Plant organ modulates morphological constraints of insect-induced galls: evidence from citizen science data

[ad_1]

  • Bonney, R. et al. Citizen science: A developing tool for expanding science knowledge and scientific literacy. BioScience 59, 977–984 (2009).


    Google Scholar
     

  • Pocock, M. J. O., Tweddle, J. C., Savage, J., Robinson, L. D. & Roy, H. E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE. 12, e0172579 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017).


    Google Scholar
     

  • Goldberg, J. K. iNaturalist is an open science resource for ecological genomics by enabling rapid and tractable records of initial observations of sequenced biological samples. Biol. Lett. 19, 20230251 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mesaglio, T. & Callaghan, C. T. An overview of the history, current contributions and future outlook of iNaturalist in Australia. Wildl. Res. 48, 289–303 (2021).


    Google Scholar
     

  • Hantak, M. M. et al. Colour scales with climate in North American ratsnakes: A test of the thermal melanism hypothesis using community science images. Biol. Lett. 18, 20220403 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, A. K., Nibbelink, N. & Deneka, C. J. Revisiting geographic variation in melanism of monarch butterfly larvae in North America using iNaturalist photos. J. Therm. Biol. 110, 103374 (2022).

    PubMed 

    Google Scholar
     

  • Rhodes, C., Haunfelder, W. & Carlson, B. E. Citizen science reporting indicates geographic and phenotypic drivers of road use and mortality in a threatened rattlesnake. Curr. Zool. Zoac. 050 https://doi.org/10.1093/cz/zoac050 (2022).

  • Mesaglio, T., Soh, A., Kurniawidjaja, S. & Sexton, C. First known photographs of living specimens’: The power of iNaturalist for recording rare tropical butterflies. J. Insect Conserv. 25, 905–911 (2021).


    Google Scholar
     

  • Wilson, J. S., Pan, A. D., General, D. E. M. & Koch, J. B. More eyes on the prize: an observation of a very rare, threatened species of Philippine bumble bee, Bombus irisanensis, on iNaturalist and the importance of citizen science in conservation biology. J. Insect Conserv. 24, 727–729 (2020).


    Google Scholar
     

  • Campbell, C. J. et al. Identifying the identifiers: How iNaturalist facilitates collaborative, research-relevant data generation and why it matters for biodiversity science. BioScience 73, 533–541 (2023).


    Google Scholar
     

  • White, E., Soltis, P. S., Soltis, D. E. & Guralnick, R. Quantifying error in occurrence data: Comparing the data quality of iNaturalist and digitized herbarium specimen data in flowering plant families of the southeastern United States. PLoS ONE. 18, e0295298 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosa, R. M., Cavallari, D. C. & Salvador, R. B. iNaturalist as a tool in the study of tropical molluscs. PLoS ONE. 17, e0268048 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Conserv. 173, 144–154 (2014).


    Google Scholar
     

  • Isaac, N. J. B., Van Strien, A. J., August, T. A., De Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).


    Google Scholar
     

  • Arazy, O. & Malkinson, D. A. Framework of Observer-Based biases in citizen science biodiversity monitoring: Semi-structuring unstructured biodiversity monitoring protocols. Front. Ecol. Evol. 9, 693602 (2021).


    Google Scholar
     

  • Raman, A. Morphogenesis of insect-induced plant galls: Facts and questions. Flora – Morphol. Distrib. Funct. Ecol. Plants. 206, 517–533 (2011).


    Google Scholar
     

  • Ferreira, B. G. et al. Feeding and other gall facets: Patterns and determinants in gall structure. Bot. Rev. 85, 78–106 (2019).


    Google Scholar
     

  • Gatjens-Boniche, O. The mechanism of plant gall induction by insects: Revealing clues, facts, and consequences in a cross-kingdom complex interaction. RBT 67, (2019).

  • De Oliveira, D. C. & Moreira, A. S. F. P. & Dos Santos Isaias, R. M. Functional gradients in insect gall tissues: Studies on neotropical host plants. in neotropical insect galls (eds. Fernandes, G. W. & Santos, J. C.) 35–49 (Springer, 2014). https://doi.org/10.1007/978-94-017-8783-3_3

  • Stone, G. N. & Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 18, 512–522 (2003).


    Google Scholar
     

  • Takeda, S. et al. Exploring the diversity of galls on Artemisia indica induced by Rhopalomyia species through morphological and transcriptome analyses. Plant. Direct. 8, e619 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Q. et al. Macro- and microscopic analyses of anatomical structures of chinese gallnuts and their functional adaptation. Sci. Rep. 9, 5193 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller III, D. G. & Raman, A. Host–plant relations of gall-inducing insects. Annal. Entomo. Soc. America 112(1), 1–19 (2019).


    Google Scholar
     

  • Formiga, A. T., Silveira, F. A. O., Fernandes, G. W. & Isaias, R. M. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae). Plant. Biol. J. 17, 512–521 (2015).


    Google Scholar
     

  • Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo, R. Plant Galls of the Western United States (Princeton University Press, 2021).

  • Pascual-Alvarado, E., Nieves-Aldrey, J. L., Castillejos-Lemus, D. E., Cuevas-Reyes, P. & Oyama, K. Diversity of galls induced by wasps (Hymenoptera: cynipidae, Cynipini) associated with Oaks (Fagaceae: Quercus) in Mexico. Bot. Sci. 95, 461–472 (2017).


    Google Scholar
     

  • Karperien, A., Ahammer, H. & Jelinek, H. F. Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell. Neurosci 7, (2013).

  • Xiu, H. et al. Using fractal dimension and shape factors to characterize the microcrystalline cellulose (MCC) particle morphology and powder flowability. Powder Technol. 364, 241–250 (2020).


