permitting. International Renewable Energy Agency https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Sep/IRENA_GWEC_Enabling_frameworks_offshore_wind_2023.pdf (2023).

  • Akhtar, N., Geyer, B. & Schrum, C. Larger wind turbines as a solution to reduce environmental impacts. Sci. Rep. 14, 6608 (2024).


    Google Scholar
     

  • Watson, S. C. L. et al. The global impact of offshore wind farms on ecosystem services. Ocean. Coast. Manag. 249, 107023 (2024).


    Google Scholar
     

  • Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquat. Biosyst. 10, 1–13 (2014).


    Google Scholar
     

  • Lloret, J. et al. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea. Sci. Total. Environ. 824, 153803 (2022).


    Google Scholar
     

  • Langhamer, O. Artificial reef effect in relation to offshore renewable energy conversion: state of the art. Sci. World J. 2012, 386713 (2012).


    Google Scholar
     

  • Willsteed, E. A., Jude, S., Gill, A. B. & Birchenough, S. N. R. Obligations and aspirations: a critical evaluation of offshore wind farm cumulative impact assessments. Renew. Sustain. Energy Rev. 82, 2332–2345 (2018).


    Google Scholar
     

  • Merchant, N. D. Underwater noise abatement: economic factors and policy options. Env. Sci. Policy 92, 116–123 (2019).


    Google Scholar
     

  • Hooper, T., Austen, M. & Lannin, A. Developing policy and practice for marine net gain. J. Env. Manage 277, 111387 (2021).


    Google Scholar
     

  • Edwards-Jones, A., Watson, S. C. L., Szostek, C. L. & Beaumont, N. J. Stakeholder insights into embedding marine net gain for offshore wind farm planning and delivery. Environ. Chall. 14, 100814 (2024).


    Google Scholar
     

  • Inger, R. et al. Marine renewable energy: potential benefits to biodiversity? An urgent call for research. J. Appl. Ecol. 46, 1145–1153 (2009).


    Google Scholar
     

  • Bennun, L. et al. Mitigating Biodiversity Impacts Associated with Solar and Wind Energy Development: Guidelines for Project Developers (IUCN, 2021).

  • Galparsoro, I. et al. Reviewing the ecological impacts of offshore wind farms. NPJ Ocean. Sustain. 1, 1–8 (2022).


    Google Scholar
     

  • Szostek, C. L., Edwards-Jones, A., Beaumont, N. J. & Watson, S. C. L. Primary vs grey: a critical evaluation of literature sources used to assess the impacts of offshore wind farms. Env. Sci. Policy 154, 103693 (2024).


    Google Scholar
     

  • Shafiee, M. & Adedipe, T. Offshore wind decommissioning: an assessment of the risk of operations. Int. J. Sustain. Energy 41, 1057–1083 (2022).


    Google Scholar
     

  • Kordan, M. B. & Yakan, S. D. The effect of offshore wind farms on the variation of the phytoplankton population. Reg. Stud. Mar. Sci. 69, 103358 (2024).


    Google Scholar
     

  • Daewel, U., Akhtar, N., Christiansen, N. & Schrum, C. Offshore wind farms are projected to impact primary production and bottom water deoxygenation in the North Sea. Commun. Earth Environ. 3, 292 (2022).


    Google Scholar
     

  • van Hal, R., Griffioen, A. B. & van Keeken, O. A. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm. Mar. Env. Res. 126, 26–36 (2017).


    Google Scholar
     

  • ter Hofstede, R., Driessen, F. M. F., Elzinga, P. J., Van Koningsveld, M. & Schutter, M. Offshore wind farms contribute to epibenthic biodiversity in the North Sea. J. Sea Res. 185, 102229 (2022).


    Google Scholar
     

  • Methratta, E. T. & Dardick, W. R. Meta-analysis of finfish abundance at offshore wind farms. Rev. Fish. Sci. Aquac. 27, 242–260 (2019).


    Google Scholar
     

  • Li, C. et al. Offshore wind energy and marine biodiversity in the North Sea: life cycle impact assessment for benthic communities. Env. Sci. Technol. 57, 6455–6464 (2023).


    Google Scholar
     

  • Song, M. et al. Evaluation of artificial reef habitats as reconstruction or enhancement tools of benthic fish communities in northern Yellow Sea. Mar. Pollut. Bull. 182, 113968 (2022).


    Google Scholar
     

  • Ashley, M. C., Mangi, S. C. & Rodwell, L. D. The potential of offshore windfarms to act as marine protected areas—a systematic review of current evidence. Mar. Policy 45, 301–309 (2014).


    Google Scholar
     

  • Degraer, S. et al. Offshore wind farm artificial reefs affect ecosystem structure and functioning. Oceanography 33, 48–57 (2020).


    Google Scholar
     

  • Zupan, M. et al. Life on every stone: characterizing benthic communities from scour protection layers of offshore wind farms in the southern North Sea. J. Sea Res. 201, 102522 (2024).


