Promoting urban biodiversity for the benefit of people and nature


  • World Urbanization Prospects. The 2018 Revision Vol. 12 (United Nations Department of Economic and Social Affairs, 2019).

  • Chen, G. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 537 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES https://zenodo.org/record/5657041 (2019).

  • Elmqvist, T. et al. (eds) Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment (Springer, 2013).

  • McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).

    Article 

    Google Scholar
     

  • Simkin, R. D., Seto, K. C., Mcdonald, R. I. & Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. USA 119, e2117297119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Change Biol. 26, 1196–1211 (2020).

    Article 

    Google Scholar
     

  • van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2, 755–763 (2019).

    Article 

    Google Scholar
     

  • Kowarik, I. Urban biodiversity, ecosystems and the city. Insights from 50 years of the Berlin School of urban ecology. Landsc. Urban. Plan. 240, 104877 (2023).

    Article 

    Google Scholar
     

  • Sukopp, H. Die Großstadt als Gegenstand ökologischer Forschung. Schr. Vereins Verbreit. Naturwissenschaft. Kenntnisse Wien. 113, 90–140 (1973).


    Google Scholar
     

  • Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).

    Article 

    Google Scholar
     

  • McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).

    Article 

    Google Scholar
     

  • Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).

    Article 

    Google Scholar
     

  • Lepczyk, C. A., Aronson, M. F. & La Sorte, F. A. Cities as sanctuaries. Front. Ecol. Environ. 21, 251–259 (2023).

    Article 

    Google Scholar
     

  • Planchuelo, G., von Der Lippe, M. & Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban. Plan. 189, 320–334 (2019).

    Article 

    Google Scholar
     

  • Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).

    Article 

    Google Scholar
     

  • Kühn, I., Brandl, R. & Klotz, S. The flora of German cities is naturally species rich. Evol. Ecol. Res. 6, 749–764 (2004).


    Google Scholar
     

  • Spotswood, E. N. et al. The biological deserts fallacy: cities in their landscapes contribute more than we think to regional biodiversity. BioScience 71, 148–160 (2021).

    Article 

    Google Scholar
     

  • Hahs, A. K. et al. A global synthesis of plant extinction rates in urban areas. Ecol. Lett. 12, 1165–1173 (2009).

    Article 

    Google Scholar
     

  • Kowarik, I. & von der Lippe, M. Plant population success across urban ecosystems: a framework to inform biodiversity conservation in cities. J. Appl. Ecol. 55, 2354–2361 (2018).

    Article 

    Google Scholar
     

  • Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).

    Article 

    Google Scholar
     

  • Kleinschroth, F. et al. Global disparities in urban green space use during the COVID-19 pandemic from a systematic review. Nat. Cities 1, 136–149 (2024).

    Article 

    Google Scholar
     

  • Knapp, S. et al. A research agenda for urban biodiversity in the global extinction crisis. BioScience 71, 268–279 (2021).

    Article 

    Google Scholar
     

  • Rega-Brodsky, C. C. et al. Urban biodiversity: state of the science and future directions. Urban Ecosyst. 25, 1083–1096 (2022).

    Article 

    Google Scholar
     

  • Soga, M. & Gaston, K. J. Extinction of experience: the loss of human–nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).

    Article 

    Google Scholar
     

  • Soga, M. & Gaston, K. J. Do people who experience more nature act more to protect it? A meta-analysis. Biol. Conserv. 289, 110417 (2024).

    Article 

    Google Scholar
     

  • Haaland, C. & Konijnendijk van den Bosch, C. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green 14, 760–771 (2015).

    Article 

    Google Scholar
     

  • Conference of the Parties to the Convention on Biological Diversity (COP 15). Kunming–Montreal Global Biodiversity Framework. Convention on Biological Diversity https://www.cbd.int/gbf (2022).

  • McDonnell, M. J. & Hahs, A. K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landsc. Ecol. 23, 1143–1155 (2008).

    Article 

    Google Scholar
     

  • The World’s Cities in 2016. United Nations https://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2016_data_booklet.pdf (2016).

  • Global Biodiversity Outlook 3. Convention on Biological Diversity https://www.cbd.int/sites/default/files/2020-09/GBO3-Summary-final-en-min.pdf (2010).

  • Knapp, S., Kühn, I., Schweiger, O. & Klotz, S. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol. Lett. 11, 1054–1064 (2008).

    Article 

    Google Scholar
     

  • La Sorte, F. A. et al. The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization. Divers. Distrib. 24, 928–938 (2018).

    Article 

    Google Scholar
     

  • Nilon, C. H. & Aronson, M. F. J. (eds) Routledge Handbook of Urban Biodiversity (Routledge, 2023).

  • Kendal, D. et al. City-size bias in knowledge on the effects of urban nature on people and biodiversity. Environ. Res. Lett. 15, 124035 (2020).

    Article 

    Google Scholar
     

  • Shackleton, C. M. in Urban Ecology in the Global South (eds Shackleton, C. M., Cilliers, S. S., Davoren, E. & du Toit, M. J.) 203–226 (Springer International, 2021).

  • Awoyemi, A. G. & Ibáñez-Álamo, J. D. Status of urban ecology in Africa: a systematic review. Landsc. Urban. Plan. 233, 104707 (2023).

    Article 

    Google Scholar
     

  • Díaz, S. et al. The IPBES conceptual framework—connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).

    Article 

    Google Scholar
     

  • Chen, C. et al. Incorporating local ecological knowledge into urban riparian restoration in a mountainous region of Southwest China. Urban For. Urban Green 20, 140–151 (2016).

    Article 

    Google Scholar
     

  • Yli-Pelkonen, V. & Kohl, J. The role of local ecological knowledge in sustainable urban planning: perspectives from Finland. Sustain. Sci. Pract. Policy 1, 3–14 (2005).


    Google Scholar
     

  • Lam, D. P. M. et al. Indigenous and local knowledge in sustainability transformations research: a literature review. Ecol. Soc. 25, 3 (2020).

    Article 

    Google Scholar
     

  • McDonnell, M. J. & Hahs, A. K. Adaptation and adaptedness of organisms to urban environments. Annu. Rev. Ecol. Evol. Syst. 46, 261–280 (2015).

    Article 

    Google Scholar
     

  • Grimm, N. B., Grove, J. G., Pickett, S. T. A. & Redman, C. L. Integrated approaches to long-term studies of urban ecological systems: urban ecological systems present multiple challenges to ecologists — pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory. BioScience 50, 571–584 (2000).

    Article 

    Google Scholar
     

  • Pickett, S. T. A. et al. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Evol. Syst. 32, 127–157 (2001).

    Article 

    Google Scholar
     

  • Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).

    Article 

    Google Scholar
     

  • Fairbairn, A. J. et al. Urban biodiversity is affected by human-designed features of public squares. Nat. Cities 1, 706–715 (2024).

    Article 

    Google Scholar
     

  • Hahs, A. K. et al. Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nat. Commun. 14, 4751 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kendal, D., Williams, K. J. H. & Williams, N. S. G. Plant traits link people’s plant preferences to the composition of their gardens. Landsc. Urban Plan. 105, 34–42 (2012).

    Article 

    Google Scholar
     

  • Roman, L. A. et al. Human and biophysical legacies shape contemporary urban forests: a literature synthesis. Urban For. Urban Green 31, 157–168 (2018).

    Article 

    Google Scholar
     

  • Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).

    Article 

    Google Scholar
     

  • Alberti, M. & Wang, T. Detecting patterns of vertebrate biodiversity across the multidimensional urban landscape. Ecol. Lett. 25, 1027–1045 (2022).

    Article 

    Google Scholar
     

  • Cadenasso, M. L., Pickett, S. T. A. & Grove, J. M. Dimensions of ecosystem complexity: heterogeneity, connectivity, and history. Ecol. Complex. 3, 1–12 (2006).

    Article 

    Google Scholar
     

  • McPhearson, T. et al. A social–ecological–technological systems framework for urban ecosystem services. One Earth 5, 505–518 (2022).

    Article 

    Google Scholar
     

  • Frantzeskaki, N. et al. A transformative shift in urban ecology toward a more active and relevant future for the field and for cities. Ambio 53, 871–889 (2024).

    Article 

    Google Scholar
     

  • McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).

    Article 

    Google Scholar
     

  • Müller, N. & Werner, P. A review on the work of German urban biodiversity networks — from national to international activities. Urban Ecosyst. 27, 2021–2036 (2024).

    Article 

    Google Scholar
     

  • Toledo-Garibaldi, M., Puric-Mladenovic, D. & Smith, S. M. Urban biotope classification incorporates urban forest and green infrastructure for improved environmental land-use planning in Mexico City. Urban Ecosyst. 26, 323–336 (2023).

