A glimpse into Oomycota diversity in freshwater lakes and adjacent forests using a metabarcoding approach


  • Burki, F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect. Biol. 6, a016147 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Beakes, G. W., Glockling, S. L. & Sekimoto, S. The evolutionary phylogeny of the Oomycota fungi. Protoplasma 249, 3–19 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Beakes, G. W. & Thines, M. Hyphochytriomycota and Oomycota in Handbook of the Protists (eds. Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H.) 435–505 (Springer, 2017).

  • Svoboda, J., Mrugała, A., Kozubíková-Balcarová, E. & Petrusek, A. Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: a review. J. Fish. Dis. 40, 127–140 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lone, S. A. & Manohar, S. Saprolegnia parasitica, a lethal Oomycota pathogen: demands to be controlled. J. Infect. Mol. Biol. 6, 36–44 (2018).


    Google Scholar
     

  • Czeczuga, B., Kozłowska, M. & Godlewska, A. Zoosporic aquatic fungi growing on dead specimens of 29 freshwater crustacean species. Limnologica 32, 180–193 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Steciow, M. M. The occurrence of Achlya recurva (Saprolegniales, Oomycota) in hydrocarbon-polluted soil from Argentina. Rev. Iberoam Micol. 14, 135–137 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Inaba, S. & Tokumasu, S. Saprolegnia semihypogyna sp. nov., a saprolegniaceous Oomycota isolated from soil in Japan. Mycoscience 43, 73–76 (2002).

    Article 

    Google Scholar
     

  • Gaulin, E., Jacquet, C., Bottin, A. & Dumas, B. Root rot disease of legumes caused by Aphanomyces euteiches. Mol. Plant. Pathol. 8, 539–548 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Lévesque, C. A. et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 11, 1–22 (2010).

    Article 

    Google Scholar
     

  • Fry, W. Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant. Pathol. 9, 385–402 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • El-Hissy, F. T., Khallil, A. M. & El-Nagdy, M. A. Fungi associated with some aquatic plants collected from freshwater areas at Assiut (upper Egypt). J. Islam Acad. Sci. 3, 298–304 (1990).


    Google Scholar
     

  • Uzuhashi, S., Okada, G. & Ohkuma, M. Four new Pythium species from aquatic environments in Japan. Antonie Van Leeuwenhoek. 107, 375–391 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Nam, B. & Choi, Y. J. Phytopythium and Pythium species (Oomycota) isolated from freshwater environments of Korea. Mycobiology 47, 261–272 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Sparrow, F. K. Aquatic Phycomycetes (University of Michigan Press, 1960).

  • Johnson, T. W., Seymour, R. L. & Padgett, D. E. Biology and systematics of the Saprolegniaceae (2002).

  • Mahadevakumar, S. & Sridhar, K. R. Diagnosis of Pythium by classical and molecular approaches in Pythium: Diagnosis, Diseases and Management (eds. Rai, M., Abd-Elsalam, K. A. & Ingle, A. P.) 200–224 (CRC Press, 2020).

  • Rossmann, S., Lysøe, E., Skogen, M., Talgø, V. & Brurberg, M. B. DNA metabarcoding reveals broad presence of plant pathogenic Oomycota in soil from internationally traded plants. Front. Microbiol. 12, 637068 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Savian, F., Marroni, F., Ermacora, P., Firrao, G. & Martini, M. A metabarcoding approach to investigate fungal and Oomycota communities associated with Kiwifruit vine decline syndrome in Italy. Phytobiomes J. 6, 290–304 (2022).

    Article 

    Google Scholar
     

  • Redekar, N. R., Eberhart, J. L. & Parke, J. L. Diversity of Phytophthora, Pythium, and Phytopythium species in recycled irrigation water in a container nursery. Phytobiomes J. 3, 31–45 (2019).

    Article 

    Google Scholar
     

  • Jiang, R. H. Y. & Tyler, B. M. Mechanisms and evolution of virulence in Oomycota. Annu. Rev. Phytopathol. 50, 295–318 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, R. H. Y. et al. Distinctive expansion of potential virulence genes in the genome of the Oomycota fish pathogen Saprolegnia parasitica. PLoS Genet. 9, e1003272 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiore-Donno, A. M. & Bonkowski, M. Different community compositions between obligate and facultative Oomycota plant parasites in a landscape-scale metabarcoding survey. Biol. Fertil. Soils. 57, 245–256 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nechwatal, J., Wielgoss, A. & Mendgen, K. Diversity, host, and habitat specificity of Oomycota communities in declining Reed stands (Phragmites australis) of a large freshwater lake. Mycol. Res. 112, 689–696 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Wielgoss, A., Nechwatal, J., Bogs, C. & Mendgen, K. Host plant development, water level and water parameters shape Phragmites australis-associated Oomycota communities and determine Reed pathogen dynamics in a large lake. FEMS Microbiol. Ecol. 69, 255–265 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakaguchi, S. O. et al. Molecular identification of water molds (Oomycota) associated with Chum salmon eggs from hatcheries in Japan and possible sources of their infection. Aquac Int. 27, 1739–1749 (2019).

