[ad_1]
Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of aphid and moth abundances across Great Britain. Insect Conserv. Divers. 13, 115–126 (2020).
Blumgart, D., Botham, M. S., Menéndez, R. & Bell, J. R. Moth declines are most severe in broadleaf woodlands despite a net gain in habitat availability. Insect Conserv. Divers. 15, 496–509 (2022).
Brooks, D. R. et al. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J. Appl. Ecol. 49, 1009–1019 (2012).
Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020).
van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).
Edwards, C. B. et al. Rapid butterfly declines across the United States during the 21st century. Science 387, 1090–1094 (2025).
Mancini, F. et al. Invertebrate biodiversity continues to decline in cropland. Proc. R. Soc. B Biol. Sci. 290, 20230897 (2023).
Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature https://doi.org/10.1038/s41586-022-04644-x (2022).
Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).
Valtonen, A. et al. Long-term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 86, 730–738 (2017).
Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).
Evans, L. C., Burgess, M. D., Potts, S. G., Kunin, W. E. & Oliver, T. H. Population links between an insectivorous bird and moths disentangled through national-scale monitoring data. Ecol. Lett. 27, e14362 (2024).
Martay, B. et al. Aerial insect biomass, but not phenological mismatch, is associated with chick survival of an insectivorous bird. Ibis 165, 790–807 (2023).
Møller, A. P. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9, 6581–6587 (2019).
Zhou, Y. et al. Long-term insect censuses capture progressive loss of ecosystem functioning in East Asia. Sci. Adv. 9, eade9341 (2023).
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. 118, e2023989118 (2021).
Cardoso, M. C. & Gonçalves, R. B. Reduction by half: The impact on bees of 34 years of urbanization. Urban Ecosyst. 21, 943–949 (2018).
Martins, A. C., Gonçalves, R. B. & Melo, G. A. R. Changes in wild bee fauna of a grassland in Brazil reveal negative effects associated with growing urbanization during the last 40 years. Zool. Curitiba 30, 157–176 (2013).
Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proc. Natl. Acad. Sci. 119, e2203385119 (2022).
Sánchez, A. C., Jones, S. K., Purvis, A., Estrada-Carmona, N. & De Palma, A. Landscape complexity and functional groups moderate the effect of diversified farming on biodiversity: A global meta-analysis. Agric. Ecosyst. Environ. 332, 107933 (2022).
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 5946 (2021).
Gonçalves-Souza, T. et al. Species turnover does not rescue biodiversity in fragmented landscapes. Nature 1–5 https://doi.org/10.1038/s41586-025-08688-7 (2025).
Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).
Gossner, M. M., Menzel, F. & Simons, N. K. Less overall, but more of the same: drivers of insect population trends lead to community homogenization. Biol. Lett. 19, 20230007 (2023).
Harris, J. E., Rodenhouse, N. L. & Holmes, R. T. Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming. Biol. Conserv. 240, 108219 (2019).
Ma, G., Rudolf, V. H. W. & Ma, C. Extreme temperature events alter demographic rates, relative fitness, and community structure. Glob. Change Biol. 21, 1794–1808 (2015).
Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).
Ganuza, C. et al. Interactive effects of climate and land use on pollinator diversity differ among taxa and scales. Sci. Adv. 8, eabm9359 (2022).
Suggitt, A. J. et al. Linking climate warming and land conversion to species’ range changes across Great Britain. Nat. Commun. 14, 6759 (2023).
Montràs-Janer, T. et al. Anthropogenic climate and land-use change drive short- and long-term biodiversity shifts across taxa. Nat. Ecol. Evol. 1–13 https://doi.org/10.1038/s41559-024-02326-7. (2024)
Oliver, T. H. et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Change 5, 941–945 (2015).
Bakker, F. M., Aldershof, S. A. & Šmilauer, P. Not all insects decline: 30-years of comprehensive sampling show increasing and decreasing arthropod population trends in Eu-Farmland. SSRN Scholarly Paper at https://doi.org/10.2139/ssrn.4011758 (2022).
Bowler, D. E. et al. Winners and losers over 35 years of dragonfly and damselfly distributional change in Germany. Divers. Distrib. 27, 1353–1366 (2021).
Evans, L. C. et al. Bioclimatic context of species’ populations determines community stability. Glob. Ecol. Biogeogr. 31, 1542–1555 (2022).
Neff, F. et al. Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends. Nat. Commun. 13, 7611 (2022).
Mcgill, B., Enquist, B., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
Aguirre-Gutiérrez, J. et al. Functional traits help to explain half-century long shifts in pollinator distributions. Sci. Rep. 6, 24451 (2016).