    Article 

    Google Scholar
     

  • Hassan, R. et al. Ecosystems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group. Millennium Ecosystem Assessment Series (Island Press, 2005).

  • Leal Filho, W., Echevarria Icaza, L., Neht, A., Klavins, M. & Morgan, E. A. Coping with the impacts of urban heat islands. A literature-based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 171, 1140–1149 (2018).

    Article 

    Google Scholar
     

  • Besser, L. M. & Lovasi, G. S. in Nature-Based Solutions for Cities (eds McPhearson, T. et al.) 167–191 (Edward Elgar Publishing, 2023).

  • Kabisch, N., Basu, S., van den Bosch, M., Bratman, G. N. & Masztalerz, O. in Nature-Based Solutions for Cities (eds McPhearson, T. et al.) 192–212 (Edward Elgar Publishing, 2023).

  • Yang, B. Y. et al. Greenspace and human health: an umbrella review. Innovation 2, 100164 (2021).


    Google Scholar
     

  • Haase, D. & Gaeva, D. Allotments for all? Social–environmental values of urban gardens for gardeners and the public in cities: the example of Berlin, Germany. People Nat. 5, 1207–1219 (2023).

    Article 

    Google Scholar
     

  • Lyytimäki, J. & Sipilä, M. Hopping on one leg—the challenge of ecosystem disservices for urban green management. Urban For. Urban Green. 8, 309–315 (2009).

    Article 

    Google Scholar
     

  • von Döhren, P. & Haase, D. Geospatial assessment of urban ecosystem disservices: an example of poisonous urban trees in Berlin, Germany. Urban For. Urban Green 67, 127440 (2022).

    Article 

    Google Scholar
     

  • Hegetschweiler, K. T. et al. Linking demand and supply factors in identifying cultural ecosystem services of urban green infrastructures: a review of European studies. Urban For. Urban Green 21, 48–59 (2017).

    Article 

    Google Scholar
     

  • De Lacy, P. & Shackleton, C. Aesthetic and spiritual ecosystem services provided by urban sacred sites. Sustainability 9, 1628 (2017).

    Article 

    Google Scholar
     

  • Gopal, D., von der Lippe, M. & Kowarik, I. Sacred sites as habitats of culturally important plant species in an Indian megacity. Urban For. Urban Green 32, 113–122 (2018).

    Article 

    Google Scholar
     

  • Schwarz, N. et al. Understanding biodiversity–ecosystem service relationships in urban areas: a comprehensive literature review. Ecosyst. Serv. 27, 161–171 (2017).

    Article 

    Google Scholar
     

  • Lundholm, J. T. Green roof plant species diversity improves ecosystem multifunctionality. J. Appl. Ecol. 52, 726–734 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat. Ecol. Evol. 7, 113–126 (2023).

    Article 

    Google Scholar
     

  • Schittko, C. et al. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. 110, 916–934 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Potgieter, L. J. et al. Alien plants as mediators of ecosystem services and disservices in urban systems: a global review. Biol. Invas. 19, 3571–3588 (2017).

    Article 

    Google Scholar
     

  • Schlaepfer, M. A., Guinaudeau, B. P., Martin, P. & Wyler, N. Quantifying the contributions of native and non-native trees to a city’s biodiversity and ecosystem services. Urban For. Urban Green 56, 126861 (2020).

    Article 

    Google Scholar
     

  • Guillen-Cruz, G., Rodríguez-Sánchez, A. L., Fernández-Luqueño, F. & Flores-Rentería, D. Influence of vegetation type on the ecosystem services provided by urban green areas in an arid zone of northern Mexico. Urban For. Urban Green 62, 127135 (2021).

    Article 

    Google Scholar
     

  • Botzat, A., Fischer, L. K. & Kowarik, I. Unexploited opportunities in understanding liveable and biodiverse cities. A review on urban biodiversity perception and valuation. Glob. Environ. Change 39, 220–233 (2016).

    Article 

    Google Scholar
     

  • Fischer, L. K. et al. Beyond green: broad support for biodiversity in multicultural European cities. Glob. Environ. Change 49, 35–45 (2018).

    Article 

    Google Scholar
     

  • Dallimer, M. et al. Biodiversity and the feel-good factor: understanding associations between self-reported human well-being and species richness. BioScience 62, 47–55 (2012).

    Article 

    Google Scholar
     

  • Methorst, J. et al. The importance of species diversity for human well-being in Europe. Ecol. Econ. 181, 106917 (2021).

    Article 

    Google Scholar
     

  • Nawrath, M., Elsey, H., Rijal, M. L. & Dallimer, M. Greenspaces and human well-being: perspectives from a rapidly urbanising low-income country. Environments 9, 148 (2022).

    Article 

    Google Scholar
     

  • Beninde, J., Veith, M. & Hochkirch, A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 18, 581–592 (2015).

    Article 

    Google Scholar
     

  • Chisholm, R. A. et al. Two centuries of biodiversity discovery and loss in Singapore. Proc. Natl. Acad. Sci. USA 120, e2309034120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pauchard, A., Aguayo, M., Peña, E. & Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol. Conserv. 127, 272–281 (2006).

    Article 

    Google Scholar
     

  • Adegun, O. B., Ikudayisi, A. E., Morakinyo, T. E. & Olusoga, O. O. Urban green infrastructure in Nigeria: a review. Sci. Afr. 14, e01044 (2021).


    Google Scholar
     

  • Anujan, K. et al. Beyond the metropolis: street tree communities and resident perceptions on ecosystem services in small urban centers in India. J. Urban. Ecol. 10, juae004 (2024).

    Article 

    Google Scholar
     

  • Guilherme, F., Vicente, J. R., Carretero, M. A. & Farinha-Marques, P. Mapping multigroup responses to land cover legacy for urban biodiversity conservation. Biol. Conserv. 291, 110508 (2024).

    Article 

    Google Scholar
     

  • Li, M., Verburg, P. H. & van Vliet, J. Global trends and local variations in land take per person. Landsc. Urban Plan. 218, 104308 (2022).

    Article 

    Google Scholar
     

  • Soga, M., Yamaura, Y., Koike, S. & Gaston, K. J. Land sharing vs. land sparing: does the compact city reconcile urban development and biodiversity conservation? J. Appl. Ecol. 51, 1378–1386 (2014).

    Article 

    Google Scholar
     

  • Zoomers, A., van Noorloos, F., Otsuki, K., Steel, G. & van Westen, G. The rush for land in an urbanizing world: from land grabbing toward developing safe, resilient, and sustainable cities and landscapes. World Dev. 92, 242–252 (2017).

    Article 

    Google Scholar
     

  • Qian, Y., Zhou, W., Yu, W. & Pickett, S. T. A. Quantifying spatiotemporal pattern of urban greenspace: new insights from high resolution data. Landsc. Ecol. 30, 1165–1173 (2015).

    Article 

    Google Scholar
     

  • Angold, P. G. et al. Biodiversity in urban habitat patches. Sci. Total. Environ. 360, 196–204 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L., Zhao, S. & Liu, S. A global analysis of urbanization effects on amphibian richness: patterns and drivers. Glob. Environ. Change 73, 102476 (2022).

    Article 

    Google Scholar
     

  • Ramalho, C. E., Laliberté, E., Poot, P. & Hobbs, R. J. Complex effects of fragmentation on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot. Ecology 95, 2466–2478 (2014).

    Article 

    Google Scholar
     

  • Theodorou, P. et al. Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity. Sci. Rep. 10, 21756 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I. & Fischer, L. K. Wild bees in urban grasslands: urbanisation, functional diversity and species traits. Landsc. Urban Plan. 196, 103731 (2020).

    Article 

    Google Scholar
     

  • Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Knapp, S., Kühn, I., Stolle, J. & Klotz, S. Changes in the functional composition of a Central European urban flora over three centuries. Persp. Plant Ecol. Evol. Syst. 12, 235–244 (2010).

    Article 

    Google Scholar
     

  • Planchuelo, G., Kowarik, I. & von der Lippe, M. Plant traits, biotopes and urbanization dynamics explain the survival of endangered urban plant populations. J. Appl. Ecol. 57, 1581–1592 (2020).

    Article 

    Google Scholar
     

  • Ancillotto, L. et al. No city for wetland species: habitat associations affect mammal persistence in urban areas. Proc. R. Soc. B 291, 20240079 (2024).

    Article 

    Google Scholar
     

  • Teurlincx, S. et al. Towards restoring urban waters: understanding the main pressures. Curr. Opin. Environ. Sustain. 36, 49–58 (2019).

    Article 

    Google Scholar
     

  • Kalcounis-Rueppell, M. C., Payne, V. H., Huff, S. R. & Boyko, A. L. Effects of wastewater treatment plant effluent on bat foraging ecology in an urban stream system. Biol. Conserv. 138, 120–130 (2007).