    Google Scholar
     

  • Wiese, R. et al. Can fractal dimensions objectivize gastropod shell morphometrics? A case study from lake Lugu (SW China). Ecol. Evol. 12, e8622 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, P., Yu, K., Niinemets, Ü. & Gielis, J. Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of Magnolia and Michelia (Magnoliaceae). Forests 12, 41 (2020).


    Google Scholar
     

  • Tatsumi, J., Yamauchi, A. & Kono, Y. Fractal analysis of plant root systems. Ann. Botany. 64, 499–503 (1989).


    Google Scholar
     

  • Groover, A. & Robischon, M. Developmental mechanisms regulating secondary growth in Woody plants. Curr. Opin. Plant. Biol. 9, 55–58 (2006).

    PubMed 

    Google Scholar
     

  • Tsukaya, H. Leaf shape diversity with an emphasis on leaf contour variation, developmental background, and adaptation. Semin. Cell Dev. Biol. 79, 48–57 (2018).

    PubMed 

    Google Scholar
     

  • Nakayama, H., Leichty, A. R. & Sinha, N. R. Molecular mechanisms underlying leaf development, morphological diversification, and beyond. Plant. Cell. 34, 2534–2548 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia, N., Runions, A. & Tsiantis, M. Leaf shape diversity: From genetic modules to computational models. Annu. Rev. Plant. Biol. 72, 325–356 (2021).

    PubMed 

    Google Scholar
     

  • Coelho Kuster, V., Rezende, C., Cardoso, U. F. & Santos Isaias, J. C. D. R. M. & Coelho de oliveira, D. How galling organisms manipulate the secondary metabolites in the host plant tissues? A histochemical overview in Neotropical gall systems. In Bioactive molecules in food (eds Mérillon, J. M. & Ramawat, K. G.) 1–20 (Springer, Cham). https://doi.org/10.1007/978-3-319-76887-8_29-1. (2019).


    Google Scholar
     

  • Harris, M. O. & Pitzschke, A. Plants make galls to accommodate foreigners: Some are friends, most are foes. New Phytol. 225, 1852–1872 (2020).

    PubMed 

    Google Scholar
     

  • Schultz, J. C., Edger, P. P., Body, M. J. A. & Appel, H. M. A galling insect activates plant reproductive programs during gall development. Sci. Rep. 9, 1833 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeda, S., Hirano, T., Ohshima, I. & Sato, M. H. Recent progress regarding the molecular aspects of insect gall formation. IJMS 22, 9424 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Udandarao, N. J., Yamashita, Y., Ushima, R., Tsuchida, T. & Bessho-Uehara, K. Parasitic-plant parasite utilizes flowering pathways at unconventional stages to form stem-derived galls. https://doi.org/10.1101/2024.10.17.618901 (2024).


    Google Scholar
     

  • Tooker, J. F. & Helms, A. M. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-Inducing habit. J. Chem. Ecol. 40, 742–753 (2014).

    PubMed 

    Google Scholar
     

  • Giron, D., Huguet, E., Stone, G. N. & Body, M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect. Physiol. 84, 70–89 (2016).

    PubMed 

    Google Scholar
     

  • Takeda, S. et al. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development. PLoS ONE. 14, e0223686 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirano, T. et al. Reprogramming of the developmental program of Rhus Javanica during initial stage of gall induction by schlechtendalia chinensis. Front. Plant. Sci. 11, 471 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirano, T. et al. Ab-GALFA, A bioassay for insect gall formation using the model plant Arabidopsis Thaliana. Sci. Rep. 13, 2554 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dayrell, R. L. C., Ott, T., Horrocks, T. & Poschlod, P. Automated extraction of seed morphological traits from images. Methods Ecol. Evol. 14, 1708–1718 (2023).


    Google Scholar
     

  • Barve, V. & Hart, E. _rinat: Access ‘iNaturalist’ Data Through APIs_. R package version 0.1.9, (2022). https://CRAN.R-project.org/package=rinat

  • Becker, O. S. R. A. & ARWRvbRBEbTP, M. Deckmyn. A _maps: Draw Geographical Maps_. R package version 3.4.2.1, (2024). https://CRAN.R-project.org/package=maps

  • Kirkby, M. J. & Francisco, S. The fractal geometry of nature. Benoit B. Mandelbrot. W. H. Freeman and co., No. of pages: 460. Price: £22.75 (hardback). Earth Surf Processes Landf 8, 406–406 (1983). (1982).

  • Gagnepain, J. J. & Roques-Carmes, C. Fractal approach to two-dimensional and three-dimensional surface roughness. Wear 109, 119–126 (1986).


    Google Scholar
     

  • Bonhomme, V., Picq, S., Gaucherel, C. & Claude, J. Momocs: Outline analysis using R. J. Stat. Soft 56, (2014).

  • Gneiting, T., Ševčíková, H. & Percival, D. B. Estimators of fractal dimension: Assessing the roughness of time series and Spatial data. Stat. Sci. 27, (2012).

  • Hadfield, J. D. MCMC methods for Multi-Response generalized linear mixed models: the MCMCglmm R package. J. Stat. Soft 33, (2010).

  • Paradis, E., Claude, J. & Strimmer, K. A. P. E. Analyses of phylogenetics and evolution in R Language. Bioinformatics 20, 289–290 (2004).

    PubMed 

    Google Scholar
     

  • Plummer, M. et al. Coda: output analysis and diagnostics for MCMC. R Foundation. https://doi.org/10.32614/cran.package.coda (1999).


    Google Scholar
     

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes
    spot_imgspot_img