    Article 

    Google Scholar
     

  • Ahadi, R., Bouket, A. C., Alizadeh, A., Masigol, H. & Grossart, H. P. Globisporangium tabrizense sp. nov., Globisporangium mahabadense sp. nov., and Pythium bostanabadense sp. nov. (Oomycota), three new species from Iranian aquatic environments. Sci. Rep. 14, 31701 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Abdelzaher, H. M. A., Ichitani, T. & Elnaghy, M. A. Virulence of Pythium spp. isolated from pond water. Mycoscience 35, 429–432 (1994).

    Article 

    Google Scholar
     

  • Kageyama, K. et al. Plant Pathogenic Oomycota Inhabiting River Water Are a Potential Source of Infestation in Agricultural Areas in River Basin Environment: Evaluation, Management and Conservation (eds. Li, F., Awaya, Y., Kageyama, K. & Wei, Y.) 261–288 (Springer, 2022).

  • Schenk, A. Algologische Mittheilungen. Verh Phys. Med. Ges Würzbg. 9, 12–31 (1859).


    Google Scholar
     

  • Vanterpool, T. C. & Ledingham, G. A. Studies on “browning” root rot of cereals: I. The association of Lagena radicicola n. gen.; n. sp., with root injury of wheat. Can. J. Res. 2, 171–194 (1930).

    Article 

    Google Scholar
     

  • Truscott, J. H. L. Observations on Lagena radicicola. Mycologia 25, 263–265 (1933).

    Article 

    Google Scholar
     

  • Macfarlane, I. Lagena radicicola and Rhizophydium graminis, two common and neglected fungi. Trans. Br. Mycol. Soc. 55, 113–416 (1970).

    Article 

    Google Scholar
     

  • Cerri, M. et al. Oomycota communities associated with Reed die-back syndrome. Front. Plant. Sci. 8, 1550 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Thines, M. & Buaya, A. T. Lagena—an overlooked Oomycota genus with a wide range of hosts. Mycol. Prog. 21, 66 (2022).

    Article 

    Google Scholar
     

  • Van West, P. Saprolegnia parasitica, an Oomycota pathogen with a fishy appetite: new challenges for an old problem. Mycologist 20, 99–104 (2006).

    Article 

    Google Scholar
     

  • Masigol, H. et al. Advancements, deficiencies, and future necessities of studying Saprolegniales: A semi-quantitative review of 1073 published papers. Fungal Biol. Rev. 46, 100319 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hulvey, J. P., Padgett, D. E. & Bailey, J. C. Species boundaries within Saprolegnia (Saprolegniales, Oomycota) based on morphological and DNA sequence data. Mycologia 99, 421–429 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pires-Zottarelli, C. L. A., de Oliveira Da Paixão, S. C., da Silva Colombo, D. R., Boro, M. C. & de Jesus, A. L. Saprolegnia atlantica sp. nov. (Oomycota, Saprolegniaceae) from Brazil, and new synonymizations and epitypifications in the genus Saprolegnia. Mycol. Prog. 21, 41 (2022).

    Article 

    Google Scholar
     

  • Grossart, H. P. et al. Top-down and bottom‐up induced shifts in bacterial abundance, production and community composition in an experimentally divided humic lake. Environ. Microbiol. 10, 635–652 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholtysik, G. et al. Geochemical focusing and sequestration of manganese during eutrophication of lake Stechlin (NE Germany). Biogeochemistry 151, 313–334 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perkins, A. K. et al. Highly diverse fungal communities in carbon-rich aquifers of two contrasting lakes in Northeast Germany. Fungal Ecol. 41, 116–125 (2019).

    Article 

    Google Scholar
     

  • Allgaier, M. & Grossart, H. P. Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in Northeastern Germany. Aquat. Microb. Ecol. 45, 115–128 (2006).

    Article 

    Google Scholar
     

  • Pavić, D. et al. Variations in the sporulation efficiency of pathogenic freshwater Oomycota in relation to the Physico-Chemical properties of natural waters. Microorganisms 10, 520 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Meinelt, T. et al. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat. Toxicol. 83, 93–103 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masigol, H. et al. The contrasting roles of aquatic fungi and Oomycota in the degradation and transformation of polymeric organic matter. Limnol. Oceanogr. 64, 2662–2678 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Masigol, H. et al. Phylogenetic and functional diversity of Saprolegniales and Fungi isolated from temperate lakes in Northeast Germany. J. Fungi. 7, 968 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Semenov, M. V. Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and prospects. Biol. Bull. Rev. 11, 40–53 (2021).