    Article 

    Google Scholar
     

  • Kleinschroth, F. et al. Living with floating vegetation invasions. Ambio 50, 125–137 (2020).

    Article 

    Google Scholar
     

  • Sarah, P. & Zhevelev, H. M. Effect of visitors’ pressure on soil and vegetation in several different micro-environments in urban parks in Tel Aviv. Landsc. Urban Plan. 83, 284–293 (2007).

    Article 

    Google Scholar
     

  • Hu, X. & Lima, M. F. The association between maintenance and biodiversity in urban green spaces: a review. Landsc. Urban Plan. 251, 105153 (2024).

    Article 

    Google Scholar
     

  • Aguilera, G., Ekroos, J., Persson, A. S., Pettersson, L. B. & Öckinger, E. Intensive management reduces butterfly diversity over time in urban green spaces. Urban Ecosyst. 22, 335–344 (2019).

    Article 

    Google Scholar
     

  • Varga-Szilay, Z., Fetykó, K. G., Szövényi, G. & Pozsgai, G. Bridging biodiversity and gardening: unravelling the interplay of socio-demographic factors, garden practices, and garden characteristics. Urban For. Urban Green 97, 128367 (2024).

    Article 

    Google Scholar
     

  • Francis, C. D., Ortega, C. P. & Cruz, A. Noise pollution changes avian communities and species interactions. Curr. Biol. 19, 1415–1419 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sordello, R. et al. A plea for a worldwide development of dark infrastructure for biodiversity — practical examples and ways to go forward. Landsc. Urban Plan. 219, 104332 (2022).

    Article 

    Google Scholar
     

  • Kornreich, A., Partridge, D., Youngblood, M. & Parkins, K. Rehabilitation outcomes of bird–building collision victims in the northeastern United States. PLoS ONE 19, e0306362 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Solecki, W. & Marcotullio, P. J. in Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment (eds Elmqvist, T. et al.) 485–504 (Springer, 2013).

  • Wilby, R. L. & Perry, G. L. W. Climate change, biodiversity and the urban environment: a critical review based on London, UK. Prog. Phys. Geogr. Earth Environ. 30, 73–98 (2006).

    Article 

    Google Scholar
     

  • Haight, J. D. et al. Urbanization, climate and species traits shape mammal communities from local to continental scales. Nat. Ecol. Evol. 7, 1654–1666 (2023).

    Article 

    Google Scholar
     

  • Esperon-Rodriguez, M. et al. Climate change increases global risk to urban forests. Nat. Clim. Change 12, 950–955 (2022).

    Article 

    Google Scholar
     

  • Haase, D. & Hellwig, R. Effects of heat and drought stress on the health status of six urban street tree species in Leipzig, Germany. Trees For. People 8, 100252 (2022).

    Article 

    Google Scholar
     

  • Raum, S. et al. Tree insect pests and pathogens: a global systematic review of their impacts in urban areas. Urban Ecosyst. 26, 587–604 (2023).

    Article 

    Google Scholar
     

  • Gaertner, M. et al. Non-native species in urban environments: patterns, processes, impacts and challenges. Biol. Invas. 19, 3461–3469 (2017).

    Article 

    Google Scholar
     

  • Gaertner, M. & Kowarik, I. in Routledge Handbook of Urban Biodiversity (eds Nilon, C. H. & Aronson, M. F. J.) 172–190 (Routledge, 2023).

  • Hughes, J. & Macdonald, D. W. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Conserv. 157, 341–351 (2013).

    Article 

    Google Scholar
     

  • Trouwborst, A., McCormack, P. C. & Martínez Camacho, E. Domestic cats and their impacts on biodiversity: a blind spot in the application of nature conservation law. People Nat. 2, 235–250 (2020).

    Article 

    Google Scholar
     

  • Kumar Rai, P. & Singh, J. S. Invasive alien plant species: their impact on environment, ecosystem services and human health. Ecol. Indic. 111, 106020 (2020).

    Article 

    Google Scholar
     

  • Fisher, M. C., Garner, T. W. J. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian Chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kabisch, N. & Haase, D. Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc. Urban Plan. 122, 129–139 (2014).

    Article 

    Google Scholar
     

  • Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).

    Article 

    Google Scholar
     

  • Calderón-Argelich, A. et al. Tracing and building up environmental justice considerations in the urban ecosystem service literature: a systematic review. Landsc. Urban Plan. 214, 104130 (2021).

    Article 

    Google Scholar
     

  • Rigolon, A., Browning, M., Lee, K. & Shin, S. Access to urban green space in cities of the Global South: a systematic literature review. Urban Sci. 2, 67 (2018).

    Article 

    Google Scholar
     

  • Muratet, A., Pellegrini, P., Dufour, A.-B., Arrif, T. & Chiron, F. Perception and knowledge of plant diversity among urban park users. Landsc. Urban Plan. 137, 95–106 (2015).

    Article 

    Google Scholar
     

  • Soulsbury, C. D. & White, P. C. L. in Human–Wildlife Interactions: Turning Conflict into Coexistence (eds Frank, B., Glikman, J. A. & Marchini, S.) 107–128 (Cambridge Univ. Press, 2019).

  • Lin, B. B., Fuller, R. A., Bush, R., Gaston, K. J. & Shanahan, D. F. Opportunity or orientation? Who uses urban parks and why. PLoS ONE 9, e87422 (2014).

    Article 

    Google Scholar
     

  • Soga, M. & Gaston, K. The ecology of human–nature interactions. Proc. R. Soc. B 287, 20191882 (2020).

    Article 

    Google Scholar
     

  • Clayton, S. et al. Transformation of experience: toward a new relationship with nature. Conserv. Lett. 10, 645–651 (2017).

    Article 

    Google Scholar
     

  • Langhans, K. E. et al. Centring justice in conceptualizing and improving access to urban nature. People Nat. 5, 897–910 (2023).

    Article 

    Google Scholar
     

  • Waite, S., Husain, F., Scandone, B., Forsyth, E. & Piggott, H. ‘It’s not for people like (them)’: structural and cultural barriers to children and young people engaging with nature outside schooling. J. Adventure Educ. Outdoor Learn. 23, 54–73 (2023).

    Article 

    Google Scholar
     

  • Yue, Z. & Chen, J. Direct, indirect, and vicarious nature experiences collectively predict preadolescents’ self-reported nature connectedness and conservation behaviors. PeerJ 11, e15542 (2023).

    Article 

    Google Scholar
     

  • Bashan, D., Colléony, A. & Shwartz, A. Urban versus rural? The effects of residential status on species identification skills and connection to nature. People Nat. 3, 347–358 (2021).

    Article 

    Google Scholar
     

  • Whitburn, J., Linklater, W. & Abrahamse, W. Meta-analysis of human connection to nature and proenvironmental behavior. Conserv. Biol. 34, 180–193 (2020).

    Article 

    Google Scholar
     

  • Balding, M. & William, K. J. H. Plant blindness and the implications for plant conservation. Conserv. Biol. 30, 1192–1199 (2016).

    Article 

    Google Scholar
     

  • Hoyle, H., Jorgensen, A. & Hitchmough, J. D. What determines how we see nature? Perceptions of naturalness in designed urban green spaces. People Nat. 1, 167–180 (2019).

    Article 

    Google Scholar
     

  • Paul, S. & Nagendra, H. Factors influencing perceptions and use of urban nature: surveys of park visitors in Delhi. Land 6, 27 (2017).

    Article 

    Google Scholar
     

  • Otto, S. & Pensini, P. Nature-based environmental education of children: environmental knowledge and connectedness to nature, together, are related to ecological behaviour. Glob. Environ. Change 47, 88–94 (2017).

    Article 

    Google Scholar
     

  • Straka, T. M., Glahe, C., Dietrich, U., Bui, M. & Kowarik, I. From nature experience to pro-conservation action: how generational amnesia and declining nature-relatedness shape behaviour intentions of adolescents and adults. Ambio https://doi.org/10.1007/s13280-025-02135-7 (2025).

  • Löbl, I., Klausnitzer, B., Hartmann, M. & Krell, F.-T. The silent extinction of species and taxonomists — an appeal to science policymakers and legislators. Diversity 15, 1053 (2023).

    Article 

    Google Scholar
     

  • Ardoin, N. M., Bowers, A. W. & Gaillard, E. Environmental education outcomes for conservation: a systematic review. Biol. Conserv. 241, 108224 (2020).

    Article 

    Google Scholar
     

  • Bobo-Pinilla, J., Marcos-Walias, J., Delgado Iglesias, J. & Reinoso Tapia, R. Overcoming plant blindness: are the future teachers ready? J. Biol. Educ. 58, 1466–1480 (2023).

