A clear distinction and presence of Acropora aff. divaricata within Acropora cf. solitaryensis species complex along their biogeographic distribution in East Asia


  • Hughes, T. P. et al. Coral reefs in the anthropocene. Nature 546, 82–90 (2017).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (Cambridge University Press, 2022). https://doi.org/10.1017/9781009157940.

  • Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).


    Google Scholar
     

  • Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zande, R. M. et al. Paradise lost: end-of‐century warming and acidification under business‐as‐usual emissions have severe consequences for symbiotic corals. Glob. Chang Biol. 26, 2203–2219 (2020).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 11 (2018).

  • Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C. & Possingham H. P. securing a long-term future for coral reefs. Trends Ecol. Evol. 33, 936–944 (2018).

    PubMed 

    Google Scholar
     

  • Anthony, K. R. N. et al. Interventions to help coral reefs under global change—A complex decision challenge. PLoS One 15, e0236399 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chauka, L. J. & Nyangoko, B. P. Climate change impacts outweigh conservation efforts in coral reefs that are highly exposed to thermal stresses in Zanzibar, Tanzania. Ocean. Coast Manag. 238, 106575 (2023).


    Google Scholar
     

  • Hilmi, N. et al. The pressures and opportunities for coral reef preservation and restoration in the Maldives. Front. Environ. Econ. 2, 1110214 (2023).

    MATH 

    Google Scholar
     

  • Gove, J. M. et al. Coral reefs benefit from reduced land–sea impacts under ocean warming. Nature 621, 536–542 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Battaglia, F. M. Blue planet law, the ecology of our economic and technological world. Sustain. Dev. Goals Ser. 121–130. https://doi.org/10.1007/978-3-031-24888-7_10 (2023).

  • Bernot, J. et al. World Register of Marine Species (WoRMS) (2024).

  • Veron, J. E. N. Corals of the World, 1–3 (Australian Institute of Marine Science and CRR, 2000).

  • Fukami, H. Short review: molecular phylogenetic analyses of reef corals. Galaxea J. Coral Reef. Stud. 10, 47–55 (2008).

    MATH 

    Google Scholar
     

  • Fukami, H., Tachikawa, H., Suzuki, G., Nagata, S. & Sugihara, K. Current status and problems with the identification and taxonomy of zooxanthellate scleractinian corals in Japan. J. Jpn. Coral Reef. Soc. 12, 17–31 (2010).


    Google Scholar
     

  • Kitahara, M. V., Fukami, H., Benzoni, F. & Huang, D. The Cnidaria, past, present and future, 41–59 https://doi.org/10.1007/978-3-319-31305-4_4 (2016).

  • Arrigoni, R. et al. An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea. Coral Reefs. 37, 967–984 (2018).

    ADS 
    MATH 

    Google Scholar
     

  • Terraneo, T. I., Benzoni, F., Baird, A. H., Arrigoni, R. & Berumen, M. L. Morphology and molecules reveal two new species of Porites (Scleractinia, Poritidae) from the Red Sea and the Gulf of Aden. Syst. Biodivers. 17, 491–508 (2019).


    Google Scholar
     

  • Bridge, T. C. L. et al. A tenuis relationship: traditional taxonomy obscures systematics and biogeography of the ‘Acropora tenuis’ (Scleractinia: Acroporidae) species complex. Zoöl J. Linn. Soc. zlad062 https://doi.org/10.1093/zoolinnean/zlad062 (2023).

  • Furukawa, M. et al. Integrative taxonomic analyses reveal that rapid genetic divergence drives Acropora speciation. Mol. Phylogenet. Evol. 195, 108063 (2024).

    CAS 

    Google Scholar
     

  • Wallace, C. Staghorn corals of the world. 10.1071/9780643101388 (1999).

  • Veron, J. E. N., John, E. N. & Wallace, C. C. Scleractinia of eastern Australia. Part V. Family Acroporidae. Scleractinia East. Australia Part. V 6, 1–485 (1984).

    MATH 

    Google Scholar
     

  • Fukami, H., Niimura, A., Nakamori, T. & Iryu, Y. Species composition and mitochondrial molecular phylogeny of Acropora corals in Funakoshi, Amami-Oshima Island, Japan: a proposal for its new taxonomic grouping. Galaxea J. Coral Reef. Stud. 23, 17–35 (2021).


    Google Scholar
     

  • Todd, P. A. Morphological plasticity in scleractinian corals. Biol. Rev. 83, 315–337 (2008).

