Specific island biogeographic and landscape features shape plant diversity and habitat specialism on edaphic quartz islands in an arid ocean


  • MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. vol. 1 (JSTOR, 1967).

  • Preston, F. W. The canonical distribution of commonness and rarity: Part I. Ecology 43, 185–215 (1962).

    MATH 

    Google Scholar
     

  • Laurance, W. F. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biological conservation 141, 1731–1744 (2008).

    MATH 

    Google Scholar
     

  • Matthews, T. J. On The Biogeography of Habitat Islands: The Importance of Matrix Effects, Noncore Species, and Source-Sink Dynamics. The Quarterly Review of Biology 96, 73–104 (2021).


    Google Scholar
     

  • Itescu, Y. Are island-like systems biologically similar to islands?. A review of the evidence. Ecography 42, 1298–1314 (2019).

    MATH 

    Google Scholar
     

  • Dembicz, I. et al. Isolation and patch size drive specialist plant species density within steppe islands: a case study of kurgans in southern Ukraine. Biodiversity and Conservation 25, 2289–2307 (2016).

    MATH 

    Google Scholar
     

  • Dembicz, I. et al. Steppe islands in a sea of fields: Where island biogeography meets the reality of a severely transformed landscape. J Veg Sci 32, (2021).

  • Henneron, L., Sarthou, C., de Massary, J. & Ponge, J. Habitat diversity associated to island size and environmental filtering control the species richness of rock-savanna plants in neotropical inselbergs. Ecography 42, 1536–1547 (2019).

    ADS 

    Google Scholar
     

  • Zhang, S., Zhang, Q., Yan, Y., Han, P. & Liu, Q. Island biogeography theory predicts plant species richness of remnant grassland patches in the agro-pastoral ecotone of northern China. Basic and Applied Ecology 54, 14–22 (2021).

    MATH 

    Google Scholar
     

  • Scheiner, S. M. Six types of species-area curves. Global ecology and biogeography 12, 441–447 (2003).

    MATH 

    Google Scholar
     

  • Matthews, T. J. et al. Island species–area relationships and species accumulation curves are not equivalent: an analysis of habitat island datasets. Global Ecology and Biogeography 25, 607–618 (2016).

    MATH 

    Google Scholar
     

  • Watling, J. I. & Donnelly, M. A. Fragments as islands: a synthesis of faunal responses to habitat patchiness. Conservation Biology 20, 1016–1025 (2006).

    PubMed 
    MATH 

    Google Scholar
     

  • Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whittaker, R. J. On the form of species–area relationships in habitat islands and true islands. Global Ecology and Biogeography 25, 847–858 (2016).


    Google Scholar
     

  • Hortal, J., Triantis, K. A., Meiri, S., Thébault, E. & Sfenthourakis, S. Island species richness increases with habitat diversity. The American Naturalist 174, E205–E217 (2009).

    PubMed 

    Google Scholar
     

  • Weigelt, P. & Kreft, H. Quantifying island isolation–insights from global patterns of insular plant species richness. Ecography 36, 417–429 (2013).

    ADS 
    MATH 

    Google Scholar
     

  • Keppel, G., Gillespie, T. W., Ormerod, P. & Fricker, G. A. Habitat diversity predicts orchid diversity in the tropical south-west Pacific. Journal of Biogeography 43, 2332–2342 (2016).


    Google Scholar
     

  • Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology letters 17, 866–880 (2014).

    PubMed 
    MATH 

    Google Scholar
     

  • Tamme, R., Hiiesalu, I., Laanisto, L., Szava-Kovats, R. & Pärtel, M. Environmental heterogeneity, species diversity and co-existence at different spatial scales. Journal of Vegetation Science 4, 796-801 (2010).

  • Ricketts, T. H. The Matrix Matters: Effective Isolation in Fragmented Landscapes. The American Naturalist 158, 87–99 (2001).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Watson, D. M. A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. Journal of Biogeography 29, 823–834 (2002).

    MATH 

    Google Scholar
     

  • Shepherd, U. L. & Brantley, S. L. Expanding on Watson’s framework for classifying patches: when is an island not an island?. Journal of Biogeography 32, 951–960 (2005).

    MATH 

    Google Scholar
     

  • Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).

    MATH 

    Google Scholar
     

  • Watling, J. I. et al. Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecol Lett 23, 674–681 (2020).

    PubMed 
    MATH 

    Google Scholar
     

  • Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19, 1205–1223 (2010).

    MATH 

    Google Scholar
     

  • Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117 (2005).