    Article 

    Google Scholar
     

  • Stroud, S. et al. The botanical education extinction and the fall of plant awareness. Ecol. Evol. 12, e9019 (2022).

    Article 

    Google Scholar
     

  • Soga, M., Gaston, K. J., Fukano, Y. & Evans, M. J. The vicious cycle of biophobia. Trends Ecol. Evol. 38, 512–520 (2023).

    Article 

    Google Scholar
     

  • Soga, M. et al. How can we mitigate against increasing biophobia among children during the extinction of experience? Biol. Conserv. 242, 108420 (2020).

    Article 

    Google Scholar
     

  • König, H. J. et al. Human–wildlife coexistence in a changing world. Conserv. Biol. 34, 786–794 (2020).

    Article 

    Google Scholar
     

  • Buijs, A. & Jacobs, M. Avoiding negativity bias: towards a positive psychology of human–wildlife relationships. Ambio 50, 281–288 (2021).

    Article 

    Google Scholar
     

  • Fisher, J. C. et al. Perceived biodiversity, sound, naturalness and safety enhance the restorative quality and wellbeing benefits of green and blue space in a neotropical city. Sci. Total Environ. 755, 143095 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ratcliffe, E., Gatersleben, B. & Sowden, P. T. Bird sounds and their contributions to perceived attention restoration and stress recovery. J. Environ. Psychol. 36, 221–228 (2013).

    Article 

    Google Scholar
     

  • Nilon, C. H. et al. Planning for the future of urban biodiversity: a global review of city-scale initiatives. BioScience 67, 332–342 (2017).

    Article 

    Google Scholar
     

  • Transforming our world: the 2030 agenda for sustainable development. United Nations https://sdgs.un.org/2030agenda (2015).

  • Girma, Y., Terefe, H., Pauleit, S. & Kindu, M. Urban green infrastructure planning in Ethiopia: the case of emerging towns of Oromia special zone surrounding Finfinne. J. Urban Manag. 8, 75–88 (2019).

    Article 

    Google Scholar
     

  • Pauleit, S., Vasquéz, A., Maruthaveeran, S., Liu, L. & Cilliers, S. S. in Urban Ecology in the Global South (eds Shackleton, C. M., Cilliers, S. S., Davoren, E. & du Toit, M. J.) 107–143 (Springer International, 2021).

  • Fors, H., Hagemann, F. A., Sang, A. O. & Randrup, T. B. Striving for inclusion—a systematic review of long-term participation in strategic management of urban green spaces. Front. Sustain. Cities 3, 572423 (2021).

  • Varshney, K. et al. Biodiverse residential development: a review of New Zealand policies and strategies for urban biodiversity. Urban For. Urban Green 94, 128276 (2024).

    Article 

    Google Scholar
     

  • Raymond, C. M. et al. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 77, 15–24 (2017).

    Article 

    Google Scholar
     

  • Dillen, S. M. E., van Vries, S., de Groenewegen, P. P. & Spreeuwenberg, P. Greenspace in urban neighbourhoods and residents’ health: adding quality to quantity. J. Epidemiol. Community Health 66, e8–e8 (2012).

    Article 

    Google Scholar
     

  • Konijnendijk, C. C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: introducing the 3–30–300 rule. J. For. Res. 34, 821–830 (2023).

    Article 

    Google Scholar
     

  • Konijnendijk, C. C. Rethinking Urban Green Spaces (Edward Elgar Publishing, 2024).

  • Elmqvist, T. et al. Urbanization in and for the Anthropocene. Npj Urban Sustain. 1, 1–6 (2021).

    Article 

    Google Scholar
     

  • Kowarik, I., Bartz, R., Brenck, M. & Hansjürgens, B. Ecosystem Services in the City: Protecting Health and Enhancing Quality of Life: Summary for Decision-Makers (Naturkapital Deutschland, 2017).

  • Nuissl, H., Haase, D., Lanzendorf, M. & Wittmer, H. Environmental impact assessment of urban land use transitions — a context-sensitive approach. Land Use Policy 26, 414–424 (2009).

    Article 

    Google Scholar
     

  • Frantzeskaki, N. & Kabisch, N. Designing a knowledge co-production operating space for urban environmental governance — lessons from Rotterdam, Netherlands and Berlin, Germany. Environ. Sci. Policy 62, 90–98 (2016).

    Article 

    Google Scholar
     

  • Pauleit, S., Hansen, R., Rall, E. L. & Rolf, W. in The Routledge Handbook of Urban Ecology (eds Nilon, C. H. & Aronson, M. F. J.) 931–942 (Routledge, 2020).

  • Rouse, D. C. & Bunster-Ossa, I. in Planning for Climate Change (eds Hamin Infield, E. M. et al.) 273–281 (Routledge, 2018).

  • Davies, C. et al. Green Infrastructure Planning and Implementation: the Status of European Green Space Planning and Implementation Based on an Analysis of Selected European City-regions (Green Surge, 2015).

  • Pauleit, S., Hansen, R., van Lierop, M., Rall, E. L. & Rolf, W. In Handbuch Landschaft (eds Kühne, O., Weber, F., Berr, K. & Jenal, C.) 781–794 (Springer Fachmedien, 2019).

  • Siehr, S. A., Sun, M. & Aranda Nucamendi, J. L. Blue–green infrastructure for climate resilience and urban multifunctionality in Chinese cities. WIREs Energy Environ. 11, e447 (2022).

    Article 

    Google Scholar
     

  • Lindley, S., Pauleit, S., Yeshitela, K., Cilliers, S. & Shackleton, C. Rethinking urban green infrastructure and ecosystem services from the perspective of sub-Saharan African cities. Landsc. Urban Plan. 180, 328–338 (2018).

    Article 

    Google Scholar
     

  • Davies, K. K., Fisher, K. T., Dickson, M. E., Thrush, S. F. & Le Heron, R. Improving ecosystem service frameworks to address wicked problems. Ecol. Soc. 20, 37 (2015).

    Article 

    Google Scholar
     

  • Zhou, L., Gong, Y., López-Carr, D. & Huang, C. A critical role of the capital green belt in constraining urban sprawl and its fragmentation measurement. Land Use Policy 141, 107148 (2024).

    Article 

    Google Scholar
     

  • Schwarze-Rodrian, M. in Nature-Based Solutions for More Sustainable Cities — A Framework Approach for Planning and Evaluation (eds Croci, E. & Lucchitta, B.) 291–300 (Emerald Publishing, 2021).

  • Kowarik, I. The “Green Belt Berlin”: establishing a greenway where the Berlin Wall once stood by integrating ecological, social and cultural approaches. Landsc. Urban Plan. 184, 12–22 (2019).

    Article 

    Google Scholar
     

  • Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).

    Article 

    Google Scholar
     

  • Huang, C. et al. Mapping the maximum extents of urban green spaces in 1039 cities using dense satellite images. Environ. Res. Lett. 16, 064072 (2021).

    Article 

    Google Scholar
     

  • Donati, G. F. A., Bolliger, J., Psomas, A., Maurer, M. & Bach, P. M. Reconciling cities with nature: identifying local blue–green infrastructure interventions for regional biodiversity enhancement. J. Environ. Manage. 316, 115254 (2022).

    Article 

    Google Scholar
     

  • Guimarães, L. F. et al. The challenges of urban river restoration and the proposition of a framework towards river restoration goals. J. Clean. Prod. 316, 128330 (2021).

    Article 

    Google Scholar
     

  • Chen, B., Nie, Z., Chen, Z. & Xu, B. Quantitative estimation of 21st-century urban greenspace changes in Chinese populous cities. Sci. Total. Environ. 609, 956–965 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gerner, N. V. et al. Large-scale river restoration pays off: a case study of ecosystem service valuation for the Emscher restoration generation project. Ecosyst. Serv. 30, 327–338 (2018).

    Article 

    Google Scholar
     

  • Veról, A. P. et al. River restoration integrated with sustainable urban water management for resilient cities. Sustainability 12, 4677 (2020).

    Article 

    Google Scholar
     

  • Egerer, M. & Cohen, H. Urban Agroecology: Interdisciplinary Research and Future Directions (CRC Press, 2020).

  • Royer, H., Yengue, J. L. & Bech, N. Urban agriculture and its biodiversity: what is it and what lives in it? Agric. Ecosyst. Environ. 346, 108342 (2023).

    Article 

    Google Scholar
     

  • Itescu, Y. & Jeschke, J. M. Assessing the conservation value of cemeteries to urban biota worldwide. Conserv. Biol. 38, e14322 (2024).

    Article 

    Google Scholar
     

  • Säumel, I., Butenschön, S. & Kreibig, N. Gardens of life: multifunctional and ecosystem services of urban cemeteries in Central Europe and beyond—historical, structural, planning, nature and heritage conservation aspects. Front. Environ. Sci. 10, 1077565 (2023).

