Global hotspots of butterfly diversity are threatened in a warming world


  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212–214 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliver, R. Y., Meyer, C., Ranipeta, A., Winner, K. & Jetz, W. Global and national trends, gaps, and opportunities in documenting and monitoring species distributions. PLoS Biol. 19, e3001336 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jetz, W. et al. Include biodiversity representation indicators in area-based conservation targets. Nat. Ecol. Evol. 6, 123–126 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodie, J. F., Williams, S. & Garner, B. The decline of mammal functional and evolutionary diversity worldwide. Proc. Natl Acad. Sci. USA 118, e1921849118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voskamp, A. et al. Utilizing multi-objective decision support tools for protected area selection. One Earth 6, 1143–1156 (2023).

    Article 

    Google Scholar
     

  • Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).

    Article 

    Google Scholar
     

  • Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    Article 

    Google Scholar
     

  • The Assessment Report on Pollinators, Pollination and Food Production: Summary for Policymakers (IPBES, 2016).

  • Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kass, J. M. et al. The global distribution of known and undiscovered ant biodiversity. Sci. Adv. 8, eabp9908 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Article 

    Google Scholar
     

  • Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776 (2015).

    Article 

    Google Scholar
     

  • Chan, W.-P. et al. Climate velocities and species tracking in global mountain regions. Nature https://doi.org/10.1038/s41586-024-07264-9 (2024).

  • La Sorte, F. A. & Jetz, W. Projected range contractions of montane biodiversity under global warming. Proc. Biol. Sci. 277, 3401–3410 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinkert, S. et al. Climate–diversity relationships underlying cross‐taxon diversity of the African fauna and their implications for conservation. Divers. Distrib. 10, 1330–1342 (2020).

    Article 

    Google Scholar
     

  • Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, J. A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R. Soc. B 360, 339–357 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Pinkert, S., Barve, V., Guralnick, R. & Jetz, W. Global geographical and latitudinal variation in butterfly species richness captured through a comprehensive country‐level occurrence database. Glob. Ecol. Biogeogr. 31, 830–839 (2022).

    Article 

    Google Scholar
     

  • Kawahara, A. Y. et al. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat. Ecol. Evol. 7, 903–913 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinkert, S. & Zeuss, D. Thermal biology: melanin-based energy harvesting across the tree of life. Curr. Biol. 884, 887 (2018).

    Article 

    Google Scholar
     

  • Heidrich, L. et al. Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness. Ecography 44, 1169–1179 (2021).

    Article 

    Google Scholar
     

  • Danks, H. V. in Insects at Low Temperature (eds Richard, E. L. Jr. & Denlinger, D. L.) 231–259 (Springer, 1991).

  • Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Pinkert, S. et al. Mobility costs and energy uptake mediate the effects of morphological traits on species’ distribution and abundance. Ecology 10, e03121 (2020).

    Article 

    Google Scholar
     

  • Chazot, N. et al. Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nat. Commun. 12, 5717 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Condamine, F. L. Limited by the roof of the world: mountain radiations of Apollo swallowtails controlled by diversity-dependence processes. Biol. Lett. 14, 20170622 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De-Silva, D. L., Elias, M., Willmott, K., Mallet, J. & Day, J. J. Diversification of clearwing butterflies with the rise of the Andes. J. Biogeogr. 43, 44–58 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Glerean, P., Deutsch, H., Morandini, C., Morin, L. & Huemer, P. Lepidoptera of the Prealpi Giulie natural park (Friuli Venezia Giulia, north-east Italy). Gortania Bot. Zool. 44, 29–72 (2022).


    Google Scholar
     

  • Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514 (1992).

    Article 

    Google Scholar
     

  • Jetz, W., Rahbek, C. & Colwell, R. K. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecol. Lett. 7, 1180–1191 (2004).

    Article 

    Google Scholar
     

  • Coelho, M. T. P. et al. The geography of climate and the global patterns of species diversity. Nature 622, 537–544 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawkins, B. A. et al. Different evolutionary histories underlie congruent species richness gradients of birds and mammals: bird and mammal richness gradients. J. Biogeogr. 39, 825–841 (2012).

    Article 

    Google Scholar
     

  • Körner, C. & Spehn, E. A Humboldtian view of mountains. Science 365, 1061–1061 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brehm, G., Zeuss, D. & Colwell, R. K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography 42, 632–642 (2019).

