A curated soil fungal dataset to advance fungal ecology and conservation research in Australia and Antarctica


  • Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol Evol 25, 372–380 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Delavaux, C. S. et al. Mycorrhizal feedbacks influence global forest structure and diversity. Commun Biol 6 (2023).

  • Delavaux, C. S. et al. Mycorrhizal fungi influence global plant biogeography. Nat Ecol Evol 3, 424–429 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J 16 (2022).

  • Luo, S. et al. Higher productivity in forests with mixed mycorrhizal strategies. Nat Commun 14, 1377 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol 205, 1406–1423 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol 21, 640–656 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • van Ruijven, J., Ampt, E., Francioli, D. & Mommer, L. Do soil‐borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. J Ecol 108, 1810–1821 (2020).

    Article 

    Google Scholar
     

  • Sarmiento, C. et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc Natl Acad Sci USA 114, 11458–11463 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nat Ecol Evol 6, 900–909 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat Microbiol 7, 1717–1725 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lutz, S. et al. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat Microbiol 8, 2277–2289 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ryberg, M. & Nilsson, R. H. New light on names and naming of dark taxa. MycoKeys 30, 31–39 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Lücking, R. et al. Fungal taxonomy and sequence-based nomenclature. Nat Microbiol 6, 540–548 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Niskanen, T. et al. Pushing the Frontiers of Biodiversity Research: Unveiling the Global Diversity, Distribution, and Conservation of Fungi. Annu Rev Environ Resour 48, 149–176 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Gonçalves, S. C., Haelewaters, D., Furci, G. & Mueller, G. M. Include all fungi in biodiversity goals. Science (1979) 373, 403–403 (2021).


    Google Scholar
     

  • Mikryukov, V. et al. Connecting the multiple dimensions of global soil fungal diversity. Sci Adv 9, eadj8016 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1052–1053 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. Gigascience 5, s13742–016 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109, 6241–6246 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Midgley, D. J., Greenfield, P., Bissett, A. & Tran-Dinh, N. First evidence of Pezoloma ericae in Australia: using the Biomes of Australia Soil Environments (BASE) to explore the Australian phylogeography of known ericoid mycorrhizal and root-associated fungi. Mycorrhiza 27, 587–594 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Davoodian, N., Jackson, C. J., Holmes, G. D. & Lebel, T. Continental‐scale metagenomics, BLAST searches, and herbarium specimens: The Australian Microbiome Initiative and the National Herbarium of Victoria. Appl Plant Sci 8 (2020).

  • Freestone, M. W. et al. Continental-scale distribution and diversity of Ceratobasidium orchid mycorrhizal fungi in Australia. Ann Bot 128, 329–343 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, D. et al. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol Conserv 217, 113–120 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor Ecol 28, S322–S334 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Liddicoat, C. et al. Ambient soil cation exchange capacity inversely associates with infectious and parasitic disease risk in regional Australia. Sci Total Environ 626, 117–125 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Egidi, E. et al. Delving into the dark ecology: A continent-wide assessment of patterns of composition in soil fungal communities from Australian tussock grasslands. Fungal Ecol 39, 356–370 (2019).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology 99, 583–596 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J., Nie, M., Powell, J. R., Bissett, A. & Pendall, E. Soil physico-chemical properties are critical for predicting carbon storage and nutrient availability across Australia. Environ Res Lett 15, 094088 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Viscarra Rossel, R. A. et al. Environmental controls of soil fungal abundance and diversity in Australia’s diverse ecosystems. Soil Biol Biochem 170, 108694 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Yang, Y., Shen, Z., Bissett, A. & Viscarra Rossel, R. A. Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions. SOIL 8, 223–235 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bowd, E. J. et al. Direct and indirect effects of fire on microbial communities in a pyrodiverse dry‐sclerophyll forest. J Ecol 110, 1687–1703 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Bowd, E. J., Banks, S. C., Bissett, A., May, T. W. & Lindenmayer, D. B. Disturbance alters the forest soil microbiome. Mol Ecol 31, 419–447 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waymouth, V. et al. Riparian fungal communities respond to land-use mediated changes in soil properties and vegetation structure. Plant Soil 475, 491–513 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Waymouth, V., Miller, R. E., Ede, F., Bissett, A. & Aponte, C. Variation in soil microbial communities: elucidating relationships with vegetation and soil properties, and testing sampling effectiveness. Plant Ecol 221, 837–851 (2020).