    PubMed 
    MATH 

    Google Scholar
     

  • Mendez-Castro, F. E. et al. What defines insularity for plants in edaphic islands?. Ecography 44, 1249–1258 (2021).

    ADS 
    MATH 

    Google Scholar
     

  • Horsák, M. et al. The age of island-like habitats impacts habitat specialist species richness. Ecology 93, 1106–1114 (2012).

    PubMed 
    MATH 

    Google Scholar
     

  • Conti, L. et al. Insularity promotes plant persistence strategies in edaphic island systems. Global Ecology and Biogeography 31, 753–764 (2022).

    MATH 

    Google Scholar
     

  • Ottaviani, G. et al. Sticking around: Plant persistence strategies on edaphic islands. Diversity and Distributions 28, 1850–1862 (2022).

    MATH 

    Google Scholar
     

  • Zhigila, D. A., Elliott, T. L., Schmiedel, U. & Muasya, A. M. Do phylogenetic community metrics reveal the South African quartz fields as terrestrial-habitat islands?. Annals of Botany 133, 833–850 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinbauer, M. J., Otto, R., Naranjo-Cigala, A., Beierkuhnlein, C. & Fernández-Palacios, J.-M. Increase of island endemism with altitude–speciation processes on oceanic islands. Ecography 35, 23–32 (2012).

    ADS 

    Google Scholar
     

  • Flantua, S. G. et al. Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism. Global Ecology and Biogeography 29, 1651–1673 (2020).

    MATH 

    Google Scholar
     

  • Franklin, J. F. & Lindenmayer, D. B. Importance of matrix habitats in maintaining biological diversity. Proceedings of the National Academy of Sciences 106, 349–350 (2009).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Gustafson, E. J. & Parker, G. R. Using an index of habitat patch proximity for landscape design. Landscape and urban planning 29, 117–130 (1994).

    MATH 

    Google Scholar
     

  • Wiser, S. K. & Buxton, R. P. Context matters: matrix vegetation influences native and exotic species composition on habitat islands. Ecology 89, 380–391 (2008).

    PubMed 
    MATH 

    Google Scholar
     

  • Cook, W. M., Lane, K. T., Foster, B. L. & Holt, R. D. Island theory, matrix effects and species richness patterns in habitat fragments. Ecol Letters 5, 619–623 (2002).


    Google Scholar
     

  • Cook, W. M., Anderson, R. M. & Schweiger, E. W. Is the matrix really inhospitable? Vole runway distribution in an experimentally fragmented landscape. Oikos 104, 5–14 (2004).

    ADS 

    Google Scholar
     

  • Matthews, T. J., Cottee-Jones, H. E. & Whittaker, R. J. Habitat fragmentation and the species–area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Diversity and Distributions 20, 1136–1146 (2014).


    Google Scholar
     

  • Watson, D. M. Continental islands. in Encyclopedia of islands (eds. Gillespie, R. & Clague, D. A.) 180–187 (Univ of California Press, 2009).

  • Gastauer, M. et al. Landscape heterogeneity and habitat amount drive plant diversity in Amazonian canga ecosystems. Landscape Ecology 36, 393–406 (2021).


    Google Scholar
     

  • Eibes, P. M. et al. Testing the concept of edaphism for the quartz island flora of the Knersvlakte, South Africa. South African Journal of Botany 151, 555–564 (2022).

    CAS 

    Google Scholar
     

  • Stuessy, T. F. et al. Anagenetic evolution in island plants. Journal of Biogeography 33, 1259–1265 (2006).

    MATH 

    Google Scholar
     

  • Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    MATH 

    Google Scholar
     

  • Fahrig, L. Why do several small patches hold more species than few large patches?. Global Ecol Biogeogr 29, 615–628 (2020).


    Google Scholar
     

  • Schmiedel, U. The Quartz Fields of Southern Africa-flora, phytogeography, vegetation, and habitat ecology. (Universität zu Köln, 2002).

  • Schmiedel, U., Kühne, N., Twerski, A. & Oldeland, J. Small-scale soil patterns drive sharp boundaries between succulent “dwarf” biomes (or habitats) in the arid Succulent Karoo, South Africa. South African Journal of Botany 101, 129–138 (2015).


    Google Scholar
     

  • Schmiedel, U. & Jürgens, N. Community structure on unusual habitat islands: quartz-fields in the Succulent Karoo. South Africa. 142, 57–69 (1999).