    Google Scholar
     

  • Glarou, M., Zrust, M. & Svendsen, J. C. Using artificial-reef knowledge to enhance the ecological function of offshore wind turbine foundations: implications for fish abundance and diversity. J. Mar. Sci. Eng. 8, 332 (2020).


    Google Scholar
     

  • Karlsson, R., Tivefälth, M., Duranovi, I., Kjølhamar, A. & Murvoll, K. M. Artificial hard substrate colonisation in the offshore Hywind Scotland pilot park. Wind Energy Sci. 7, 801–814 (2022).


    Google Scholar
     

  • Adgé, M., Lobry, J., Tessier, A. & Planes, S. Modeling the impact of floating offshore wind turbines on marine food webs in the Gulf of Lion, France. Front. Mar. Sci. 11, 1379331 (2024).


    Google Scholar
     

  • Bergström, L., Sundqvist, F. & Bergström, U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Mar. Ecol. Prog. Ser. 485, 199–210 (2013).


    Google Scholar
     

  • Reubens, J. T., De Rijcke, M., Degraer, S. & Vincx, M. Diel variation in feeding and movement patterns of juvenile Atlantic cod at offshore wind farms. J. Sea Res. 85, 214–221 (2014).


    Google Scholar
     

  • Reubens, J. T., Vandendriessche, S., Zenner, A. N., Degraer, S. & Vincx, M. Offshore wind farms as productive sites or ecological traps for gadoid fishes?—Impact on growth, condition index and diet composition. Mar. Env. Res. 90, 66–74 (2013).


    Google Scholar
     

  • Wilber, D. H., Carey, D. A. & Griffin, M. Flatfish habitat use near North America’s first offshore wind farm. J. Sea Res. 139, 24–32 (2018).


    Google Scholar
     

  • De Mesel, I., Kerckhof, F., Norro, A., Rumes, B. & Degraer, S. Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as stepping stones for non-indigenous species. Hydrobiologia 756, 37–50 (2015).


    Google Scholar
     

  • Bray, L. et al. Expected effects of offshore wind farms on Mediterranean marine life. J. Mar. Sci. Eng. 4, 18 (2016).


    Google Scholar
     

  • Lemasson, A. J. et al. A global meta-analysis of ecological effects from offshore marine artificial structures. Nat. Sustain. 7, 485–495 (2024).


    Google Scholar
     

  • Spielmann, V., Dannheim, J., Brey, T. & Coolen, J. W. P. Decommissioning of offshore wind farms and its impact on benthic ecology. J. Env. Manage 347, 119022 (2023).


    Google Scholar
     

  • Huang, L. F. et al. Underwater noise characteristics of offshore exploratory drilling and its impact on marine mammals. Front. Mar. Sci. 10, 1097701 (2023).


    Google Scholar
     

  • Rezaei, F., Contestabile, P., Vicinanza, D. & Azzellino, A. Towards understanding environmental and cumulative impacts of floating wind farms: lessons learned from the fixed-bottom offshore wind farms. Ocean. Coast. Management 243, 106772 (2023).


    Google Scholar
     

  • Carroll, A. G., Przeslawski, R., Duncan, A., Gunning, M. & Bruce, B. A critical review of the potential impacts of marine seismic surveys on fish & invertebrates. Mar. Pollut. Bull. 114, 9–24 (2017).


    Google Scholar
     

  • Raoux, A. et al. Benthic and fish aggregation inside an offshore wind farm: which effects on the trophic web functioning? Ecol. Indic. 72, 33–46 (2017).


    Google Scholar
     

  • Solé, M. et al. Commercial cuttlefish exposed to noise from offshore windmill construction show short-range acoustic trauma. Environ. Pollut. 312, 119853 (2022).


    Google Scholar
     

  • Scott, K., Piper, A. J. R., Chapman, E. C. N. & Rochas, C. M. V. Literature review of the effects of underwater sound, vibration and electromagnetic fields on crustaceans. Seafish https://www.seafish.org/document/?id=6ea84e37-c291-4769-8485-b3ac7786b29a (2020).

  • Gigot, M. et al. Noise pollution causes parental stress on marine invertebrates, the giant scallop example. Mar. Pollut. Bull. 203, 116454 (2024).


    Google Scholar
     

  • Tougaard, J., Carstensen, J., Teilmann, J., Skov, H. & Rasmussen, P. Pile driving zone of responsiveness extends beyond 20 km for harbor porpoises (Phocoena phocoena (L)). J. Acoust. Soc. Am. 126, 11–14 (2009).


    Google Scholar
     

  • Benhemma-Le Gall, A., Graham, I. M., Merchant, N. D. & Thompson, P. M. Broad-scale responses of harbor porpoises to pile-driving and vessel activities during offshore windfarm construction. Front. Mar. Sci. 8, 664724 (2021).