    PubMed 
    MATH 

    Google Scholar
     

  • Wallace, C., Done, B. & Muir, P. Revision and catalogue of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the Museum of Tropical Queensland. Mem. Qld. Mus. – Nat. 57, 1–255 (2012).


    Google Scholar
     

  • Cowman, P. F. et al. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Mol. Phylogenet. Evol. 153, 106944 (2020).

    PubMed 
    MATH 

    Google Scholar
     

  • Ramírez-Portilla, C. et al. Solving the coral species delimitation conundrum. Syst. Biol. 71, 461–475 (2021).


    Google Scholar
     

  • Ramírez-Portilla, C. et al. Quantitative three-dimensional morphological analysis supports species discrimination in complex-shaped and taxonomically challenging corals. Front. Mar. Sci. 9, 955582 (2022).


    Google Scholar
     

  • Odorico, D. M. & Miller, D. J. Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): patterns of variation consistent with reticulate evolution. Mol. Biol. Evol. 14, 465–473 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • van Oppen, M. J. H., McDonald, B. J., Willis, B. & Miller, D. J. The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol. Biol. Evol. 18, 1315–1329 (2001).

    PubMed 

    Google Scholar
     

  • Márquez, L. M., Oppen, M. J. H. V., Willis, B. L., Reyes, A. & Miller, D. J. The highly cross-fertile coral species, Acropora hyacinthus and Acropora cytherea, constitute statistically distinguishable lineages. Mol. Ecol. 11, 1339–1349 (2002).

    PubMed 

    Google Scholar
     

  • Richards, Z. T., Berry, O. & van Oppen, M. J. H. Cryptic genetic divergence within threatened species of Acropora coral from the Indian and pacific oceans. Conserv. Genet. 17, 577–591 (2016).


    Google Scholar
     

  • Veron, J. E. N. Corals in Space and Time: The Biogeography and Evolution of the scleractinia (Cornell University Press, 1995).

  • Willis, B. L., van Oppen, M. J. H., Miller, D. J., Vollmer, S. V. & Ayre, D. J. The role of hybridization in the evolution of reef corals. Ecol. Evol. Syst. 37, 489–517 (2006).

    MATH 

    Google Scholar
     

  • Fukami, H., Omori, M. & Hatta, M. Phylogenetic relationships in the coral family acroporidae, reassessed by inference from mitochondrial genes. Zoöl Sci. 17, 689–696 (2000).

    CAS 

    Google Scholar
     

  • Wolstenholme, J. K., Wallace, C. C. & Chen, C. A. Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): a morphological and molecular interpretation of evolution. Coral Reefs 22, 155–166 (2003).


    Google Scholar
     

  • Richards, Z. T., Miller, D. J. & Wallace, C. C. Molecular phylogenetics of geographically restricted Acropora species: implications for threatened species conservation. Mol. Phylogenet. Evol. 69, 837–851 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Ladner, J. T. & Palumbi, S. R. Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Mol. Ecol. 21, 2224–2238 (2012).

    PubMed 
    MATH 

    Google Scholar
     

  • Suzuki, G. et al. Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex. Coral Reefs. 35, 1419–1432 (2016).

    ADS 
    MATH 

    Google Scholar
     

  • Nakabayashi, A. et al. The potential role of temperate Japanese regions as refugia for the coral Acropora hyacinthus in the face of climate change. Sci. Rep. 9, 1892 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fifer, J. E., Yasuda, N., Yamakita, T., Bove, C. B. & Davies, S. W. Genetic divergence and range expansion in a western North Pacific coral. Sci. Total Environ. 813, 152423 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Quattrini, A. M. et al. Universal target-enrichment baits for anthozoan (Cnidaria) phylogenomics: new approaches to long‐standing problems. Mol. Ecol. Resour. 18, 281–295 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Dana, J. D. Zoophytes. United States exploring expedition during the years 1838–1842 (1846).

  • Veron, J. E. N. (John E. N. Hermatypic Corals of Japan (Australian Institute of Marine Science, 1992).

  • Dai, C. & Horng, S. Scleractinia Fauna of Taiwan I. The Complex Group (National Taiwan University, 2009).

  • Suzuki, G. & Fukami, H. Evidence of genetic and reproductive isolation between two morphs of subtropical-dominant coral Acropora solitaryensis in the non-reef region of Japan. Zoöl Sci. 29, 134–140 (2012).


    Google Scholar
     

  • Nishihira, M. & Veron, J. E. N. Hermatypic Corals of Japan (Kaiyusha, 1995).

