Abiotic and biotic drivers of soil microbial diversity in an intensively grazed natural ecosystem


  • Hong, P. et al. Biodiversity promotes ecosystem functioning despite environmental change. Ecol. Lett. 25, 555–569 (2022).

    PubMed 

    Google Scholar
     

  • Barboza, F. R., Ito, M. & Franz, M. Biodiversity and the functioning of ecosystems in the age of global change: integrating knowledge across scales. in YOUMARES 8 – Oceans across boundaries: learning from each other (eds Jungblut, S., Liebich, V. & Bode, M.) 167–178 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-93284-2_12.

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. & Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: a review of Chinese literature. Biodivers. Conserv. 25, 2401–2420 (2016).


    Google Scholar
     

  • Bouwer, C., Kinsbergen, D. T. P. & Oostermeijer, J. G. B. Begrazing opent pad voor invasief bezemkruiskruid. Levende Nat 125, 132–135 (2024).


    Google Scholar
     

  • UN Environment. Global Environment Outlook – GEO-6: Healthy Planet, Healthy People. https://doi.org/10.1017/9781108627146 (2019).

  • Coban, O., de Deyn, G. B. & van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 375, abe0725 (2022).

    PubMed 

    Google Scholar
     

  • Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Cavagnaro, R. A., Pero, E., Dudinszky, N., Golluscio, R. A. & Grimoldi, A. A. Under pressure from above: overgrazing decreases mycorrhizal colonization of both preferred and unpreferred grasses in the Patagonian steppe. Fungal Ecol 40, 92–97 (2019).


    Google Scholar
     

  • Qu, T. et al. Impacts of grazing intensity and plant community composition on soil bacterial community diversity in a steppe grassland. PLoS One 11, 1–16 (2016).


    Google Scholar
     

  • Wang, Z. et al. Coupling between the responses of plants, soil, and microorganisms following grazing exclusion in an overgrazed grassland. Front. Plant Sci. 12, 1–16 (2021).


    Google Scholar
     

  • Yang, X., Zang, J., Feng, J. & Shen, Y. High grazing intensity suppress soil microorganisms in grasslands in China: a meta-analysis. Appl. Soil Ecol. 177, 1–6 (2022).


    Google Scholar
     

  • Wang, Z. et al. Soil bacterial and fungal communities are linked with plant functional types and soil properties under different grazing intensities. Eur. J. Soil Sci. 73, 1–19 (2022).

    CAS 

    Google Scholar
     

  • Wu, X. et al. The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecol. Indic. 129, 107989 (2021).


    Google Scholar
     

  • Lundgren, E. J. et al. Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities. Science 383, 531–537 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Roy, S., Naidu, D. G. T. & Bagchi, S. Functional substitutability of native herbivores by livestock for soil carbon stock is mediated by microbial decomposers. Glob. Chang. Biol. 29, 2141–2155 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wells, H. B. M. et al. At high stocking rates, cattle do not functionally replace wild herbivores in shaping understory community composition. Ecol. Appl. 32, e2520 (2022).

    PubMed 

    Google Scholar
     

  • Müller, F. Gradients in ecological systems. Ecol. Modell. 108, 3–21 (1998).


    Google Scholar
     

  • Bagchi, S., Bhatnagar, Y. V. & Ritchie, M. E. Comparing the effects of livestock and native herbivores on plant production and vegetation composition in the Trans-Himalayas. Pastor. Res. Policy Pract. 2, 1–16 (2012).


    Google Scholar
     

  • Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13, 261–265 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).


    Google Scholar
     

  • Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).

  • Garrido, M., Hansen, S. K., Yaari, R. & Hawlena, H. A model selection approach to structural equation modelling: a critical evaluation and a road map for ecologists. Methods Ecol. Evol. 13, 42–53 (2022).


    Google Scholar
     

  • Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75, 1182–1189 (2006).

    PubMed 

    Google Scholar
     

  • Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference. A practical information-theoretic approach. (Springer-Verlag, 2002). https://doi.org/10.1016/j.ecolmodel.2003.11.004.

  • Freckleton, R. P. Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behav. Ecol. Sociobiol. 65, 91–101 (2011).


    Google Scholar
     

  • Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Cruz-Paredes, C. et al. Bacteria respond stronger than fungi across a steep wood ash-driven pH gradient. Front. For. Glob. Chang. 4, 1–10 (2021).


    Google Scholar
     

  • Krulwich, T. A., Sachs, G. & Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9, 330–343 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kooijman, A. M. et al. Resilience in coastal dune grasslands: pH and soil organic matter effects on P nutrition, plant strategies, and soil communities. Ecosphere 11, e03112 (2020).