    Google Scholar
     

  • Tougaard, J., Henriksen, O. D. & Miller, L. A. Underwater noise from three types of offshore wind turbines: estimation of impact zones for harbor porpoises and harbor seals. J. Acoust. Soc. Am. 125, 3766–3773 (2009).


    Google Scholar
     

  • Wahlberg, M. & Westerberg, H. Hearing in fish and their reactions to sounds from offshore wind farms. Mar. Ecol. Prog. Ser. 288, 295–309 (2005).


    Google Scholar
     

  • Maxwell, S. M. et al. Potential impacts of floating wind turbine technology for marine species and habitats. J. Environ. Manag. 307, 114577 (2022).


    Google Scholar
     

  • Baldachini, M. et al. Assessing the potential acoustic impact of floating offshore wind farms in the central Mediterranean Sea. Mar. Pollut. Bull. 212, 117615 (2025).


    Google Scholar
     

  • Hemery, L. G. et al. Animal displacement from marine energy development: mechanisms and consequences. Sci. Total. Environ. 917, 170390 (2024).


    Google Scholar
     

  • van Bemmelen, R. S. A. et al. Avoidance of offshore wind farms by sandwich terns increases with turbine density. Ornithological Applications 126, 1–10 (2024).


    Google Scholar
     

  • Garthe, S. et al. Large-scale effects of offshore wind farms on seabirds of high conservation concern. Sci. Rep. 13, 4779 (2023).


    Google Scholar
     

  • Russell, D. J. F. et al. Marine mammals trace anthropogenic structures at sea. Curr. Biol. 24, 638–639 (2014).


    Google Scholar
     

  • van Kooten T. et al The consequences of seabird habitat loss from offshore wind turbines, version 2: displacement and population-level effects in five selected species. Wageningen marine research report C063/19. Wageningen University & Research https://edepot.wur.nl/496173 (2019).

  • Smyth, K. et al. Renewables-to-reefs?—Decommissioning options for the offshore wind power industry. Mar. Pollut. Bull. 90, 247–258 (2015).


    Google Scholar
     

  • National Grid. Hornsea project three offshore wind farm: Appendix 19 to deadline I submission – Vattenfall and Ørsted circuit crossing -EMF information. planninginspectorate.gov.uk https://nsip-documents.planninginspectorate.gov.uk/published-documents/EN010080-001141-DI_HOW03_Appendix%2019.pdf (2018).

  • Klimley, A. P., Putman, N. F., Keller, B. A. & Noakes, D. A call to assess the impacts of electromagnetic fields from subsea cables on the movement ecology of marine migrants. Conserv. Sci. Pract. 3, e436 (2021).


    Google Scholar
     

  • Hutchison, Z. L., Gill, A. B., Sigray, P., He, H. & King, J. W. Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Sci. Rep. 10, 4219 (2020).


    Google Scholar
     

  • Dai, L., Ehlers, S., Rausand, M. & Utne, I. B. Risk of collision between service vessels and offshore wind turbines. Reliab. Eng. Syst. Saf. 109, 18–31 (2013).


    Google Scholar
     

  • Farmer, N. A. et al. Protected species considerations for ocean planning: a case study for offshore wind energy development in the U.S. Gulf of Mexico. Mar. Coast. Fish. 15, e10246 (2023).


    Google Scholar
     

  • Barkaszi M. J., Fonseca M., Foster T., Malhotra A. & Olsen, K. Risk assessment to model encounter rates between large whales and sea turtles and vessel traffic from offshore wind energy on the Atlantic OCS. OCS Study BOEM 2021-034. TETHYS https://tethys.pnnl.gov/publications/risk-assessment-model-encounter-rates-between-large-whales-sea-turtles-vessel-traffic (2021).

  • Kraus, S. D., Kenney, R. D. & Thomas, L. A framework for studying the effects of offshore wind development on marine mammals and turtles. BOEM https://www.boem.gov/about-boem/framework-studying-effects (2019).

  • Secor, D. H., O’brien, M. H. P. & Bailey, H. The flyway construct and assessment of offshore wind farm impacts on migratory marine fauna. ICES J. Mar. Sci. 82, fsae138 (2025).


    Google Scholar
     

  • Dyndo, M., Wiśniewska, D. M., Rojano-Doñate, L. & Madsen, P. T. Harbour porpoises react to low levels of high frequency vessel noise. Sci. Rep. 5, 11083 (2015).


    Google Scholar
     

  • Frankish, C. K. et al. Ship noise causes tagged harbour porpoises to change direction or dive deeper. Mar. Pollut. Bull. 197, 115755 (2023).


    Google Scholar
     

  • Platteeuw, M., Fijn, R., Jongbloed, R. & van Horssen, P. A. Framework for assessing ecological and cumulative effects (FAECE) of offshore wind farms on birds, bats and marine mammals in the southern North Sea. In Wind Energy and Wildlife Interactions: Presentations from the CWW2015 Conf. (ed. Köppel, J.) 219–237 (Springer International, 2017).