  • Veron, J. E. N., (John, E. N., Marsh, M., Museum, W. A. & Loisette Hermatypic Corals of Western Australia: Records and Annotated Species List (Western Australian Museum, 1988).

  • Veron, J. E. N. (John E. N. A Biogeographic Database of Hermatypic Coral Species of the Central Indo-Pacific, Genera of the WorldAustralian Institute of Marine Science, 1993).

  • Dai, C. & Cheng, Y. R. Corals of Taiwan: Scleractinia Fauna Vol. 1 (Owl Publishing House Co., LTD, 2020).

  • Furukawa, M., Ohki, S., Kitanobo, S., Fukami, H. & Morita, M. Differences in spawning time drive cryptic speciation in the coral Acropora divaricata. Mar. Biol. 167, 163 (2020).


    Google Scholar
     

  • Kuo, C. Y. et al. Coral reefs of Eastern Asia under Anthropogenic impacts. Coral Reefs World, 7–35. https://doi.org/10.1007/978-3-031-27560-9_2 (2023).

  • Keshavmurthy, S., Mezaki, T., Reimer, J. D., Choi, K. S. & Chen, C. A. Coral reefs of Eastern Asia under anthropogenic impacts. Coral Reefs World, 53–71. https://doi.org/10.1007/978-3-031-27560-9_4 (2023).

  • Hatta, M. et al. Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Mol. Biol. Evol. 16, 1607–1613 (1999).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fukami, H., Omori, M., Shimoike, K., Hayashibara, T. & Hatta, M. Ecological and genetic aspects of reproductive isolation by different spawning times in Acropora corals. Mar. Biol. 142, 679–684 (2003).


    Google Scholar
     

  • Sukumaran, J., Holder, M. T. & Knowles, L. L. Incorporating the speciation process into species delimitation. PLoS Comput. Biol. 17, e1008924 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagès, J. Factorial analysis of mixed data. J. Appl. Stat. 52, 93–111 (2004).

    MATH 

    Google Scholar
     

  • Chong, F. et al. High-latitude marginal reefs support fewer but bigger corals than their tropical counterparts. Ecography 2023 (2023).

  • Sugihara, K. et al. Zooxanthellate scleractinian corals of Tanegashima Island, 1–197 (2015).

  • Nomura, K. The illustrated zooxanthellate scleractinian corals of Kushimoto I REFERTINA. Marine Pavilion 1–56 (2016).

  • Nomura, K. et al. Revision of the zooxanthellate scleractinian corals in Kushimoto, Wakayama, Japan. Mar. Pavilion (2016).

  • Mrquez, L. M., van Oppen, M. J. H., Willis, B. L. & J. Miller, D. Sympatric populations of the highly cross-fertile coral species Acropora hyacinthus and Acropora cytherea are genetically distinct. Proc. R Soc. Lond. Ser. B Biol. Sci. 269, 1289–1294 (2002).


    Google Scholar
     

  • Wei, N. V. et al. Reproductive isolation among Acropora species (Scleractinia: Acroporidae) in a marginal coral assemblage. Zool. Stud. 51, 85–92 (2012).


    Google Scholar
     

  • Ohki, S., Kowalski, R. K., Kitanobo, S. & Morita, M. Changes in spawning time led to the speciation of the broadcast spawning corals Acropora digitifera and the cryptic species Acropora sp. 1 with similar gamete recognition systems. Coral Reefs. 34, 1189–1198 (2015).

    ADS 

    Google Scholar
     

  • Kitanobo, S., Isomura, N., Fukami, H., Iwao, K. & Morita, M. The reef-building coral Acropora conditionally hybridize under sperm limitation. Biol. Lett. 12, 20160511 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallagher, S. J. et al. The Pliocene to recent history of the Kuroshio and Tsushima currents: a multi-proxy approach. Prog Earth Planet. Sci. 2, 17 (2015).

    ADS 
    MATH 

    Google Scholar
     

  • Ujiié, H., Tanaka, Y. & Ono, T. Late quarternary paleoceanographic record from the middle Ryukyu Trench slope, northwest Pacific. Mar. Micropaleontol. 18, 115–128 (1991).

    ADS 

    Google Scholar
     

  • Ujiié, Y., Ujiié, H., Taira, A., Nakamura, T. & Oguri, K. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years: evidence from planktonic foraminifera. Mar. Micropaleontol. 49, 335–364 (2003).