  • Zannini, P. et al. Sacred natural sites and biodiversity conservation: a systematic review. Biodivers. Conserv. 30, 3747–3762 (2021).

    Article 

    Google Scholar
     

  • Delahay, R. J., Sherman, D., Soyalan, B. & Gaston, K. J. Biodiversity in residential gardens: a review of the evidence base. Biodivers. Conserv. 32, 4155–4179 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bonthoux, S., Brun, M., Di Pietro, F., Greulich, S. & Bouché-Pillon, S. How can wastelands promote biodiversity in cities? A review. Landsc. Urban Plan. 132, 79–88 (2014).

    Article 

    Google Scholar
     

  • Luo, S. & Patuano, A. Multiple ecosystem services of informal green spaces: a literature review. Urban For. Urban Green 81, 127849 (2023).

    Article 

    Google Scholar
     

  • Vega, K. A. & Küffer, C. Promoting wildflower biodiversity in dense and green cities: the important role of small vegetation patches. Urban For. Urban Green 62, 127165 (2021).

    Article 

    Google Scholar
     

  • Orsini, F., Kahane, R., Nono-Womdim, R. & Gianquinto, G. Urban agriculture in the developing world: a review. Agron. Sustain. Dev. 33, 695–720 (2013).

    Article 

    Google Scholar
     

  • Bieri, D., Joshi, N., Wende, W. & Kleinschroth, F. Increasing demand for community gardening before, during and after the COVID-19 pandemic. Urban For. Urban Green 92, 128206 (2024).

    Article 

    Google Scholar
     

  • Obi, N. I., Nwalusi, D. M., Ibem, E. O. & Okeke, O. F. Assessment of the role of greenbelts in environmental and socio-economic development of urban areas in Southeast Nigeria. Civ. Eng. Arch. 9, 545–557 (2021).


    Google Scholar
     

  • Rolf, W., Pauleit, S. & Wiggering, H. A stakeholder approach, door opener for farmland and multifunctionality in urban green infrastructure. Urban For. Urban Green 40, 73–83 (2019).

    Article 

    Google Scholar
     

  • Russo, A., Escobedo, F. J., Cirella, G. T. & Zerbe, S. Edible green infrastructure: an approach and review of provisioning ecosystem services and disservices in urban environments. Agric. Ecosyst. Environ. 242, 53–66 (2017).

    Article 

    Google Scholar
     

  • Sartison, K. & Artmann, M. Edible cities—an innovative nature-based solution for urban sustainability transformation? An explorative study of urban food production in German cities. Urban For. Urban Green 49, 126604 (2020).

    Article 

    Google Scholar
     

  • Säumel, I., Reddy, S. E. & Wachtel, T. Edible city solutions — one step further to foster social resilience through enhanced socio-cultural ecosystem services in cities. Sustainability 11, 972 (2019).

    Article 

    Google Scholar
     

  • Rupprecht, C. D. D. & Byrne, J. A. Informal urban greenspace: a typology and trilingual systematic review of its role for urban residents and trends in the literature. Urban For. Urban Green 13, 597–611 (2014).

    Article 

    Google Scholar
     

  • Palta, M. M., Grimm, N. B. & Groffman, P. M. “Accidental” urban wetlands: ecosystem functions in unexpected places. Front. Ecol. Environ. 15, 248–256 (2017).

    Article 

    Google Scholar
     

  • Kowarik, I. Urban wilderness: supply, demand, and access. Urban For. Urban Green 29, 336–347 (2018).

    Article 

    Google Scholar
     

  • Wolff, M., Haase, D., Priess, J. & Hoffmann, T. L. The role of brownfields and their revitalisation for the functional connectivity of the urban tree system in a regrowing city. Land 12, 333 (2023).

    Article 

    Google Scholar
     

  • Sikorska, D., Łaszkiewicz, E., Krauze, K. & Sikorski, P. The role of informal green spaces in reducing inequalities in urban green space availability to children and seniors. Environ. Sci. Policy 108, 144–154 (2020).

    Article 

    Google Scholar
     

  • Pedrosa, E. L. J. et al. Planning for informal urban green spaces in African cities: children’s perception and use in peri-urban areas of Luanda, Angola. Urban Sci. 5, 50 (2021).

    Article 

    Google Scholar
     

  • Ferrini, F. et al. (eds) Routledge Handbook of Urban Forestry (Routledge, 2019).

  • Pataki, D. E. et al. The benefits and limits of urban tree planting for environmental and human health. Front. Ecol. Evol. 9, 603757 (2021).

    Article 

    Google Scholar
     

  • Sousa-Silva, R., Duflos, M., Ordóñez, Barona, C. & Paquette, A. Keys to better planning and integrating urban tree planting initiatives. Landsc. Urban Plan. 231, 104649 (2023).

    Article 

    Google Scholar
     

  • Bauer, M. et al. BlueGreenStreets Toolbox — A & B. Multifunktionale Straßenraumgestaltung urbaner Quartiere. Multifunctional streetscape design in urban neighborhoods. HafenCity Universität Hamburg https://doi.org/10.34712/142.27 (2022).

  • Love, N. L. R. et al. Diversity and structure in California’s urban forest: what over six million data points tell us about one of the world’s largest urban forests. Urban For. Urban Green 74, 127679 (2022).

    Article 

    Google Scholar
     

  • Paquette, A. et al. Praise for diversity: a functional approach to reduce risks in urban forests. Urban For. Urban Green 62, 127157 (2021).

    Article 

    Google Scholar
     

  • Berthon, K., Thomas, F. & Bekessy, S. The role of ‘nativeness’ in urban greening to support animal biodiversity. Landsc. Urban Plan. 205, 103959 (2021).

    Article 

    Google Scholar
     

  • Sjöman, H., Morgenroth, J., Sjöman, J. D., Sæbø, A. & Kowarik, I. Diversification of the urban forest — can we afford to exclude exotic tree species? Urban For. Urban Green. 18, 237–241 (2016).

    Article 

    Google Scholar
     

  • Vogt, J. et al. Citree: a database supporting tree selection for urban areas in temperate climate. Landsc. Urban Plan. 157, 14–25 (2017).

    Article 

    Google Scholar
     

  • Böll, D. S. Trockenstressreaktionen heimischer und nicht-heimischer Stadtbaumarten in Extremsommern. LWG https://www.lwg.bayern.de/mam/cms06/landespflege/dateien/lwg_anpassungsstrategien_stadtgruen21_bf.pdf (2021).

  • Salmond, J. A. et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 15, S36 (2016).

    Article 

    Google Scholar
     

  • Guarino, R., Catalano, C. & Pasta, S. Beyond urban forests: the multiple functions and the overlooked role of semi-natural ecosystems in Mediterranean cities. Diversity 16, 447 (2024).

    Article 

    Google Scholar
     

  • Roman, L. A. et al. Beyond ‘trees are good’: disservices, management costs, and tradeoffs in urban forestry. Ambio 50, 615–630 (2021).

    Article 

    Google Scholar
     

  • Kowarik, I. & Körner, S. (eds) Wild Urban Woodlands (Springer, 2005).

  • Kowarik, I. et al. Emerging urban forests: opportunities for promoting the wild side of the urban green infrastructure. Sustainability 11, 10–12 (2019).

    Article 

    Google Scholar
     

  • Riley, C. B., Herms, D. A. & Gardiner, M. M. Exotic trees contribute to urban forest diversity and ecosystem services in inner-city Cleveland, OH. Urban For. Urban Green 29, 367–376 (2018).

    Article 

    Google Scholar
     

  • Trentanovi, G. et al. Integrating spontaneous urban woodlands into the green infrastructure: unexploited opportunities for urban regeneration. Land Use Policy 102, 105221 (2021).

    Article 

    Google Scholar
     

  • Blaustein, R. Urban biodiversity gains new converts: cities around the world are conserving species and restoring habitat. BioScience 63, 72–77 (2013).

    Article 

    Google Scholar
     

  • Deparis, M., Legay, N., Isselin-Nondedeu, F. & Bonthoux, S. How managers and city dwellers relate to spontaneous vegetation in cities: towards an integrative approach. Urban For. Urban Green 82, 127876 (2023).

    Article 

    Google Scholar
     

  • Tan, H.-A. et al. Designing and managing biodiverse streetscapes: key lessons from the city of Melbourne. Urban Ecosyst. 25, 733–740 (2022).

    Article 

    Google Scholar
     

  • Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 30, e02149 (2020).

    Article 

    Google Scholar
     

  • Phillips, B. B., Bullock, J. M., Osborne, J. L. & Gaston, K. J. Ecosystem service provision by road verges. J. Appl. Ecol. 57, 488–501 (2020).