  • Voigt, C. C., Kaiser, K., Look, S., Scharnweber, K. & Scholz, C. Wind turbines without curtailment produce large numbers of bat fatalities throughout their lifetime: a call against ignorance and neglect. Glob. Ecol. Conserv. 37, e02149 (2022).


    Google Scholar
     

  • Rydell, J. & Wickman, A. Bat activity at a small wind turbine in the Baltic Sea. Acta Chiropt. 17, 359–364 (2015).


    Google Scholar
     

  • Marques, A. T. et al. Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).


    Google Scholar
     

  • Schwemmer, P. et al. Assessing potential conflicts between offshore wind farms and migration patterns of a threatened shorebird species. Anim. Conserv. 26, 303–316 (2023).


    Google Scholar
     

  • Mikami, K., Kazama, K., Kazama, M. T. & Watanuki, Y. Mapping the collision risk between two gull species and offshore wind turbines: modelling and validation. J. Env. Manage 316, 115220 (2022).


    Google Scholar
     

  • Harnois, V., Smith, H. C. M., Benjamins, S. & Johanning, L. Assessment of entanglement risk to marine megafauna due to offshore renewable energy mooring systems. Int. J. Mar. Energy 11, 27–49 (2015).


    Google Scholar
     

  • Fortune, I. S. & Paterson, D. M. Ecological best practice in decommissioning: a review of scientific research. ICES J. Mar. Sci. 77, 1079–1091 (2020).


    Google Scholar
     

  • Perrow, M. R., Gilroy, J. J., Skeate, E. R. & Tomlinson, M. L. Effects of the construction of Scroby Sands offshore wind farm on the prey base of little tern Sternula albifrons at its most important UK colony. Mar. Pollut. Bull. 62, 1661–1670 (2011).


    Google Scholar
     

  • Slavik, K. et al. The large-scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea. Hydrobiologia 845, 35–53 (2019).


    Google Scholar
     

  • Voet, H. E. E., Van Colen, C. & Vanaverbeke, J. Climate change effects on the ecophysiology and ecological functioning of an offshore wind farm artificial hard substrate community. Sci. Total. Environ. 810, 152194 (2022).


    Google Scholar
     

  • Raghukumar, K. et al. Projected cross-shore changes in upwelling induced by offshore wind farm development along the California coast. Commun. Earth Environ. 4, 116 (2023).


    Google Scholar
     

  • Sellers, A. J., Leung, B. & Torchin, M. E. Global meta-analysis of how marine upwelling affects herbivory. Glob. Ecol. Biogeogr. 29, 370–383 (2020).


    Google Scholar
     

  • Chen, C. et al. Potential impacts of offshore wind energy development on physical processes and scallop larval dispersal over the US northeast shelf. Prog. Oceanogr. 224, 103263 (2024).


    Google Scholar
     

  • Farr, H., Ruttenberg, B., Walter, R. K., Wang, Y. H. & White, C. Potential environmental effects of deepwater floating offshore wind energy facilities. Ocean. Coast. Manag. 207, 105611 (2021).


    Google Scholar
     

  • Fowler, A. M. et al. The ecology of infrastructure decommissioning in the North Sea: what we need to know and how to achieve it. ICES J. Mar. Sci. 77, 1109–1126 (2020).


    Google Scholar
     

  • James, M. K. et al. The ‘everything is everywhere’ framework: holistic network analysis as a marine spatial management tool. Ecol. Inf. 87, 103105 (2025).


    Google Scholar
     

  • Dannheim, J. et al. Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Mar. Sci. 77, 1092–1108 (2020).


    Google Scholar
     

  • Coates, D. A., Deschutter, Y., Vincx, M. & Vanaverbeke, J. Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea. Mar. Env. Res. 95, 1–12 (2014).


    Google Scholar
     

  • Hutchison, Z. et al. Offshore wind energy and benthic habitat changes: lessons from block island wind farm. Oceanography 33, 58–69 (2020).


    Google Scholar
     

  • Wilson, J. C. & Elliott, M. The habitat-creation potential of offshore wind farms. Wind. Energy 12, 203–212 (2009).


    Google Scholar
     

  • Lange, C. J., Ballard, B. M. & Collins, D. P. Impacts of wind turbines on redheads in the Laguna Madre. J. Wildl. Manag. 82, 531–537 (2018).


    Google Scholar
     

  • Kirchgeorg, T. et al. Emissions from corrosion protection systems of offshore wind farms: evaluation of the potential impact on the marine environment. Mar. Pollut. Bull. 136, 257–268 (2018).


    Google Scholar
     

  • Hengstmann, E. et al. Chemical emissions from offshore wind farms: from identification to challenges in impact assessment and regulation. Mar. Pollut. Bull. 215, 117915 (2025).


    Google Scholar
     

  • Watson, G. J., Watson, S. C. L., Beaumont, N. J. & Hodkin, A. Offshore wind energy: assessing trace element inputs and the risks for co-location of aquaculture. npj Ocean Sustain. 4, 1 (2025).