    Google Scholar
     

  • Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in northern Europe. Front. Microbiol. 11, 1–31 (2020).


    Google Scholar
     

  • Rousk, J., Brookes, P. C. & Bååth, E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol. Biochem. 42, 926–934 (2010).

    CAS 

    Google Scholar
     

  • Xun, W. et al. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Microbiome 6, 1–13 (2018).


    Google Scholar
     

  • Eldridge, D. J. et al. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology 98, 1922–1931 (2017).

    PubMed 

    Google Scholar
     

  • Millard, P. & Singh, B. K. Does grassland vegetation drive soil microbial diversity? Nutr. Cycl. Agroecosystems 88, 147–158 (2010).


    Google Scholar
     

  • Tian, J. et al. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Funct. Ecol. 32, 61–70 (2018).


    Google Scholar
     

  • De Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).

    PubMed 

    Google Scholar
     

  • Kooijman, A. M. & Smit, A. Grazing as a measure to reduce nutrient availability and plant productivity in acid dune grasslands and pine forests in The Netherlands. Ecol. Eng. 17, 63–77 (2001).


    Google Scholar
     

  • Wu, G.-L., Ren, G.-H., Dong, Q.-M., Shi, J.-J. & Wang, Y.-L. Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. Clean – Soil, Air, Water 42, 319–323 (2014).

    CAS 

    Google Scholar
     

  • Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C. & Waller, D. M. Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. Syst. 35, 113–147 (2004).


    Google Scholar
     

  • Grime, J. P., Cornelissen, J. H. H. C., Thompson, K. & John, G. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77, 489–494 (1996).


    Google Scholar
     

  • Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: a question of microbial competition? Soil Biol. Biochem. 35, 837–843 (2003).

    CAS 

    Google Scholar
     

  • Bardgett, R. D. & Wardle, D. A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268 (2003).


    Google Scholar
     

  • Bezemer, T. M. et al. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands. J. Ecol. 94, 893–904 (2006).

    CAS 

    Google Scholar
     

  • Hedlund, K. et al. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos 103, 45–58 (2003).


    Google Scholar
     

  • Kowalchuk, G. A., Buma, D. S., de Boer, W., Klinkhamer, P. G. L. & van Veen, J. A. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81, 509–520 (2002).

    PubMed 

    Google Scholar
     

  • Lamb, E. G., Kennedy, N. & Siciliano, S. D. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant Soil 338, 483–495 (2011).

    CAS 

    Google Scholar
     

  • Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Lorite, M. J. et al. The Rhizobia-Lotus symbioses: deeply specific and widely diverse. Front. Microbiol. 9, 1–17 (2018).


    Google Scholar
     

  • Galindo-Castañeda, T., Hartmann, M. & Lynch, J. P. Location: root architecture structures rhizosphere microbial associations. J. Exp. Bot. 75, 594–604 (2024).

    PubMed 

    Google Scholar
     

  • Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Plant diversity has stronger linkage with soil fungal diversity than with bacterial diversity across grasslands of northern. Glob. Ecol. Biogeogr. 31, 886–900 (2022).


    Google Scholar
     

  • Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 1–8 (2015).


    Google Scholar
     

  • Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms? Ecol. Evol. 6, 7387–7396 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H., Gilbert, B., Wang, W., Liu, J. & Zhou, S. Grazer exclusion alters plant spatial organization at multiple scales, increasing diversity. Ecol. Evol. 3, 3604–3612 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lozano, Y. M., Hortal, S., Armas, C. & Pugnaire, F. I. Interactions among soil, plants, and microorganisms drive secondary succession in a dry environment. Soil Biol. Biochem. 78, 298–306 (2014).

    CAS 

    Google Scholar
     

  • Lin, Y. et al. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agric. Ecosyst. Environ. 138, 282–292 (2010).


    Google Scholar
     

  • Hooper, D. U. et al. Aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50, 1049–1061 (2000).


    Google Scholar
     

  • Correa, J., Postma, J. A., Watt, M. & Wojciechowski, T. Soil compaction and the architectural plasticity of root systems. J. Exp. Bot. 70, 6019–6034 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beylich, A., Oberholzer, H. R., Schrader, S., Höper, H. & Wilke, B. M. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res 109, 133–143 (2010).


    Google Scholar
     

  • Harris, K., Young, I. M., Gilligan, C. A., Otten, W. & Ritz, K. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol. Ecol. 44, 45–56 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Powell, J. R. et al. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nat. Commun. 6, 8444 (2015).