    Article 

    Google Scholar
     

  • Tedersoo, L. et al. Best practices in metabarcoding of fungi: From experimental design to results. Mol Ecol 31, 2769–2795 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun 10, 2369 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun 10, 5142 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • George, P. B. L. et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat Commun 10, 1107 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hakimzadeh, A. et al. A pile of pipelines: An overview of the bioinformatics software for metabarcoding data analyses. Mol Ecol Resour 00, 1–17 (2023).

    MATH 

    Google Scholar
     

  • Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Mol Ecol 2, 113–118 (1993).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. in PCR Protocols: A Guide to Methods and Applications 315–322, https://doi.org/10.1016/B978-0-12-372180-8.50042-1 (Academic Press, San Diego, CA, 1990).

  • Manter, D. K. & Vivanco, J. M. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J Microbiol Methods 71, 7–14 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 7, 1–14 (2020).


    Google Scholar
     

  • Tedersoo, L. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers 111, 573–588 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Bissett, A. & Brown, M. V. Alpha-diversity is strongly influenced by the composition of other samples when using multiplexed sequencing approaches. Soil Biol Biochem 127, 79–81 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Belbin, L., Wallis, E., Hobern, D. & Zerger, A. The Atlas of Living Australia: History, current state and future directions. Biodivers Data J 9 (2021).

  • Lebel, T. et al. Confirming the presence of five exotic species of Amanita in Australia and New Zealand. Swainsona 44, 1–44 (2024).

    MATH 

    Google Scholar
     

  • Atlas of Living Australia occurrence download for Biome of Australia Soil Environments https://doi.org/10.26197/ala.17104622-e3ef-4f3f-b0ad-2e83743c0dcd (Accessed 8 April 2024).

  • GBIF occurrence download for Biome of Australia Soil Environments https://doi.org/10.15468/hn7xl9 (Accessed 8 April 2024).

  • Colesie, C., Walshaw, C. V., Sancho, L. G., Davey, M. P. & Gray, A. Antarctica’s vegetation in a changing climate. WIREs Climate Change 14 (2023).

  • GBIF occurrence download for Antarctica https://doi.org/10.15468/dl.68djdq (Accessed 8 April 2024).

  • Kauserud, H. ITS alchemy: On the use of ITS as a DNA marker in fungal ecology. Fungal Ecol 65, 101274 (2023).

    Article 

    Google Scholar
     

  • Drake, L. E. et al. An assessment of minimum sequence copy thresholds for identifying and reducing the prevalence of artefacts in dietary metabarcoding data. Methods Ecol Evol 13, 694–710 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Florence, L. et al. A curated soil fungal dataset to advance fungal ecology and conservation research in Australia and Antarctica, figshare, https://doi.org/10.6084/m9.figshare.27938037 (2025).

  • Vu, D., Nilsson, R. H. & Verkley, G. J. M. Dnabarcoder: An open-source software package for analysing and predicting DNA sequence similarity cutoffs for fungal sequence identification. Mol Ecol Resour 22, 2793–2809 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S. & Armstrong, S. D. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Res 7, 1418 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Abarenkov, K. et al. Full UNITE + INSD fasta release for eukaryotes. Version 04.04.2024. UNITE Community https://doi.org/10.15156/BIO/2959331 (2024).

  • Edgar, R. C. UCHIME2: improved chimera prediction for amplicon sequencing. biorxiv 074252 (2016).

  • Calderón-Sanou, I., Münkemüller, T., Boyer, F., Zinger, L. & Thuiller, W. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices? J Biogeogr 47, 193–206 (2020).