  • Szostek, C. L., Watson, S. C. L., Trifonova, N., Beaumont, N. J. & Scott, B. E. Spatial conflict in offshore wind farms: challenges and solutions for the commercial fishing industry. Energy Policy 200, 114555 (2025).


    Google Scholar
     

  • Hammar, L., Perry, D. & Gullström, M. Offshore wind power for marine conservation. Open. J. Mar. Sci. 6, 66–78 (2016).


    Google Scholar
     

  • Vandendriessche, S., Derweduwen, J. & Hostens, K. Equivocal effects of offshore wind farms in Belgium on soft substrate epibenthos and fish assemblages. Hydrobiologia 756, 19–35 (2015).


    Google Scholar
     

  • Halouani, G. et al. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. J. Mar. Syst. 212, 103434 (2020).


    Google Scholar
     

  • Reubens, J. T. et al. Aggregation at windmill artificial reefs: CPUE of Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) at different habitats in the Belgian part of the North Sea. Fish. Res. 139, 28–34 (2013).


    Google Scholar
     

  • Stelzenmüller, V. et al. Sustainable co-location solutions for offshore wind farms and fisheries need to account for socio-ecological trade-offs. Sci. Total. Environ. 776, 145918 (2021).


    Google Scholar
     

  • Thatcher, H., Stamp, T., Wilcockson, D. & Moore, P. J. Residency and habitat use of European lobster (Homarus gammarus) within an offshore wind farm. ICES J. Mar. Sci. 80, 1410–1421 (2023).


    Google Scholar
     

  • Berkenhagen, J. et al. Decision bias in marine spatial planning of offshore wind farms: problems of singular versus cumulative assessments of economic impacts on fisheries. Mar. Policy 34, 733–736 (2010).


    Google Scholar
     

  • Willis-Norton, E., Mangin, T., Schroeder, D. M., Cabral, R. B. & Gaines, S. D. A synthesis of socioeconomic and sociocultural indicators for assessing the impacts of offshore renewable energy on fishery participants and fishing communities. Mar. Policy 161, 106013 (2024).


    Google Scholar
     

  • Hooper, T., Ashley, M. & Austen, M. Perceptions of fishers and developers on the co-location of offshore wind farms and decapod fisheries in the UK. Mar. Policy 61, 16–22 (2015).


    Google Scholar
     

  • Bergström, L. et al. Effects of offshore wind farms on marine wildlife—a generalized impact assessment. Environ. Res. Lett. 9, 034012 (2014).


    Google Scholar
     

  • Lindeboom, H. J. et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; acompilation. Environ. Res. Lett. 6, 035101 (2011).


    Google Scholar
     

  • World Bank Group. Key factors for successful development of offshore wind in emerging markets. World Bank Group https://documents1.worldbank.org/curated/en/343861632842395836/pdf/Key-Factors-for-Successful-Development-of-Offshore-Wind-in-Emerging-Markets.pdf (2021).

  • Lindeboom, H., Degraer, S., Dannheim, J., Gill, A. B. & Wilhelmsson, D. Offshore wind park monitoring programmes, lessons learned and recommendations for the future. Hydrobiologia 756, 169–180 (2015).


    Google Scholar
     

  • Pardo, J. C. F., Aune, M., Harman, C., Walday, M. & Skjellum, S. F. A synthesis review of nature positive approaches and coexistence in the offshore wind industry. ICES J. Mar. Sci. 82 (4), fsad191 (2023).


    Google Scholar
     

  • Croll, D. A. et al. Framework for assessing and mitigating the impacts of offshore wind energy development on marine birds. Biol. Conserv. 276, 109795 (2022).


    Google Scholar
     

  • Stephenson, P. J. A review of biodiversity data needs and monitoring protocols for the offshore wind energy sector in the Baltic Sea and North Sea. Renewables Grid Initiative https://renewables-grid.eu/fileadmin/user_upload/_RGI_Report_PJ-Stephenson_October.pdf (2021).

  • Offshore Renewable Energy (ORE). Accelerating offshore wind: developing a regional ecosystem monitoring programme for the uk offshore wind industry. Catapult https://cms.ore.catapult.org.uk/wp-content/uploads/2024/11/LUN2629_REMP-report_AW_3_digital_DP.pdf (2024).

  • Bureau of Ocean Energy Management. Vineyard wind 1 offshore wind energy project: final environmental impact statement. BOEM https://www.boem.gov/sites/default/files/documents/renewable-energy/state-activities/Vineyard-Wind-1-FEIS-Volume-1.pdf (2021).

  • Bicknell, A. W. J. et al. The role of acoustic telemetry to assess the effects of offshore wind infrastructure on fish behaviour, populations and predation. Renewable Sustainable Energy Rev. 212, 115306 (2025).