    Article 

    Google Scholar
     

  • Wu, S. et al. Artificial intelligence reveals environmental constraints on colour diversity in insects. Nat. Commun. 10, 4554 (2019).

  • Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novella-Fernandez, R., Brandl, R., Pinkert, S., Zeuss, D. & Hof, C. Seasonal variation in dragonfly assemblage colouration suggests a link between thermal melanism and phenology. Nat. Commun. 14, 8427 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, H. E. A provisional checklist of European butterfly larval foodplants. Nota Lepidopterol. 45, 139–167 (2022).

    Article 

    Google Scholar
     

  • Williams, J. N. Humans and biodiversity: population and demographic trends in the hotspots. Popul. Environ. 34, 510–523 (2013).

    Article 

    Google Scholar
     

  • Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. V., Jenkins, C. N. & Xu, W. Strategic protection of landslide vulnerable mountains for biodiversity conservation under land-cover and climate change impacts. Proc. Natl Acad. Sci. USA 119, e2113416118 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).

    Article 

    Google Scholar
     

  • Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dobrowski, S. Z. et al. Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun. Earth Environ. 2, 198 (2021).

  • Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biber, M. F., Voskamp, A. & Hof, C. Potential effects of future climate change on global reptile distributions and diversity. Glob. Ecol. Biogeogr. 32, 519–534 (2023).

    Article 

    Google Scholar
     

  • Halsch, C. A. et al. Insects and recent climate change. Proc. Natl Acad. Sci. USA 118, e2002543117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).

    Article 

    Google Scholar
     

  • Sandall, E. et al. A globally integrated structure of taxonomy supporting biodiversity science and conservation. Trends Ecol. Evol. 38, 1143–1153 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kawahara, A. Y. et al. Phylogenetics of moth-like butterflies (Papilionoidea: Hedylidae) based on a new 13-locus target capture probe set. Mol. Phylogenet. Evol. 127, 600–605 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aiello-Lammens, M. E. et al. spThin: Functions for spatial thinning of species occurrence records for use in ecological models. R package v.0.2.0. CRAN https://doi.org/10.32614/cran.package.spThin (2019).

  • Pinkert, S., Sica, Y. V., Winner, K. & Jetz, W. The potential of ecoregional range maps for boosting taxonomic coverage in ecology and conservation. Ecography 2023, e06794 (2023).

    Article 

    Google Scholar
     

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar
     

  • Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karger, D. N. et al. Data from: Climatologies at high resolution for the Earth’s land surface areas. Dryad 10.5061/dryad.kd1d4 (2018).

  • Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuanmu, M.-N. & Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24, 1329–1339 (2015).

    Article 

    Google Scholar
     

  • Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gamisch, A. Oscillayers: a dataset for the study of climatic oscillations over Plio-Pleistocene time-scales at high spatial-temporal resolution. Glob. Ecol. Biogeogr. 28, 1552–1560 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J. & Elith, J. Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol. Monogr. 92, e01486 (2022).

    Article 

    Google Scholar
     

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pebesma, E. et al. sp: Classes and methods for spatial data. R package v.1.6-1. CRAN https://doi.org/10.32614/cran.package.sp (2022).

  • Revell, L. J. phytools: Phylogenetic tools for comparative biology. R package v.1.5-1. CRAN https://doi.org/10.32614/cran.package.phytools (2017).

  • Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article 

    Google Scholar
     

  • Marsh, C. J. et al. Expert range maps of global mammal distributions harmonised to three taxonomic authorities. J. Biogeogr. 49, 979–992 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snethlage, M. A. et al. A hierarchical inventory of the world’s mountains for global comparative mountain science. Sci. Data 9, 149 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (IPCC, Cambridge Univ. Press, 2013).

  • Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).

    Article 

    Google Scholar
     

  • Lu, M. & Jetz, W. Scale-sensitivity in the measurement and interpretation of environmental niches. Trends Ecol. Evol. 38, 554–567 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).

    Article 

    Google Scholar
     

  • Kass, J. et al. The global distribution of known and undiscovered ant biodiversity. Dryad https://doi.org/10.5061/dryad.wstqjq2pp (2022).

  • Pinkert, S., Farwig, N., Kawahara, A. Y. & Jetz, W. Global hotspots of butterfly diversity are threatened in a warming world. figshare https://doi.org/10.6084/m9.figshare.27926592 (2025).



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img