Comont, R. F. et al. Using biological traits to explain ladybird distribution patterns. J. Biogeogr. 39, 1772–1781 (2012).
Coulthard, E., Norrey, J., Shortall, C. & Harris, W. E. Ecological traits predict population changes in moths. Biol. Conserv. 233, 213–219 (2019).
Marrec, R. et al. Functional traits of carabid beetles reveal seasonal variation in community assembly in annual crops. bioRxiv. https://doi.org/10.1101/2021.02.04.429696 (2021).
Powney, G. D., Cham, S. S. A., Smallshire, D. & Isaac, N. J. B. Trait correlates of distribution trends in the Odonata of Britain and Ireland. PeerJ 3, e1410 (2015).
Beckmann, B. C. et al. Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change. PLOS ONE 10, e0130488 (2015).
Tordoff, G. M. et al. Inconsistent results from trait-based analyses of moth trends point to complex drivers of change. Biodivers. Conserv. https://doi.org/10.1007/s10531-022-02469-8 (2022).
Bell, J. R. et al. Do functional traits improve prediction of predation rates for a disparate group of aphid predators?. Bull. Entomol. Res. 98, 587–597 (2008).
Jowett, K. et al. Species matter when considering landscape effects on carabid distributions. Agric. Ecosyst. Environ. 285, 106631 (2019).
Wagner DL. Insect Declines in the Anthropocene. Annu Rev Entomol. 65, 457–480 (2020).
Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).
Brown, A. M. et al. The fourth-corner solution – using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).
Bourhis, Y., Bell, J. R., Shortall, C. R., Kunin, W. E. & Milne, A. E. Explainable neural networks for trait-based multispecies distribution modelling—A case study with butterflies and moths. Methods Ecol. Evol. 14, 1531–1542 (2023).
Lundberg, S. & Lee, S.-I. A unified approach to interpreting model predictions. ArXiv170507874 Cs Stat (2017).
Dennis, E. B. et al. Trends and indicators for quantifying moth abundance and occupancy in Scotland. J. Insect Conserv. 23, 369–380 (2019).
Yazdanian, M. et al. Ecological and life-history traits predict temporal trends in biomass of boreal moths. Insect Conserv. Divers. 16, 600–615 (2023).
Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 4455 (2019).
Pöyry, J. et al. Climate-induced increase of moth multivoltinism in boreal regions. Glob. Ecol. Biogeogr. 20, 289–298 (2011).
Dyck, H. V., Bonte, D., Puls, R., Gotthard, K. & Maes, D. The lost generation hypothesis: could climate change drive ectotherms into a developmental trap?. Oikos 124, 54–61 (2015).
Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).
Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 16, 222–230 (2018).
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12, e0185809 (2017).
Sunde, J. et al. Century-long butterfly range expansions in northern Europe depend on climate, land use and species traits. Commun. Biol. 6, 1–14 (2023).
Forsman, A., Betzholtz, P.-E. & Franzén, M. Faster poleward range shifts in moths with more variable colour patterns. Sci. Rep. 6, 36265 (2016).
Lawson, D. A. & Rands, S. A. The effects of rainfall on plant–pollinator interactions. Arthropod-Plant Interact. 13, 561–569 (2019).
Bowler, D. E. et al. Idiosyncratic trends of woodland invertebrate biodiversity in Britain over 45 years. Insect Conserv. Divers. 16, 776–789 (2023).
Jonsen, I. D. & Fahrig, L. Response of generalist and specialist insect herbivores to landscape spatial structure. Landsc. Ecol. 12, 185–197 (1997).
Batáry, P. et al. Responses of grassland specialist and generalist beetles to management and landscape complexity. Divers. Distrib. 13, 196–202 (2007).
Botham, M. S. et al. Lepidoptera communities across an agricultural gradient: how important are habitat area and habitat diversity in supporting high diversity?. J. Insect Conserv. 19, 403–420 (2015).
Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).
Marja, R., Tscharntke, T. & Batáry, P. Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance – A meta-analysis. Agric. Ecosyst. Environ. 326, 107822 (2022).
Rennie, S. et al. UK Environmental Change Network (ECN) carabid beetle data: 1992-2015. NERC EDS Environmental Information Data Centre https://doi.org/10.5285/8385F864-DD41-410F-B248-028F923CB281 (2017).
King, G. & Zeng, L. Logistic Regression in Rare Events Data. Political Analysis 9, 137–163 (2001).