    Google Scholar
     

  • Serivichyaswat, P. T., Scholte, T., Wilms, T., Stranddorf, L. & van der Valk, T. Metagenomic biodiversity assessment within an offshore wind farm. Sci. Rep. 15, 16786 (2025).


    Google Scholar
     

  • Masoumi, M. Machine learning solutions for offshore wind farms: a review of applications and impacts. J. Mar. Sci. Eng. 11, 1855 (2023).


    Google Scholar
     

  • Danovaro, R. et al. Making eco-sustainable floating offshore wind farms: siting, mitigations, and compensations. Renew. Sustain. Energy Rev. 197, 114386 (2024).


    Google Scholar
     

  • Knights, A., Lemasson, A., Frost, M. & Somerfield, P. The world must rethink plans for ageing oil and gas platforms. Nature 627, 34–37 (2024).


    Google Scholar
     

  • Greenhill, L. Mitigating the Impacts of Offshore Wind Farms on Protected Sites and Species in the UK. Technical Report No. ME5602 (Howell Marine Consulting for Defra, 2021).

  • The Biodiversity Consultancy. A cross-sector guide for implementing the mitigation hierarchy. The Biodiversity Consultancy https://www.thebiodiversityconsultancy.com/fileadmin/user_upload/A_cross-sector_guide_for_implementing_the_Mitigation_Hierarchy.pdf (2015).

  • Gulka, J. et al., Strategies for mitigating impacts to aerofauna from offshore wind energy development: available evidence and data gaps. Preprint at bioRxiv https://doi.org/10.1101/2024.08.20.608845 (2024).

  • Verfuss, U. K., Sparling, C. E., Arnot, C., Judd, A. & Coyle, M. Review of offshore wind farm impact monitoring and mitigation with regard to marine mammals. In The Effects of Noise on Aquatic Life II (Adv. Exp. Med. Biol. 875) (eds Popper, A. N. & Hawkins, A. D.) 1175–1182 (Springer, 2016).

  • Macrander, A. M., Brzuzy, L., Raghukumar, K., Preziosi, D. & Jones, C. Convergence of emerging technologies: development of a risk-based paradigm for marine mammal monitoring for offshore wind energy operations. Integr. Env. Assess. Manag. 18, 939–949 (2022).


    Google Scholar
     

  • Gill, A. B. et al. Limited evidence base for determining impacts (or not) of offshore wind energy developments on commercial fisheries species. Fish. Fish. 26, 155–170 (2025).


    Google Scholar
     

  • Knights, A. M. et al. To what extent can decommissioning options for marine artificial structures move us toward environmental targets? J. Env. Manage 350, 119644 (2024).


    Google Scholar
     

  • Isaksson, N. et al. A paradigm for understanding whole ecosystem effects of offshore wind farms in shelf seas. ICES J. Mar. Sci. 82, 194 (2025).


    Google Scholar
     

  • Christiansen, S., Durussel, C., Guilhon, M., Singh, P. & Unger, S. Towards an ecosystem approach to management in areas beyond national jurisdiction: REMPs for deep seabed mining and the proposed BBNJ instrument. Front. Mar. Sci. 9, 830 (2022).


    Google Scholar
     

  • Willmott, J. R., Forcey, G. & Vukovich, M. New insights into the influence of turbines on the behaviour of migrant birds: implications for predicting impacts of offshore wind developments on wildlife. J. Physics Conf. Ser. 2507, 012006 (2023).


    Google Scholar
     

  • Vanermen, N. et al. Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756, 51–61 (2015).


    Google Scholar
     

  • Dierschke, V., Furness, R. W. & Garthe, S. Seabirds and offshore wind farms in European waters: avoidance and attraction. Biol. Conservation. 202, 59–68 (2016).


    Google Scholar
     

  • Peschko, V., Mercker, M. & Garthe, S. Telemetry reveals strong effects of offshore wind farms on behaviour and habitat use of common guillemots (Uria aalge) during the breeding season. Mar. Biol. 167, 13 (2020).


    Google Scholar
     

  • Welcker, J. & Nehls, G. Displacement of seabirds by an offshore wind farm in the North Sea. Mar. Ecol. Prog. Ser. 554, 173–182 (2016).


    Google Scholar
     

  • Thaxter, C. B. et al. Dodging the blades: new insights into three-dimensional space use of offshore wind farms by lesser black-backed gulls Larus fuscus. Mar. Ecol. Prog. Ser. 587, 247–253 (2018).


    Google Scholar
     

  • Vilela, R. et al. Use of an INLA latent gaussian modeling approach to assess bird population changes due to the development of offshore wind farms. Front. Mar. Sci. 8, 11 (2021).


    Google Scholar
     

  • Guillemette, M. & Larsen, J. K. Postdevelopment experiments to detect anthropogenic disturbances: the case of sea ducks and wind parks. Ecol. Appl. 12, 868–877 (2002).