    Article 

    Google Scholar
     

  • Nilsson, R. H. et al. Introducing guidelines for publishing DNA-derived occurrence data through biodiversity data platforms. Metabarcoding Metagenom 6 (2022).

  • Abarenkov, K. et al. Full UNITE + INSD fasta release for fungi. Version 04.04.2024. UNITE Community https://doi.org/10.15156/BIO/2959330 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Camacho, C. et al. BLAST + : architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers 105 (2020).

  • Tedersoo, L. et al. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90, 135–159 (2018).

    Article 

    Google Scholar
     

  • Bradshaw, M. J. et al. Extensive intragenomic variation in the internal transcribed spacer region of fungi. iScience 26, 107317 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ovaskainen, O. et al. Global Spore Sampling Project: A global, standardized dataset of airborne fungal DNA. Sci Data 11, 1–17 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Furneaux, B., Bahram, M., Rosling, A., Yorou, N. S. & Ryberg, M. Long- and short-read metabarcoding technologies reveal similar spatiotemporal structures in fungal communities. Mol Ecol Resour 21, 1833–1849 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burg, S. et al. Experimental evidence that root‐associated fungi improve plant growth at high altitude. Mol Ecol 33 (2024).

  • Dondoshansky, I. & Wolf, Y. BLASTCLUST-BLAST score-based singlelinkage clustering. (2000).

  • Harwood, T. 9 s climatology for continental Australia 1976-2005: BIOCLIM variable suite. v1. https://doi.org/10.25919/5dce30cad79a8 (2019).

  • Lembrechts, J. J. et al. Global maps of soil temperature. Glob Chang Biol 28, 3110–3144 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Malone, B. & Searle, R. Soil and Landscape Grid National Soil Attribute Maps – Sand (3” Resolution) – Release 2. v3. Data Collection. https://doi.org/10.25919/rjmy-pa10 (2022).

  • Malone, B. & Searle, R. Soil and Landscape Grid National Soil Attribute Maps – Clay (3” Resolution) – Release 2. v4. Data Collection. https://doi.org/10.25919/hc4s-3130 (2022).

  • Malone, B. & Searle, R. Soil and Landscape Grid National Soil Attribute Maps – Silt (3” Resolution) – Release 2. v2. Data Collection. https://doi.org/10.25919/2ew1-0w57 (2022).

  • Malone, B. & Searle, R. Soil and Landscape Grid National Soil Attribute Maps – Soil Depth (3” Resolution) – Release 2. v3. Data Collection. https://doi.org/10.25919/djdn-5×77 (2020).

  • Viscarra Rossel, R., Chen, C., Grundy, M., Searle, R. & Clifford, D. Soil and Landscape Grid Australia-Wide 3D Soil Property Maps (3” Resolution) – Release 1. v3. Data Collection. https://doi.org/10.4225/08/5aaf553b63215 (2014).

  • Wadoux, A. et al. Soil and Landscape Grid National Soil Attribute Maps – Organic Carbon (3” Resolution) – Release 2. v2.Data Collection. https://doi.org/10.25919/ejhm-c070 (2022).

  • Zund, P. Soil and Landscape Grid National Soil Attribute Maps – Available Phosphorus (3” Resolution) – Release 1. v1. Data Collection. https://doi.org/10.25919/6qzh-b979 (2022).

  • Malone, B. Soil and Landscape Grid National Soil Attribute Maps – Cation Exchange Capacity (3” Resolution) – Release 1. v1. Data Collection. https://doi.org/10.25919/pkva-gf85 (2022).

  • Roman Dobarco, M. et al. Soil and Landscape Grid National Soil Attribute Maps – Soil Organic Carbon Fractions (3” Resolution) – Release 1. v5. Data Collection. https://doi.org/10.25919/fa46-ey49 (2022).

  • Malone, B. Soil and Landscape Grid National Soil Attribute Maps – PH (Water) (3” Resolution) – Release 1. v1. Data Collection. https://doi.org/10.25919/37z2-0q10 (2022).