    ADS 
    MATH 

    Google Scholar
     

  • Dai, C., Wang, S. & Chang, J. Handbook for Ecological Tours of Guanyin Algae Reef (Liquefied Natural Gas Engineering Office, CPC Corporation, 2009).

  • Schöne, B. R. et al. Holocene seasonal environmental trends at Tokyo Bay, Japan, reconstructed from bivalve mollusk shells—implications for changes in the east Asian monsoon and latitudinal shifts of the Polar Front. Quat Sci. Rev. 23, 1137–1150 (2004).

    ADS 

    Google Scholar
     

  • Hoshino, M. The absolute age of the Numa Coral reef, Chiba prefecture. 14 C-Age Quaternary Deposits Japan XXXVI. 21, 38–39 (1967).

    MATH 

    Google Scholar
     

  • Matsushima, Y. Shallow marine molluscan assemblages of postglacial period in the Japan islands-its historical and geographical changes induced by the environmental changes. Bull. Kanagawa Prefectural Museum. 15, 37–109 (1984).


    Google Scholar
     

  • Liou, C. Y., Yang, S. Y. & Chen, C. A. Unprecedented calcareous algal reefs in northern Taiwan merit high conservation priority. Coral Reefs 36, 1253–1253 (2017).

    ADS 

    Google Scholar
     

  • Chen, M. et al. Enhanced monsoon-driven upwelling in southeast asia during the little ice age. Paleoceanogr. Paleoclimatol. 38 (2023).

  • Kuo, C. Y. et al. Lonely giant on the sand: unexpected massive Taiwanese coral, Polycyathus chaishanensis in the Datan algal reef demands a conservation focus. Galaxea J. Coral Reef. Stud. 21, 11–12 (2019).


    Google Scholar
     

  • Kuo, C. Y. et al. Demographic census confirms a stable population of the critically-endangered caryophyllid coral Polycyathus chaishanensis (Scleractinia; Caryophyllidae) in the Datan Algal Reef, Taiwan. Sci. Rep. 10, 10585 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Serisawa, Y., Imoto, Z., Ishikawa, T. & Ohno, M. Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish. Sci. 70, 189–191 (2004).

    CAS 

    Google Scholar
     

  • Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38 (2011).

  • Tkachenko, K. S., Soong, K. & Dongsha Atoll A potential thermal refuge for reef-building corals in the South China Sea. Mar. Environ. Res. 127, 112–125 (2017).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, W. et al. Isolation and characterization of a mini-collagen gene encoding a nematocyst capsule protein from a reef-building coral, Acropora donei. Gene 152, 195–200 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539–539 (2011).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2020).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Edler, D., Klein, J., Antonelli, A. & Silvestro, D. raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377 (2021).


    Google Scholar
     

  • Bouckaert, R. et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yang, Z. & Rannala, B. Unguided species delimitation using DNA sequence data from multiple loci. Mol. Biol. Evol. 31, 3125–3135 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Flouri, T., Jiao, X., Rannala, B. & Yang, Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 35, 2585–2593 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Barido-Sottani, J. et al. Taming the BEAST—A community teaching material resource for BEAST 2. Syst. Biol. 67, 170–174 (2018).

    PubMed 

    Google Scholar
     

  • Wallace, C. C. & Dai, C. F. Scleractinia of Taiwan (IV): review of the coral genus Acropora from Taiwan. Zool. Stud. Taipei 36, 288–324 (1997).

    MATH 

    Google Scholar
     

  • Royston, P. Approximating the Shapiro-Wilk W-test for non-normality. Stat. Comput. 2, 117–119 (1992).

    MATH 

    Google Scholar
     

  • Tukey, J. Multiple comparisons. J. Am. Stat. Assoc. 48, 624–625 (1953).

    MATH 

    Google Scholar
     

  • Trawiński, B., Smętek, M., Telec, Z. & Lasota, T. Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms. Int. J. Appl. Math. Comput. Sci. 22, 867–881 (2012).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Lê, S., Josse, J., Husson, F. & FactoMineR An R package for multivariate analysis. J. Stat. Softw. 25 (2008).



  • Source link

    More From Forest Beat

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes

    Parasitism as a driver of host diversification

    Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).Article  ...
    Biodiversity
    15
    minutes

    Spillovers and legacies of land management on temperate woodland biodiversity

    MacArthur, R. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).Tscharntke, T. et al. Landscape moderation of biodiversity patterns...
    Biodiversity
    10
    minutes
    spot_imgspot_img