  • Wilson, J. M. & Griffin, D. M. Water potential and the respiration of microorganisms in the soil. Soil Biol. Biochem. 7, 199–204 (1975).


    Google Scholar
     

  • He, L., Viovy, N. & Xu, X. Macroecology differentiation between bacteria and fungi in topsoil across the United States. Global Biogeochem. Cycles 37, 1–17 (2023).

    CAS 

    Google Scholar
     

  • Niklas, K. J. Modelling below- and above-ground biomass for non-woody and woody plants. Ann. Bot. 95, 315–321 (2005).

    PubMed 

    Google Scholar
     

  • Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 1–8 (2017).

    CAS 

    Google Scholar
     

  • Scheifes, D. J. P., Olde Venterink, H., Jansen, A., Kinsbergen, D. T. P. & Wassen, M. J. The plant root economics space in relation to nutrient limitation in Eurasian herbaceous plant communities. Ecol. Lett. 27, e14402 (2024).

    PubMed 

    Google Scholar
     

  • Hao, Y. & He, Z. Effects of grazing patterns on grassland biomass and soil environments in China: a meta-analysis. PLoS One 14, e0215223 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S., Fan, J., Li, Y. & Huang, L. Effects of grazing exclusion on biomass growth and species diversity among various grassland types of the Tibetan Plateau. Sustainability 11, 1705 (2019).


    Google Scholar
     

  • Van Breemen, N., Driscoll, C. T. & Mulder, J. Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307, 599–604 (1984).


    Google Scholar
     

  • Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X. et al. Nitrogen deposition effects on invasive and native plant competition: implications for future invasions. Ecotoxicol. Environ. Saf. 259, 1–10 (2023).


    Google Scholar
     

  • Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Effect of intermediate disturbance on soil microbial functional diversity depends on the amount of effective resources. Environ. Microbiol. 20, 3862–3875 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Connel, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).


    Google Scholar
     

  • van der Spek, V. The impact of fallow deer (Dama dama) grazing on the biodiversity of a Dutch coastal dune system. Lutra 67, 3–20 (2024).


    Google Scholar
     

  • Zhang, R. et al. Diversity of plant and soil microbes mediates the response of ecosystem multifunctionality to grazing disturbance. Sci. Total Environ. 776, 145730 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, e1 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Bellemain, E. et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10, 1–9 (2010).


    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).


    Google Scholar
     

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47, D259–D264 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Werner, J. J. et al. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J 6, 94–103 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Jost, L. Mismeasuring biological diversity: response to Hoffmann and Hoffmann (2008). Ecol. Econ. 68, 925–928 (2009).


    Google Scholar
     

  • Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography (Cop.). 33, 23–45 (2010).


    Google Scholar
     

  • Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).


    Google Scholar
     

  • Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).


    Google Scholar
     

  • Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).


    Google Scholar
     

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).


    Google Scholar
     

  • Thompson, C. G., Kim, R. S., Aloe, A. M. & Becker, B. J. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl. Soc. Psych. 39, 81–90 (2017).


    Google Scholar
     

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).


    Google Scholar
     

  • Grace, J. B., Scheiner, S. M. & Schoolmaster, D. R. J. Structural equation modeling: building and evaluating causal models. in Ecological statistics: contemporary theory and application (eds. Fox, G. A., Negrete-Yankelevich, S. & Sosa, V. J.) 168–199 (Oxford University Press, 2015). https://doi.org/10.4324/9780429325038-8.

  • Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).


    Google Scholar
     

  • Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed 

    Google Scholar
     

  • Lukacs, P. M., Burnham, K. P. & Anderson, D. R. Model selection bias and Freedman’s paradox. Ann. Inst. Stat. Math. 62, 117–125 (2010).


    Google Scholar
     

  • Grace, J. B. & Bollen, K. A. Interpreting the results from multiple regression and structural equation models. Bull. Ecol. Soc. Am. 86, 283–295 (2005).


    Google Scholar
     

  • Dudgeon, P. A comparative investigation of confidence intervals for independent variables in linear regression. Multivariate Behav. Res. 51, 139–153 (2016).

    PubMed 

    Google Scholar
     

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).


    Google Scholar
     

  • Bartoń, K. MuMIn: Multi-Model inference. R package version 1.47.1. (2022).

  • Roswell, M. & Dushoff, J. MeanRarity: Hill diversity estimation and visualization. R package version 0.0.1.0004. (2022).

  • Murphy, M. semEff: automatic calculation of effects for piecewise structural equation models. R package version 0.6.0. (2021).



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img