    Google Scholar
     

  • Jech, J. M., Lipsky, A., Moran, P., Matte, G. & Diaz, G. Fish distribution in three dimensions around the block island wind farm as observed with conventional and volumetric echosounders. Mar. Coast. Fish. 15, e210265 (2023).


    Google Scholar
     

  • Wilber, D. H., Brown, L., Griffin, M., Decelles, G. R. & Carey, D. A. Demersal fish and invertebrate catches relative to construction and operation of North America’s first offshore wind farm. ICES J. Mar. Sci. 79, 1274–1288 (2022).


    Google Scholar
     

  • Kilfoyle, A. K., Jermain, R. F., Dhanak, M. R., Huston, J. P. & Spieler, R. E. Effects of EMF emissions from undersea electric cables on coral reef fish. Bioelectromagnetics 39, 35–52 (2018).


    Google Scholar
     

  • Wilber, D. H., Brown, L., Griffin, M., DeCelles, G. R. & Carey, D. A. Offshore wind farm effects on flounder and gadid dietary habits and condition on the northeastern US coast. Mar. Ecol. Prog. Ser. 683, 123–138 (2022).


    Google Scholar
     

  • Siddagangaiah, S., Chen, C. F., Hu, W. C. & Pieretti, N. Impact of pile-driving and offshore windfarm operational noise on fish chorusing. Remote. Sens. Ecol. Conserv. 8, 119–134 (2022).


    Google Scholar
     

  • Karama, K. S. et al. Movement pattern of red seabream Pagrus major and yellowtail Seriola quinqueradiata around offshore wind turbine and the neighboring habitats in the waters near Goto Islands. Japan. Aquac. Fish. 6, 300–308 (2021).


    Google Scholar
     

  • Wright, S. R. et al. Structure in a sea of sand: fish abundance in relation to man-made structures in the North Sea. ICES J. Mar. Sci. 77, 1206–1218 (2020).


    Google Scholar
     

  • Kok, A. C. M. et al. An echosounder view on the potential effects of impulsive noise pollution on pelagic fish around windfarms in the North Sea. Environ. Pollut. 290, 118063 (2021).


    Google Scholar
     

  • Langhamer, O., Dahlgren, T. G. & Rosenqvist, G. Effect of an offshore wind farm on the viviparous eelpout: biometrics, brood development and population studies in Lillgrund, Sweden. Ecol. Indic. 84, 1–6 (2018).


    Google Scholar
     

  • Scheidat, M. et al. Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea. Environ. Res. Lett. 6, 025102 (2011).


    Google Scholar
     

  • Fernandez-Betelu, O., Graham, I. M. & Thompson, P. M. Reef effect of offshore structures on the occurrence and foraging activity of harbour porpoises. Front. Mar. Sci. 9, 980388 (2022).


    Google Scholar
     

  • Brandt, M. J. et al. Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany. Mar. Ecol. Prog. Ser. 596, 213–232 (2018).


    Google Scholar
     

  • Virgili, A. et al. Prospective modelling of operational offshore wind farms on the distribution of marine megafauna in the southern North Sea. Front. Mar. Sci. 11, 1344013 (2024).


    Google Scholar
     

  • Vallejo, G. C. et al. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 7, 8698–8708 (2017).


    Google Scholar
     

  • Cones, S. F. et al. Offshore windfarm construction elevates metabolic rate and increases predation vulnerability of a key marine invertebrate. Environ. Pollut. 360, 124709 (2024).


    Google Scholar
     

  • Love, M. S., Nishimoto, M. M., Clark, S., McCrea, M. & Bull, A. S. Assessing potential impacts of energized submarine power cables on crab harvests. Cont. Shelf Res. 151, 23–29 (2017).


    Google Scholar
     

  • Wang, T. et al. Evidence that offshore wind farms might affect marine sediment quality and microbial communities. Sci. Total. Environ. 856, 158782 (2023).


    Google Scholar
     

  • Pearce, B. et al. Repeated mapping of reefs constructed by Sabellaria spinulosa Leuckart 1849 at an offshore wind farm site. Cont. Shelf Res. 83, 3–13 (2014).


    Google Scholar
     

  • Krone, R., Gutow, L., Brey, T., Dannheim, J. & Schröder, A. Mobile demersal megafauna at artificial structures in the German bight—likely effects of offshore wind farm development. Estuar. Coast. Shelf Sci. 125, 1–9 (2013).


    Google Scholar
     

  • Jakubowska, M., Urban-Malinga, B., Otremba, Z. & Andrulewicz, E. Effect of low frequency electromagnetic field on the behavior and bioenergetics of the polychaete Hediste diversicolor. Mar. Env. Res. 150, 104766 (2019).


    Google Scholar
     

  • Pine, M. K., Jeffs, A. G. & Radford, C. A. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae. PLoS One 7, e51790 (2012).


    Google Scholar
     

  • Janßen, H., Augustin, C. B., Hinrichsen, H. H. & Kube, S. Impact of secondary hard substrate on the distribution and abundance of Aurelia aurita in the western Baltic Sea. Mar. Pollut. Bull. 75, 224–234 (2013).