    MATH 

    Google Scholar
     

  • Schmiedel, U. & Jürgens, N. Habitat ecology of southern African quartz fields: studies on the thermal properties near the ground. Plant Ecology 170, 153–166 (2004).

    MATH 

    Google Scholar
     

  • Eibes, P. M. et al. Partitioned beta diversity patterns of plants across sharp and distinct boundaries of quartz habitat islands. J Veg Sci 32, (2021).

  • Musker, S. D., Ellis, A. G., Schlebusch, S. A. & Verboom, G. A. Niche specificity influences gene flow across fine-scale habitat mosaics in Succulent Karoo plants. Mol Ecol 30, 175–192 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Oldeland, J., Eibes, P. M., Irl, S. D. H. & Schmiedel, U. Do image resolution and classifier choice impact island biogeographical parameters of terrestrial islands? Transactions in GIS (2022).

  • Hoffman, M. T., Skowno, A., Bell, W. & Mashele, S. Long-term changes in land use, land cover and vegetation in the Karoo drylands of South Africa: Implications for degradation monitoring. African Journal of Range & Forage Science 35, 209–221 (2018).


    Google Scholar
     

  • Mucina, L. et al. Succulent Karoo Biome. in The Vegetation of South Africa, Lesotho and Swaziland (eds. Mucina, L. & Rutherford, M. C.) 221–299 (South African National Biodiversity Institute, 2006).

  • Desmet, P. G. Namaqualand—a brief overview of the physical and floristic environment. Journal of Arid environments 70, 570–587 (2007).

    ADS 
    MATH 

    Google Scholar
     

  • Hilton-Taylor, C. Patterns and characteristics of the flora of the Succulent Karoo Biome, southern Africa. in The biodiversity of African plants 58–72 (Springer, 1996).

  • Watkeys, M. K. Soils of the arid south-western zone of Africa. in The Karoo: Ecological patterns and processes (eds. Dean, W. R. J. & Milton, S.) 17–26 (Cambridge University Press, Cambridge, 1999).

  • Curtis, O. E., Stirton, C. H. & Muasya, A. M. A conservation and floristic assessment of poorly known species rich quartz–silcrete outcrops within Rûens Shale Renosterveld (Overberg, Western Cape), with taxonomic descriptions of five new species. South African Journal of Botany 87, 99–111 (2013).


    Google Scholar
     

  • Hilton-Taylor, C. Western Cape Domain (Succulent Karoo). Republic of South Africa and Namibia. in Centres of plant diversity. A guide and strategy for their conservation vol. 1 204–217 (Oxford: Oxford University Press, Oxford, 1994).

  • VEGMAP: The Vegetation Map of South Africa, Lesotho and Swaziland. (2006).

  • Vetaas, O. R., Vikane, J. H., Saure, H. I. & Vandvik, V. North Atlantic Islands with native and alien trees: are there differences in diversity and species-area relationships?. Journal of vegetation science 25, 213–225 (2014).


    Google Scholar
     

  • Snijman, D. A. Plants of the Greater Cape Floristic Region Volume 2: The Extra Cape Flora. (South African National Biodiversity Institute, Pretoria, 2013).

  • Fish, L., Mashau, A. C., Moeaha, M. J. & Nembudani, M. T. Identification Guide to Southern African Grasses: An Identification Manual with Keys, Descriptions and Distributions. (South African National Biodiversity Institute, 2015).

  • Roux, A. Wild Flowers of Namaqualand: A Botanical Society Guide. (Penguin Random House South Africa, 2015).

  • Hartmann, H. Aizoaceae A-Z: Illustrated Handbook of Succulent Plants (Springer, 2017).

    MATH 

    Google Scholar
     

  • Raimondo, D. et al. Red List of South African Plants 2009. (South African National Biodiversity Institute, 2009).

  • Schrader, J., Moeljono, S., Keppel, G. & Kreft, H. Plants on small islands revisited: The effects of spatial scale and habitat quality on the species–area relationship. Ecography 42, 1405–1414 (2019).

    ADS 

    Google Scholar
     

  • Patton, D. R. A diversity index for quantifying habitat” edge”. Wildlife Society Bulletin 1973–2006(3), 171–173 (1975).

    MATH 

    Google Scholar
     

  • Parolin, P. Ombrohydrochory: Rain-operated seed dispersal in plants–With special regard to jet-action dispersal in Aizoaceae. Flora-Morphology, Distribution, Functional Ecology of Plants 201, 511–518 (2006).

    MATH 

    Google Scholar
     

  • Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biological Reviews 87, 661–685 (2012).