  • Scarth, P., Armston, J., Lucas, R. & Bunting, P. Vegetation Height and Structure – Derived from ALOS-1 PALSAR, Landsat and ICESat/GLAS, Australia Coverage. V1. https://portal.tern.org.au/metadata/TERN/de1c2fef-b129-485e-9042-8b22ee616e66 (2023).

  • Mokany, K. et al. Plant Diversity Spatial Layers for Australia. v2.Data Collection https://doi.org/10.25919/mk24-1792 (2022).

    Article 

    Google Scholar
     

  • Harwood, T. et al. 9 Arcsecond Gridded HCAS 2.1 (2001-2018) Base Model Estimation of Habitat Condition for Terrestrial Biodiversity, 18-Year Trend and 2010-2015 Epoch Change for Continental Australia. v7. Data Collection. https://doi.org/10.25919/nkjf-f088 (2021).

  • Gallant, J., Wilson, N., Tickle, P. K., Dowling, T. & Read, A. 3 Second SRTM Derived Digital Elevation Model (DEM). Version 1.0. https://pid.geoscience.gov.au/dataset/ga/69888 (2009).

  • Yang, R.-H. et al. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS One 13, e0206428 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E. & Kristiansson, E. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 296, 97–101 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindahl, B. D. et al. Fungal community analysis by high-throughput sequencing of amplified markers – a user’s guide. New Phytologist 199, 288–299 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4, 914–919 (2013).

    Article 

    Google Scholar
     

  • Amses, K. R. et al. Diploid-dominant life cycles characterize the early evolution of Fungi. Proc Natl Acad Sci USA 119, 1–10 (2022).

    Article 

    Google Scholar
     

  • Tedersoo, L. et al. Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Front Microbiol 11, 1–31 (2020).

    Article 

    Google Scholar
     

  • Hao, T., Elith, J., Guillera-Arroita, G., Lahoz-Monfort, J. J. & May, T. W. Enhancing repository fungal data for biogeographic analyses. Fungal Ecol 53, 101097 (2021).

    Article 

    Google Scholar
     

  • May, T. Biogeography of Australasian Fungi: From Mycogeography to the Mycobiome. in Handbook of Australasian Biogeography 156–213 https://doi.org/10.1201/9781315373096 (CRC Press, Boca Raton, FL, 2017).

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol Modell 190, 231–259 (2006).

    Article 
    MATH 

    Google Scholar
     

  • Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. Package ‘dismo’. Circles 9, 1–68 (2017).


    Google Scholar
     

  • Bougoure, J., Ludwig, M., Brundrett, M. & Grierson, P. Identity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri. Mycol Res 113, 1097–1106 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Veldre, V. et al. Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecol 6, 256–268 (2013).

    Article 

    Google Scholar
     

  • Martos, F. et al. Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol 184, 668–681 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Suetsugu, K., Yamato, M., Matsubayashi, J. & Tayasu, I. Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia. Mol Ecol 28, 4290–4299 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yagame, T., Orihara, T., Selosse, M., Yamato, M. & Iwase, K. Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza‐forming Ceratobasidiaceae fungi. New Phytol 193, 178–187 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez‐Ramírez, S., Tulloss, R. E., Amalfi, M. & Moncalvo, J. Palaeotropical origins, boreotropical distribution and increased rates of diversification in a clade of edible ectomycorrhizal mushrooms (Amanita section Caesareae). J Biogeogr 42, 351–363 (2015).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Curated global occurrence dataset of the insect order Zoraptera

    To incorporate all species currently classified in this insect order into the dataset, the most recent comprehensive catalog of Zoraptera was utilized17. Subsequently...
    Biodiversity
    6
    minutes

    Multi-modal Language models in bioacoustics with zero-shot transfer: a case study

    Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348 (6232), 336–340 (2015).Article  ADS  ...
    Biodiversity
    10
    minutes

    Ecological novelty is the new norm on our planet

    Kerr, M. R. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-025-02662-2 (2025).Article  ...
    Biodiversity
    0
    minutes

    Genetic survey of crucian carp Carassius carassius populations in Hungary for...

    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).Article  ...
    Biodiversity
    11
    minutes
    spot_imgspot_img