    Article 

    Google Scholar
     

  • Säumel, I., Weber, F. & Kowarik, I. Toward livable and healthy urban streets: roadside vegetation provides ecosystem services where people live and move. Environ. Sci. Policy 62, 24–33 (2016).

    Article 

    Google Scholar
     

  • Fischer, L. K. & Gopal, D. Streetscapes as surrogate greenspaces during COVID-19? Front. Sustain. Cities 3, 710920 (2021).

    Article 

    Google Scholar
     

  • Pellegrini, P. & Baudry, S. Streets as new places to bring together both humans and plants: examples from Paris and Montpellier (France). Soc. Cult. Geogr. 15, 871–900 (2014).

    Article 

    Google Scholar
     

  • Navarrete-Hernandez, P., Kiarostami, N., Yang, D. & Ozcakir, A. Green enough? A dose–response curve of the impact of street greenery levels and types on perceived happiness. Landsc. Urban Plan. 251, 105130 (2024).

    Article 

    Google Scholar
     

  • Nawrath, M., Kowarik, I. & Fischer, L. K. The influence of green streets on cycling behavior in European cities. Landsc. Urban Plan. 190, 103598 (2019).

    Article 

    Google Scholar
     

  • Wong, T. H. F., Rogers, B. C. & Brown, R. R. Transforming cities through water-sensitive principles and practices. One Earth 3, 436–447 (2020).

    Article 

    Google Scholar
     

  • Chan, F. K. S. et al. “Sponge City” in China — a breakthrough of planning and flood risk management in the urban context. Land Use Policy 76, 772–778 (2018).

    Article 

    Google Scholar
     

  • Filazzola, A., Shrestha, N. & MacIvor, J. S. The contribution of constructed green infrastructure to urban biodiversity: a synthesis and meta‐analysis. J. Appl. Ecol. 56, 2131–2143 (2019).

    Article 

    Google Scholar
     

  • Scott MacIvor, J., Williams, N. S. G. & Lundholm, J. in Routledge Handbook of Urban Biodiversity (eds Nilon, C. H. & Aronson, M. F. J.) 333–345 (Routledge, 2023).

  • Wang, L. et al. The relationship between green roofs and urban biodiversity: a systematic review. Biodivers. Conserv. 31, 1771–1796 (2022).

    Article 

    Google Scholar
     

  • Stefanakis, A. I. The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability 11, 6981 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Song, S., Albert, C. & Prominski, M. Exploring integrated design guidelines for urban wetland parks in China. Urban For. Urban Green. 53, 126712 (2020).

    Article 

    Google Scholar
     

  • Kim, K.-G., Lee, H. & Lee, D.-H. Wetland restoration to enhance biodiversity in urban areas: a comparative analysis. Landsc. Ecol. Eng. 7, 27–32 (2011).

    Article 

    Google Scholar
     

  • Wild, T. C., Bernet, J. F., Westling, E. L. & Lerner, D. N. Deculverting: reviewing the evidence on the ‘daylighting’ and restoration of culverted rivers. Water Environ. J. 25, 412–421 (2011).

    Article 

    Google Scholar
     

  • Ciach, M., Wrazidło, D. & Fedyń, I. Ecosystem engineers enter the city: habitat characteristics influencing the distribution of Eurasian beavers Castor fiber in a human-transformed landscape. Landsc. Urban Plan. 240, 104893 (2023).

    Article 

    Google Scholar
     

  • Aronson, J., Blignaut, J. N. & Aronson, T. B. Conceptual frameworks and references for landscape-scale restoration: reflecting back and looking forward. Ann. Missouri Bot. Gard. 102, 188–200 (2017).

    Article 

    Google Scholar
     

  • Fekete, R., Valkó, O., Fischer, L. K., Deák, B. & Klaus, V. H. Ecological restoration and biodiversity-friendly management of urban grasslands — a global review on the current state of knowledge. J. Environ. Manag. 368, 122220 (2024).

    Article 

    Google Scholar
     

  • Fernández-Juricic, E. & Jokimäki, J. A habitat island approach to conserving birds in urban landscapes: case studies from southern and northern Europe. Biodivers. Conserv. 10, 2023–2043 (2001).

    Article 

    Google Scholar
     

  • Mata, L. et al. Large positive ecological changes of small urban greening actions. Ecol. Solut. Evid. 4, e12259 (2023).

    Article 

    Google Scholar
     

  • Threlfall, C. G. & Kendal, D. The distinct ecological and social roles that wild spaces play in urban ecosystems. Urban For. Urban Green 29, 348–356 (2018).

    Article 

    Google Scholar
     

  • Kühn, N. Intentions for the unintentional: spontaneous vegetation as the basis for innovative planting design in urban areas. J. Landsc. Arch. 1, 46–53 (2006).


    Google Scholar
     

  • Fröhlich, A. & Ciach, M. Dead tree branches in urban forests and private gardens are key habitat components for woodpeckers in a city matrix. Landsc. Urban Plan. 202, 103869 (2020).

    Article 

    Google Scholar
     

  • Le Roux, D. S. et al. Reduced availability of habitat structures in urban landscapes: implications for policy and practice. Landsc. Urban Plan. 125, 57–64 (2014).

    Article 

    Google Scholar
     

  • Oertli, B. & Parris, K. M. Toward management of urban ponds for freshwater biodiversity. Ecosphere 10, e02810 (2019).

    Article 

    Google Scholar
     

  • Paudel, S. & States, S. L. Urban green spaces and sustainability: exploring the ecosystem services and disservices of grassy lawns versus floral meadows. Urban For. Urban Green 84, 127932 (2023).

    Article 

    Google Scholar
     

  • Baldock, K. C. Opportunities and threats for pollinator conservation in global towns and cities. Curr. Opin. Insect Sci. 38, 63–71 (2020).

    Article 

    Google Scholar
     

  • Proske, A., Lokatis, S. & Rolff, J. Impact of mowing frequency on arthropod abundance and diversity in urban habitats: a meta-analysis. Urban For. Urban Green 76, 127714 (2022).

    Article 

    Google Scholar
     

  • Yang, F. et al. Relationships between multi-scale factors, plant and pollinator diversity, and composition of park lawns and other herbaceous vegetation in a fast growing megacity of China. Landsc. Urban Plan. 185, 117–126 (2019).

    Article 

    Google Scholar
     

  • Fischer, L. K. et al. Public attitudes toward biodiversity-friendly greenspace management in Europe. Conserv. Lett. 13, e12718 (2020).

    Article 

    Google Scholar
     

  • Li, X.-P., Fan, S.-X., Kühn, N., Dong, L. & Hao, P.-Y. Residents’ ecological and aesthetical perceptions toward spontaneous vegetation in urban parks in China. Urban For. Urban Green 44, 126397 (2019).

    Article 

    Google Scholar
     

  • Salisbury, A. et al. Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): should we plant native or exotic species? J. Appl. Ecol. 52, 1156–1164 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dunnett, N. & Hitchmough, J. (eds) The Dynamic Landscape: Design, Ecology and Management of Naturalistic Urban Planting (Taylor & Francis, 2004).

  • Kühn, N. Staudenverwendung (Ulmer, 2024).

  • Klaus, V. H. & Kiehl, K. A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol. 52, 82–94 (2021).

    Article 

    Google Scholar
     

  • Zerbe, S. in Restoration of Multifunctional Cultural Landscapes: Merging Tradition and Innovation for a Sustainable Future (ed. Zerbe, S.) 497–513 (Springer International Publishing, 2022).

  • Fischer, L. K., Lippe, M., von der, Rillig, M. C. & Kowarik, I. Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol. Conserv. 159, 119–126 (2013).

    Article 

    Google Scholar
     

  • Bucharova, A. et al. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 20, 7–17 (2019).

    Article 

    Google Scholar
     

  • Bonthoux, S. & Chollet, S. Wilding cities for biodiversity and people: a transdisciplinary framework. Biol. Rev. 99, 1458–1480 (2024).

    Article 

    Google Scholar
     

  • Lum, S. & Kang Min, N. Lessons in ecology and conservation from a tropical forest fragment in Singapore. Biol. Conserv. 254, 108847 (2021).

    Article 

    Google Scholar
     

  • Sen, A. & Pattanaik, S. Politics of biodiversity conservation and socio ecological conflicts in a city: the case of Sanjay Gandhi National Park, Mumbai. J. Agric. Environ. Ethics 29, 305–326 (2016).

    Article 

    Google Scholar
     

  • Gandy, M. Marginalia: aesthetics, ecology, and urban wastelands. Ann. Assoc. Am. Geogr. 103, 1301–1316 (2013).

    Article 

    Google Scholar
     

  • Meffert, P. J. & Dziock, F. What determines occurrence of threatened bird species on urban wastelands? Biol. Conserv. 153, 87–96 (2012).