    PubMed 
    MATH 

    Google Scholar
     

  • Cote, J. et al. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40, 56–73 (2017).

    ADS 
    MATH 

    Google Scholar
     

  • Walentowitz, A., Troiano, C., Christiansen, J. B., Steinbauer, M. J. & Barfod, A. S. Plant dispersal characteristics shape the relationship of diversity with area and isolation. Journal of Biogeography 49, 1599–1608 (2022).


    Google Scholar
     

  • Schmiedel, U., Siemen, S.-E., Dludlu, M. N. & Oldeland, J. Germination success of habitat specialists from the Succulent Karoo and Renosterveld on different soil types. South African Journal of Botany 137, 320–330 (2021).

    CAS 
    MATH 

    Google Scholar
     

  • Matthews, T. J., Triantis, K. A., Whittaker, R. J. & Guilhaumon, F. sars: an R package for fitting, evaluating and comparing species–area relationship models. Ecography 42, 1446–1455 (2019).

    ADS 

    Google Scholar
     

  • Barton, K. MuMIn: Multi-model inference. R package version 1.7. 2. https://CRAN.R-project.org/package=MuMIn (2012).

  • Fox, J. et al. car: Companion to Applied Regression. R package version 3.0–2. https://CRAN.R-project.org/package=car [accessed 17 March 2020] (2019).

  • Schmidt, S. A., Carstens, F., Rau, A.-L. & Schmiedel, U. Diversity on a small scale – phylogeography of the locally endemic dwarf succulent genus Oophytum N.E.Br. (Aizoaceae) in the Knersvlakte of South Africa. Annals of Botany (in press).

  • Kalmar, A. & Currie, D. J. A global model of island biogeography. Global Ecology and Biogeography 15, 72–81 (2006).

    MATH 

    Google Scholar
     

  • Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: taking the long view of nature’s laboratories. Science 357, eaam8326 (2017).

  • Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. The island species-area relationship: biology and statistics: The island species-area relationship. Journal of Biogeography 39, 215–231 (2012).

    MATH 

    Google Scholar
     

  • Fattorini, S., Borges, P. A., Dapporto, L. & Strona, G. What can the parameters of the species–area relationship (SAR) tell us? Insights from Mediterranean islands. Journal of Biogeography 44, 1018–1028 (2017).


    Google Scholar
     

  • Yan, Y. et al. Habitat heterogeneity determines species richness on small habitat islands in a fragmented landscape. Journal of Biogeography 50, 976–986 (2023).

    MATH 

    Google Scholar
     

  • Stein, A. & Kreft, H. Terminology and quantification of environmental heterogeneity in species-richness research. Biological Reviews 90, 815–836 (2015).

    PubMed 
    MATH 

    Google Scholar
     

  • Matthews, T. J., Steinbauer, M. J., Tzirkalli, E., Triantis, K. A. & Whittaker, R. J. Thresholds and the species-area relationship: a synthetic analysis of habitat island datasets. J. Biogeogr. 41, 1018–1028 (2014).


    Google Scholar
     

  • Deák, B. et al. Landscape and habitat filters jointly drive richness and abundance of specialist plants in terrestrial habitat islands. Landscape Ecol 33, 1117–1132 (2018).

    MATH 

    Google Scholar
     

  • Steinbauer, M. J. et al. Plant invasion and speciation along elevational gradients on the oceanic island La Palma. Canary Islands. Ecol Evol 7, 771–779 (2017).

    PubMed 
    MATH 

    Google Scholar
     

  • Diver, K. C. Not as the crow flies: assessing effective isolation for island biogeographical analysis. Journal of Biogeography 35, 1040–1048 (2008).

    MATH 

    Google Scholar
     

  • Patiño, J. et al. A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. Journal of Biogeography 44, 963–983 (2017).

    MATH 

    Google Scholar
     

  • Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc Natl Acad Sci USA 116, 909–914 (2019).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rouget, M., Richardson, D. M., Cowling, R. M., Lloyd, J. W. & Lombard, A. T. Current patterns of habitat transformation and future threats to biodiversity in terrestrial ecosystems of the Cape Floristic Region. South Africa. Biological Conservation 112, 63–85 (2003).


    Google Scholar
     

  • Brownlie, S. et al. Systematic conservation planning in the Cape Floristic Region and Succulent Karoo, South Africa: enabling sound spatial planning and improved environmental assessment. Journal of Environmental Assessment Policy and Management 7, 201–228 (2005).

    MATH 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img