    Article 

    Google Scholar
     

  • Auer, L. et al. Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems. New. Phytol. 242, 1676–1690 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlatter, D. C., Burke, I. & Paulitz, T. C. Succession of fungal and Oomycota communities in glyphosate-killed wheat roots. Phytopathology 108, 582–594 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dickie, I. A. et al. Oomycota along a 120,000 year temperate rainforest ecosystem development chronosequence. Fungal Ecol. 39, 192–200 (2019).

    Article 

    Google Scholar
     

  • Lang-Yona, N. et al. Species richness, rRNA gene abundance, and seasonal dynamics of airborne plant-pathogenic Oomycota. Front. Microbiol. 9, 2673 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • da Silva, N. J. et al. Spatio-temporal drivers of different Oomycota beta diversity components in Brazilian rivers. Hydrobiologia 848, 4695–4712 (2021).

    Article 

    Google Scholar
     

  • Masigol, H., Mostowfizadeh-Ghalamfarsa, R. & Grossart, H. P. The current status of Saprolegniales in Iran: calling mycologists for better taxonomic and ecological resolutions. Mycol. Iran. 8, 1–13 (2021).


    Google Scholar
     

  • Wang, Q. & Wang, X. Comparison of methods for DNA extraction from a single chironomid for PCR analysis. Pak J. Zool. 44, 421–426 (2012).

    CAS 

    Google Scholar
     

  • Schloss, P. D. et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

  • Nelson, M. C., Morrison, H. G., Benjamino, J., Grim, S. L. & Graf, J. Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PLoS One. 9, e94249 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Uzuhashi, S., Kakishima, M. & Tojo, M. Phylogeny of the genus Pythium and description of new genera. Mycoscience 51, 337–365 (2010).

    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). https://www.R-project.org

  • Weiner, J. riverplot: Sankey or Ribbon Plots. R package version 0.10. (2021). https://CRAN.R-project.org/package=riverplot

  • Freudenthal, J., Dumack, K., Schaffer, S., Schlegel, M. & Bonkowski, M. Algae-fungi symbioses and bacteria-fungi co-exclusion drive tree species-specific differences in canopy bark microbiomes. The ISME Journal 18(1), p.wrae206 (2024).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • Hsieh, T. C., Ma, K. H. & Chao, A. Interpolation and extrapolation for species diversity. R Package Version 2.0.20 (2020). http://chao.stat.nthu.edu.tw/wordpress/software-download

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.6-4. (2022). https://CRAN.R-project.org/package=vegan

  • Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. R package version 1.7.3. (2022). https://CRAN.R-project.org/package=VennDiagram

  • Love, M. I., Huber, W. & Anders, S. Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article 

    Google Scholar
     

  • Foster, Z. S. L., Sharpton, T. J., Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Smither, M. L. & Jones, A. L. Pythium species associated with sour Cherry and the effect of P. irregulare on the growth of Mahaleb Cherry. Can. J. Plant. Pathol. 11, 1–8 (1989).

    Article 

    Google Scholar
     

  • Masigol, H. et al. Notes on Dictyuchus species (Stramenopila, Oomycota) from Anzali lagoon, Iran. Mycol. Iran. 5, 79–89 (2018).


    Google Scholar
     

  • Walsh, P.S., Metzger, D.A. and Higuchi, R., 2013. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 54, 134–139 (2013). 

    Article 
    CAS 

    Google Scholar
     

  • White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics in PCR protocols: a guide to methods and applications (ed. Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J.) 315–322 (Academic Press, 1990).


    Google Scholar
     

  • Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids Symp. Ser. 41, 95–98 (1999).

  • De Cock, A. et al. Phytopythium: molecular phylogeny and systematics. Persoonia-Molecular Phylogeny Evol. Fungi. 34, 25–39 (2015).

    Article 

    Google Scholar
     

  • Jankowiak, R., Stepniewska, H. & Bilanski, P. Notes on some Phytopythium and Pythium species occurring in oak forests in Southern Poland. Acta Mycol. 50, 1052 (2015).

  • Katoh, K., Rozewicki, A. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silvestro, D. & Michalak, I. RaxmlGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 335–337 (2012).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    First national survey of terrestrial biodiversity using airborne eDNA

    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ....
    Biodiversity
    10
    minutes

    Regional restructuring in planktic foraminifera communities through Pliocene-early Pleistocene climate variability

    Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).Article  ADS  ...
    Biodiversity
    9
    minutes

    The impact of environmental factors on public engagement on WeChat in...

    Ma, L. & Liu, L. How leadership behaviors affect the performance of government short-form videos?- survey evidence from Douyin. J. Gansu Adm. Inst.,...
    Biodiversity
    12
    minutes

    What is an ecologically or biologically significant area?

    Key societal goals to halt biodiversity loss and effectively conserve ecosystems are repeatedly articulated in international agreements and targets. Achievement of these goals...
    Biodiversity
    5
    minutes
    spot_imgspot_img