    Article 

    Google Scholar
     

  • Zoderer, B. M. & Hainz-Renetzeder, C. Enabling wild nature experiences in cities: a spatial analysis of institutional and physical barriers to using wild nature areas in Vienna, Austria. Landsc. Urban Plan. 254, 105228 (2025).

    Article 

    Google Scholar
     

  • Bonthoux, S., Voisin, L., Bouché-Pillon, S. & Chollet, S. More than weeds: spontaneous vegetation in streets as a neglected element of urban biodiversity. Landsc. Urban Plan. 185, 163–172 (2019).

    Article 

    Google Scholar
     

  • Zoderer, B. M., Hainz-Renetzeder, C. & Vuolo, F. Mapping wild nature areas to identify priority areas for urban rewilding in cities: a process-oriented approach. Urban For. Urban Green 101, 128549 (2024).

    Article 

    Google Scholar
     

  • Hwang, Y. H., Yue, Z. E. J., Ling, S. K. & Tan, H. H. V. It’s ok to be wilder: preference for natural growth in urban green spaces in a tropical city. Urban For. Urban Green 38, 165–176 (2019).

    Article 

    Google Scholar
     

  • Kowarik, I. Working with wilderness: a promising direction for urban green spaces. Landsc. Archit. Front. 9, 92–103 (2021).

    Article 

    Google Scholar
     

  • Li, J. & Nassauer, J. I. Cues to care: a systematic analytical review. Landsc. Urban Plan. 201, 103821 (2020).

    Article 

    Google Scholar
     

  • MacDougall, A. S. & Turkington, R. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86, 42–55 (2005).

    Article 

    Google Scholar
     

  • Bartz, R. & Kowarik, I. Assessing the environmental impacts of invasive alien plants: a review of assessment approaches. NeoBiota 43, 69–99 (2019).

    Article 

    Google Scholar
     

  • Robertson, P. A. et al. A proposed unified framework to describe the management of biological invasions. Biol. Invas. 22, 2633–2645 (2020).

    Article 

    Google Scholar
     

  • Straka, T. M. et al. Beyond values: how emotions, anthropomorphism, beliefs and knowledge relate to the acceptability of native and non-native species management in cities. People Nat. 4, 1485–1499 (2022).

    Article 

    Google Scholar
     

  • Sádlo, J., Vítková, M., Pergl, J. & Pyšek, P. Towards site-specific management of invasive alien trees based on the assessment of their impacts: the case of Robinia pseudoacacia. NeoBiota 35, 1–34 (2017).

    Article 

    Google Scholar
     

  • Colléony, A., Levontin, L. & Shwartz, A. Promoting meaningful and positive nature interactions for visitors to green spaces. Conserv. Biol. 34, 1373–1382 (2020).

    Article 

    Google Scholar
     

  • Cerda, C., Guenat, S., Egerer, M. & Fischer, L. K. Home food gardening: benefits and barriers during the COVID-19 pandemic in Santiago, Chile. Front. Sustain. Food Syst. 6, 841386 (2022).

    Article 

    Google Scholar
     

  • Mumaw, L. & Mata, L. Wildlife gardening: an urban nexus of social and ecological relationships. Front. Ecol. Environ. 20, 379–385 (2022).

    Article 

    Google Scholar
     

  • Samus, A., Freeman, C., Dickinson, K. J. M. & Van Heezik, Y. Relationships between nature connectedness, biodiversity of private gardens, and mental well-being during the Covid-19 lockdown. Urban For. Urban Green 69, 127519 (2022).

    Article 

    Google Scholar
     

  • Amiri, A., Geravandi, S. & Rostami, F. Potential effects of school garden on students’ knowledge, attitude and experience: a pilot project on sixth grade students in Iran. Urban For. Urban Green 62, 127174 (2021).

    Article 

    Google Scholar
     

  • Askerlund, P., Almers, E., Tuvendal, M. & Waite, S. Growing nature connection through greening schoolyards: preschool teachers’ response to ecosystem services innovations. Education 3-13 52, 1341–1352 (2024).

    Article 

    Google Scholar
     

  • Egerer, M. & Kowarik, I. Confronting the modern Gordian knot of urban beekeeping. Trends Ecol. Evol. 35, 956–959 (2020).

    Article 

    Google Scholar
     

  • MacInnis, G., Normandin, E. & Ziter, C. D. Decline in wild bee species richness associated with honey bee (Apis mellifera L.) abundance in an urban ecosystem. PeerJ 11, e14699 (2023).

    Article 

    Google Scholar
     

  • Guenat, S., Bailey-Athias, J. P. & Fischer, L. K. Urban foraging in Brazilian public greenspaces. Ambio 52, 1248–1261 (2023).

    Article 

    Google Scholar
     

  • Shackleton, C. M., Hurley, P. T., Dahlberg, A. C., Emery, M. R. & Nagendra, H. Urban foraging: a ubiquitous human practice overlooked by urban planners, policy, and research. Sustainability 9, 1884 (2017).

    Article 

    Google Scholar
     

  • Fischer, L. K. & Kowarik, I. Connecting people to biodiversity in cities of tomorrow: is urban foraging a powerful tool? Ecol. Indic. 112, 106087 (2020).

    Article 

    Google Scholar
     

  • Sardeshpande, M. & Shackleton, C. Urban foraging: land management policy, perspectives, and potential. PLoS ONE 15, e0230693 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shwartz, A. et al. Urban biodiversity, city-dwellers and conservation: how does an outdoor activity day affect the human–nature relationship? PLoS ONE 7, e38642 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mumaw, L. M. & Raymond, C. M. A framework for catalysing the rapid scaling of urban biodiversity stewardship programs. J. Environ. Manag. 292, 112745 (2021).

    Article 

    Google Scholar
     

  • Peter, M., Diekötter, T., Höffler, T. & Kremer, K. Biodiversity citizen science: outcomes for the participating citizens. People Nat. 3, 294–311 (2021).

    Article 

    Google Scholar
     

  • Butler, C. W., Hamlin, I., Richardson, M., Lowe, M. & Fox, R. Connection for conservation: the impact of counting butterflies on nature connectedness and wellbeing in citizen scientists. Biol. Conserv. 292, 110497 (2024).

    Article 

    Google Scholar
     

  • Toomey, A. H., Strehlau-Howay, L., Manzolillo, B. & Thomas, C. The place-making potential of citizen science: creating social-ecological connections in an urbanized world. Landsc. Urban Plan. 200, 103824 (2020).

    Article 

    Google Scholar
     

  • Greving, H. et al. Improving attitudes and knowledge in a citizen science project about urban bat ecology. Ecol. Soc. https://doi.org/10.5751/ES-13272-270224 (2022).

  • Whitburn, J., Linklater, W. L. & Milfont, T. L. Exposure to urban nature and tree planting are related to pro-environmental behavior via connection to nature, the use of nature for psychological restoration, and environmental attitudes. Environ. Behav. 51, 787–810 (2019).

    Article 

    Google Scholar
     

  • Lewis, D. L. et al. Foraging ecology of black bears in urban environments: guidance for human–bear conflict mitigation. Ecosphere 6, art141 (2015).

    Article 

    Google Scholar
     

  • Ávila, M. & Ernstson, H. in Grounding Urban Natures (eds Ernstson, H. & Sorlin, S.) Ch. 5 (MIT Press, 2019).

  • Veríssimo, D., Tully, B. & Douglas, L. R. in Human–Wildlife Interactions (eds Frank, B., Glikman, J. A. & Marchini, S.) 335–358 (Cambridge Univ. Press, 2019).

  • Tuttle, M. D. in Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C.) 363–391 (Springer, 2013).

  • Khoo, M. D. Y. & Lee, B. P. Y.-H. The urban smooth-coated otters Lutrogale perspicillata of Singapore: a review of the reasons for success. Int. Zoo. Yearb. 54, 60–71 (2020).

    Article 

    Google Scholar
     

  • Costadone, L. & Vierikko, K. Are traditional urban greening actions compliant with the European Greening Plans guidance? Urban For. Urban Green 90, 128131 (2023).

    Article 

    Google Scholar
     

  • Simon, D. et al. Developing and testing the Urban Sustainable Development Goal’s targets and indicators — a five-city study. Environ. Urban 28, 49–63 (2016).

    Article 

    Google Scholar
     

  • von Haaren, C., Lovett, A. A. & Albert, C. in Landscape Planning with Ecosystem Services: Theories and Methods for Application in Europe (eds von Haaren, C., Lovett, A. A. & Albert, C.) 19–42 (Springer, 2019).

  • Lebrun, P., Walz, A., Albert, C. & Lipp, T. Ecosystem-based adaptation in cities: use of formal and informal planning instruments. Land Use Policy 109, 105722 (2021).