    Google Scholar
     

  • Bergman, M. J. N., Ubels, S. M., Duineveld, G. C. A. & Meesters, E. W. G. Effects of a 5-year trawling ban on the local benthic community in a wind farm in the Dutch coastal zone. ICES J. Mar. Sci. 72, 962–972 (2015).


    Google Scholar
     

  • Boutin, K., Gaudron, S. M., Denis, J. & Ben Rais Lasram, F. Potential marine benthic colonisers of offshore wind farms in the English channel: a functional trait-based approach. Mar. Env. Res. 190, 106061 (2023).


    Google Scholar
     

  • Wang, J., Zou, X., Yu, W., Zhang, D. & Wang, T. Effects of established offshore wind farms on energy flow of coastal ecosystems: a case study of the Rudong offshore wind farms in China. Ocean. Coast. Manag. 171, 111–118 (2019).


    Google Scholar
     

  • Wang, T. et al. Zooplankton community responses and the relation to environmental factors from established offshore wind farms within the Rudong coastal area of China. J. Coast. Res. 344, 843–855 (2018).


    Google Scholar
     

  • Hooper, T., Beaumont, N. & Hattam, C. The implications of energy systems for ecosystem services: a detailed case study of offshore wind. Renew. Sustain. Energy Rev. 70, 230–241 (2017).


    Google Scholar
     

  • Van Parijs, S. M. et al. NOAA and BOEM minimum recommendations for use of passive acoustic listening systems in offshore wind energy development monitoring and mitigation programs. Front. Mar. Sci. 8,760840 (2021).


    Google Scholar
     

  • McLeod, L. E. & Costello, M. J. Light traps for sampling marine biodiversity. Helgoland Marine Res. 71, 2 (2017).


    Google Scholar
     

  • Brandao, I. L. S., van der Molen, J. & van der Wal, D. Effects of offshore wind farms on suspended particulate matter derived from satellite remote sensing. Sci. Total. Environ. 866, 161114 (2023).


    Google Scholar
     

  • Hu, C., Albertani, R. & Suryan, R. M. Wind turbine sensor array for monitoring avian and bat collisions. Wind. Energy 21, 255–263 (2018).


    Google Scholar
     

  • Jiang, B., Xu, Z., Yang, S., Chen, Y. & Ren, Q. Profile autonomous underwater vehicle system for offshore surveys. Sensors 23, 3722 (2023).


    Google Scholar
     

  • Campos, D. F., Matos, A. & Pinto, A. M. Multi-domain inspection of offshore wind farms using an autonomous surface vehicle. SN Appl. Sci. 3, 455 (2021).


    Google Scholar
     

  • Zhang, K., Pakrashi, V., Murphy, J. & Hao, G. Inspection of floating offshore wind turbines using multi-rotor unmanned aerial vehicles: literature review and trends. Sensors. 24, 911 (2024).


    Google Scholar
     

  • Niemi, J. & Tanttu, J. T. Deep learning-based automatic bird identification system for offshore wind farms. Wind. Energy 23, 1394–1407 (2020).


    Google Scholar
     

  • Carstensen, J., Henriksen, O. D. & Teilmann, J. Impacts of offshore wind farm construction on harbour porpoises: acoustic monitoring of echolocation activity using porpoise detectors (T-PODs). Mar. Ecol. Prog. Ser. 321, 295–308 (2006).


    Google Scholar
     

  • Berges, B. J. P., van der Knaap, I., van Keeken, O. A., Reubens, J. & Winter, H. V. Strong site fidelity, residency and local behaviour of Atlantic cod (Gadus morhua) at two types of artificial reefs in an offshore wind farm. R. Soc. Open. Sci. 11, 240339 (2024).


    Google Scholar
     

  • Ahlén, I., Baagøe, H. J. & Bach, L. Behavior of Scandinavian bats during migration and foraging at sea. J. Mammal. 90, 1318–1323 (2009).


    Google Scholar
     

  • Lengkeek, W. Benthic communities on hard substrates within the first Dutch offshore wind farm (OWEZ). Ned. Faun. Meded. 41, 59–67 (2013).


    Google Scholar
     

  • Methratta, E. T. Monitoring fisheries resources at offshore wind farms: BACI vs. BAG designs. ICES J. Mar. Sci. 77, 890–900 (2020).


    Google Scholar
     

  • BVG Associates. Guide to an offshore wind farm. Crown Estate https://www.thecrownestate.co.uk/media/2860/guide-to-offshore-wind-farm-2019.pdf (2019).

  • Declerck, M., Trifonova, N., Hartley, J. & Scott, B. E. Cumulative effects of offshore renewables: from pragmatic policies to holistic marine spatial planning tools. Env. Impact Assess. Rev. 101, 107153 (2023).


    Google Scholar
     

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes
    spot_imgspot_img