Gillespie, L. E., Ruffley, M. & Exposito-Alonso, M. Deep learning models map rapid plant species changes from citizen science and remote sensing data. Proc. Natl. Acad. Sci. 121, e2318296121 (2024).
Hollis, D., McCarthy, M., Kendon, M., Legg, T. & Simpson, I. HadUK-Grid—A new UK dataset of gridded climate observations. Geosci. Data J. 6, 151–159 (2019).
Morton, R. D., Marston, C. G., O’Neil, A. W. & Rowland, C. S. Land Cover Map 2020 (25m rasterised land parcels, GB). https://doi.org/10.5285/6c22cf6e-b224-414e-aa85-900325baedbd (2021).
Morton, R. D., Marston, C. G., O’Neil, A. W. & Rowland, C. S. Land Cover Map 2017 (25m rasterised land parcels, GB). NERC Environmental Information Data Centre https://doi.org/10.5285/499212CD-D64A-43BA-B801-95402E4D4098 (2020).
Morton, R. D., Marston, C. G., O’Neil, A. W. & Rowland, C. S. Land Cover Map 2018 (25m rasterised land parcels, GB). NERC Environmental Information Data Centre https://doi.org/10.5285/25C6451B-5C88-40DA-9A63-C3EC473E4874 (2020).
Morton, R. D., Marston, C. G., O’Neil, A. W. & Rowland, C. S. Land Cover Map 2019 (25m rasterised land parcels, GB). NERC Environmental Information Data Centre https://doi.org/10.5285/F15289DA-6424-4A5E-BD92-48C4D9C830CC (2020).
Morton, R. D., Marston, C. G., O’Neil, A. W. & Rowland, C. S. Land Cover Map 2020 (25m rasterised land parcels, GB). NERC EDS Environmental Information Data Centre https://doi.org/10.5285/6C22CF6E-B224-414E-AA85-900325BAEDBD (2021).
Rowland, C. S., Marston, C. G., Morton, R. D. & O’Neil, A. W. Land Cover Map 1990 (25m raster, GB) v2. NERC Environmental Information Data Centre https://doi.org/10.5285/1BE1912A-916E-42C0-98CC-16460FAC00E8 (2020).
Riitters, K. H. et al. A factor analysis of landscape pattern and structure metrics. Landsc. Ecol. 10, 23–39 (1995).
LaGro, J. Assessing Patch Shape in Landscape Mosaics. Photogrammetric Engineering & Remote Sensing 57, 285–293 (1991).
Moore, R. V., Morris, D. G. & Flavin R W. Sub-Set of UK Digital 1:50,000 Scale River Centreline Network. (1994).
Cook, P. M. et al. Traits data for the butterflies and macro-moths of Great Britain and Ireland. Ecology 103, e3670 (2022).
Middleton-Welling, J. et al. A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea. Sci. Data 7, 351 (2020).
Powney, G. et al. Morphological and Geographical Traits of the British Odonata. Biodivers. Data J. 2, e1041 (2014).
Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35, 716–725 (2012).
Tikhonov, G. et al. Joint species distribution modelling with the r-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).
Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).
Bourhis, Y., Bell, J. R., van den Bosch, F. & Milne, A. E. Artificial neural networks for monitoring network optimisation—a practical example using a national insect survey. Environ. Model. Softw. 135, 104925 (2021).
Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. in Advances in Neural Information Processing Systems vol. 30 (Curran Associates, Inc., 2017).
Osband, I., Blundell, C., Pritzel, A. & Van Roy, B. Deep Exploration via Bootstrapped DQN. in Advances in Neural Information Processing Systems vol. 29 (Curran Associates, Inc., 2016).
Chicco, D., Tötsch, N. & Jurman, G. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min. 14, 13 (2021).
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742 (2021).
Boyd, R. J. et al. ROBITT: A tool for assessing the risk-of-bias in studies of temporal trends in ecology. Methods Ecol. Evol. 13, 1497–1507 (2022).
Boyd, R. J., Powney, G. D. & Pescott, O. L. We need to talk about nonprobability samples. https://doi.org/10.48550/arXiv.2210.07298 (2022).
Hill, M. O. Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol. Evol. 3, 195–205 (2012).
Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).
Rocchini, D. et al. A quixotic view of spatial bias in modelling the distribution of species and their diversity. Npj Biodivers. 2, 1–11 (2023).
VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Model. 220, 589–594 (2009).
Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).
Bourhis, Y. Trait-based multi-species distribution model using keras—a minimal working example. https://doi.org/10.5281/ZENODO.15572920 (2025).
[ad_2]
Source link