    Article 

    Google Scholar
     

  • Sankowska, P.-J. Planning instruments and urban development management tools for smart cities. Case study: Ludwigsburg, Germany. In Int. Conf. on Smart Infrastructure and Construction (ICSIC) 177–186 (ICE Publishing, 2019).

  • Nadin, V., Cotella, G. & Schmitt, P. in Spatial Planning Systems in Europe (eds Nadin, V. et al.) 2–27 (Edward Elgar Publishing, 2024).

  • Mejía-Dugand, S. & Pizano-Castillo, M. Touching down in cities: territorial planning instruments as vehicles for the implementation of SDG strategies in cities of the Global South. Sustainability 12, 6778 (2020).

    Article 

    Google Scholar
     

  • Feng, S., Zhao, W., Zhan, T., Yan, Y. & Pereira, P. Land degradation neutrality: a review of progress and perspectives. Ecol. Indic. 144, 109530 (2022).

    Article 

    Google Scholar
     

  • Wende, W., Herberg, A. & Herzberg, A. Mitigation banking and compensation pools: improving the effectiveness of impact mitigation regulation in project planning procedures. Impact Assess. Proj. Apprais. 23, 101–111 (2005).

    Article 

    Google Scholar
     

  • Albrecht, J., Schumacher, J. & Wende, W. The German impact-mitigation regulation — a model for the EU’s no-net-loss strategy and biodiversity offsets? Environ. Policy Law 44, 317–332 (2014).


    Google Scholar
     

  • Thiele, J., Wiehe, J. & von Haaren, C. Participation 3.0 in the implementation of the energy transition—components and effectiveness of an interactive dialogue tool (Vision:En 2040). PLoS ONE 19, e0299270 (2024).

    Article 
    CAS 

    Google Scholar
     

  • von Haaren, C. & Othengrafen, F. The Babel Fish Toolkit: understanding and using behavioural mechanisms and interventions in landscape planning. DisP Plan. Rev. 55, 22–35 (2019).

    Article 

    Google Scholar
     

  • Leshinsky, R. & Legacy, C. (eds) Instruments of Planning: Tensions and Challenges for More Equitable and Sustainable Cities (Routledge, 2015).

  • Hansen, R. et al. Transformative or piecemeal? Changes in green space planning and governance in eleven European cities. Eur. Plan. Stud. 31, 2401–2424 (2023).

    Article 

    Google Scholar
     

  • Rössler, M., Nemeth, E. & Bruckner, A. Glass pane markings to prevent bird-window collisions: less can be more. Biologia 70, 535–541 (2015).

    Article 

    Google Scholar
     

  • Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet 401, 577–589 (2023).

    Article 

    Google Scholar
     

  • Sendall, J., Higgins, D., Leake, A., Cowie, H. & Birchby, D. A rapid economic assessment of Wildlife Trusts’ nature prescribing programmes. Lancet 404, S10 (2024).

    Article 

    Google Scholar
     

  • Lerman, S. B., Turner, V. K. & Bang, C. Homeowner associations as a vehicle for promoting native urban biodiversity. Ecol. Soc. 17, 45 (2012).

    Article 

    Google Scholar
     

  • Dearborn, D. C. & Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 24, 432–440 (2010).

    Article 

    Google Scholar
     

  • Lambert, M. & Schell, C. (eds) Urban Biodiversity and Equity: Justice-Centered Conservation in Cities (Oxford Univ. Press, 2023).

  • Ambrose-Oji, B. et al. Innovative Governance for Urban Green Infrastructure: A Guide for Practitioners (Green Surge, 2017).

  • Armsworth, P. R., Daily, G. C., Kareiva, P. & Sanchirico, J. N. Land market feedbacks can undermine biodiversity conservation. Proc. Natl. Acad. Sci. USA 103, 5403–5408 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Sponagel, C. et al. Integrated assessment of regional approaches for biodiversity offsetting in urban-rural areas—a future based case study from Germany using arable land as an example. Land Use Policy 117, 106085 (2022).

    Article 

    Google Scholar
     

  • Roe, M. H. et al. Urban national parks or national park cities? Town Ctry Plan. Q. Rev. Town Ctry Plan. Assoc. 87, 261–267 (2018).


    Google Scholar
     

  • Baró, F., Langemeyer, J., Łaszkiewicz, E. & Kabisch, N. Editorial to the special issue “Advancing urban ecosystem service implementation and assessment considering different dimensions of environmental justice”. Environ. Sci. Policy 115, 43–46 (2021).

    Article 

    Google Scholar
     

  • Rigolon, A. et al. Advancing green space equity via policy change: a scoping review and research agenda. Environ. Sci. Policy 157, 103765 (2024).

    Article 

    Google Scholar
     

  • Sen, A. & Nagendra, H. Local community engagement, environmental placemaking and stewardship by migrants: a case study of lake conservation in Bengaluru, India. Landsc. Urban Plan. 204, 103933 (2020).

    Article 

    Google Scholar
     

  • Sultana, R., Birtchnell, T. & Gill, N. Grassroots innovation for urban greening within a governance vacuum by slum dwellers in Dhaka. Sustainability 14, 11631 (2022).

    Article 

    Google Scholar
     

  • Wen, C., Albert, C. & von Haaren, C. Nature-based recreation for the elderly in urban areas: assessing opportunities and demand as planning support. Ecol. Process. 11, 44 (2022).

    Article 

    Google Scholar
     

  • Mundoli, S. & Nagendra, H. in The Routledge Handbook of Urban Ecology (eds Nilon, C. H. & Aronson, M. F. J.) 685–693 (Routledge, 2020).

  • Cocks, M. L. & Wiersum, F. Reappraising the concept of biocultural diversity: a perspective from South Africa. Hum. Ecol. 42, 727–737 (2014).

    Article 

    Google Scholar
     

  • Vierikko, K. et al. Considering the ways biocultural diversity helps enforce the urban green infrastructure in times of urban transformation. Curr. Opin. Environ. Sustain. 22, 7–12 (2016).

    Article 

    Google Scholar
     

  • Kremer, P., Haase, A. & Haase, D. The future of urban sustainability: smart, efficient, green or just? Introduction to the special issue. Sustain. Cities Soc. 51, 101761 (2019).

    Article 

    Google Scholar
     

  • Haase, D. et al. Greening cities — to be socially inclusive? About the alleged paradox of society and ecology in cities. Habitat. Int. 64, 41–48 (2017).

    Article 

    Google Scholar
     

  • Browning, M. H. E. M. et al. Measuring the 3–30–300 rule to help cities meet nature access thresholds. Sci. Total. Environ. 907, 167739 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pierce, J. R. et al. Urban Nature Indexes tool offers comprehensive and flexible approach to monitoring urban ecological performance. npj Urban. Sustain. 4, 22 (2024).

    Article 

    Google Scholar
     

  • Beatley, T. Biophilic Cities (Island Press/Center for Resource Economics, 2011).

  • Parris, K. M. et al. The seven lamps of planning for biodiversity in the city. Cities 83, 44–53 (2018).

    Article 

    Google Scholar
     

  • Apfelbeck, B. et al. Designing wildlife-inclusive cities that support human–animal co-existence. Landsc. Urban Plan. 200, 103817 (2020).

    Article 

    Google Scholar
     

  • Hernandez-Santin, C., Amati, M., Bekessy, S. & Desha, C. Integrating biodiversity as a non-human stakeholder within urban development. Landsc. Urban Plan. 232, 104678 (2023).

    Article 

    Google Scholar
     

  • Kirk, H. et al. Building biodiversity into the urban fabric: a case study in applying Biodiversity Sensitive Urban Design (BSUD). Urban For. Urban Green 62, 127176 (2021).

    Article 

    Google Scholar
     

  • Basnou, C., Pino, J., Davies, C., Winkel, G. & De Vreese, R. Co-design processes to address nature-based solutions and ecosystem services demands: the long and winding road towards inclusive urban planning. Front. Sustain. Cities 2, 572556 (2020).

    Article 

    Google Scholar
     

  • Kabisch, N., Frantzeskaki, N. & Hansen, R. Principles for urban nature-based solutions. Ambio 51, 1388–1401 (2022).

    Article 

    Google Scholar
     

  • McPhearson, T., Kabisch, N. & Frantzeskaki, N. (eds) Nature-Based Solutions for Cities (Edward Elgar Publishing, 2023).

  • Mercado, G. et al. Supporting nature-based solutions via nature-based thinking across European and Latin American cities. Ambio 53, 79–94 (2024).

    Article 

    Google Scholar
     

  • Konijnendijk van den Bosch, C. C. Tree agency and urban forest governance. Smart Sustain. Built Environ. 5, 176–188 (2016).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img