Hong, P. et al. Biodiversity promotes ecosystem functioning despite environmental change. Ecol. Lett. 25, 555–569 (2022).
Barboza, F. R., Ito, M. & Franz, M. Biodiversity and the functioning of ecosystems in the age of global change: integrating knowledge across scales. in YOUMARES 8 – Oceans across boundaries: learning from each other (eds Jungblut, S., Liebich, V. & Bode, M.) 167–178 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-93284-2_12.
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Wang, Y. & Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: a review of Chinese literature. Biodivers. Conserv. 25, 2401–2420 (2016).
Bouwer, C., Kinsbergen, D. T. P. & Oostermeijer, J. G. B. Begrazing opent pad voor invasief bezemkruiskruid. Levende Nat 125, 132–135 (2024).
UN Environment. Global Environment Outlook – GEO-6: Healthy Planet, Healthy People. https://doi.org/10.1017/9781108627146 (2019).
Coban, O., de Deyn, G. B. & van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 375, abe0725 (2022).
Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022).
Cavagnaro, R. A., Pero, E., Dudinszky, N., Golluscio, R. A. & Grimoldi, A. A. Under pressure from above: overgrazing decreases mycorrhizal colonization of both preferred and unpreferred grasses in the Patagonian steppe. Fungal Ecol 40, 92–97 (2019).
Qu, T. et al. Impacts of grazing intensity and plant community composition on soil bacterial community diversity in a steppe grassland. PLoS One 11, 1–16 (2016).
Wang, Z. et al. Coupling between the responses of plants, soil, and microorganisms following grazing exclusion in an overgrazed grassland. Front. Plant Sci. 12, 1–16 (2021).
Yang, X., Zang, J., Feng, J. & Shen, Y. High grazing intensity suppress soil microorganisms in grasslands in China: a meta-analysis. Appl. Soil Ecol. 177, 1–6 (2022).
Wang, Z. et al. Soil bacterial and fungal communities are linked with plant functional types and soil properties under different grazing intensities. Eur. J. Soil Sci. 73, 1–19 (2022).
Wu, X. et al. The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecol. Indic. 129, 107989 (2021).
Lundgren, E. J. et al. Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities. Science 383, 531–537 (2024).
Roy, S., Naidu, D. G. T. & Bagchi, S. Functional substitutability of native herbivores by livestock for soil carbon stock is mediated by microbial decomposers. Glob. Chang. Biol. 29, 2141–2155 (2023).
Wells, H. B. M. et al. At high stocking rates, cattle do not functionally replace wild herbivores in shaping understory community composition. Ecol. Appl. 32, e2520 (2022).
Müller, F. Gradients in ecological systems. Ecol. Modell. 108, 3–21 (1998).
Bagchi, S., Bhatnagar, Y. V. & Ritchie, M. E. Comparing the effects of livestock and native herbivores on plant production and vegetation composition in the Trans-Himalayas. Pastor. Res. Policy Pract. 2, 1–16 (2012).
Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13, 261–265 (1998).
Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).
Garrido, M., Hansen, S. K., Yaari, R. & Hawlena, H. A model selection approach to structural equation modelling: a critical evaluation and a road map for ecologists. Methods Ecol. Evol. 13, 42–53 (2022).
Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).
Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75, 1182–1189 (2006).
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference. A practical information-theoretic approach. (Springer-Verlag, 2002). https://doi.org/10.1016/j.ecolmodel.2003.11.004.
Freckleton, R. P. Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behav. Ecol. Sociobiol. 65, 91–101 (2011).
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
Cruz-Paredes, C. et al. Bacteria respond stronger than fungi across a steep wood ash-driven pH gradient. Front. For. Glob. Chang. 4, 1–10 (2021).
Krulwich, T. A., Sachs, G. & Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9, 330–343 (2011).
Kooijman, A. M. et al. Resilience in coastal dune grasslands: pH and soil organic matter effects on P nutrition, plant strategies, and soil communities. Ecosphere 11, e03112 (2020).
Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in northern Europe. Front. Microbiol. 11, 1–31 (2020).
Rousk, J., Brookes, P. C. & Bååth, E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol. Biochem. 42, 926–934 (2010).
Xun, W. et al. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Microbiome 6, 1–13 (2018).
Eldridge, D. J. et al. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology 98, 1922–1931 (2017).
Millard, P. & Singh, B. K. Does grassland vegetation drive soil microbial diversity? Nutr. Cycl. Agroecosystems 88, 147–158 (2010).
Tian, J. et al. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Funct. Ecol. 32, 61–70 (2018).
De Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).
Kooijman, A. M. & Smit, A. Grazing as a measure to reduce nutrient availability and plant productivity in acid dune grasslands and pine forests in The Netherlands. Ecol. Eng. 17, 63–77 (2001).
Wu, G.-L., Ren, G.-H., Dong, Q.-M., Shi, J.-J. & Wang, Y.-L. Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. Clean – Soil, Air, Water 42, 319–323 (2014).
Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C. & Waller, D. M. Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. Syst. 35, 113–147 (2004).
Grime, J. P., Cornelissen, J. H. H. C., Thompson, K. & John, G. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77, 489–494 (1996).
Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: a question of microbial competition? Soil Biol. Biochem. 35, 837–843 (2003).
Bardgett, R. D. & Wardle, D. A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268 (2003).
Bezemer, T. M. et al. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands. J. Ecol. 94, 893–904 (2006).
Hedlund, K. et al. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos 103, 45–58 (2003).
Kowalchuk, G. A., Buma, D. S., de Boer, W., Klinkhamer, P. G. L. & van Veen, J. A. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81, 509–520 (2002).
Lamb, E. G., Kennedy, N. & Siciliano, S. D. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant Soil 338, 483–495 (2011).
Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).
Lorite, M. J. et al. The Rhizobia-Lotus symbioses: deeply specific and widely diverse. Front. Microbiol. 9, 1–17 (2018).
Galindo-Castañeda, T., Hartmann, M. & Lynch, J. P. Location: root architecture structures rhizosphere microbial associations. J. Exp. Bot. 75, 594–604 (2024).
Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
Wang, C. et al. Plant diversity has stronger linkage with soil fungal diversity than with bacterial diversity across grasslands of northern. Glob. Ecol. Biogeogr. 31, 886–900 (2022).
Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 1–8 (2015).
Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms? Ecol. Evol. 6, 7387–7396 (2016).
Zhang, H., Gilbert, B., Wang, W., Liu, J. & Zhou, S. Grazer exclusion alters plant spatial organization at multiple scales, increasing diversity. Ecol. Evol. 3, 3604–3612 (2013).
Lozano, Y. M., Hortal, S., Armas, C. & Pugnaire, F. I. Interactions among soil, plants, and microorganisms drive secondary succession in a dry environment. Soil Biol. Biochem. 78, 298–306 (2014).
Lin, Y. et al. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agric. Ecosyst. Environ. 138, 282–292 (2010).
Hooper, D. U. et al. Aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50, 1049–1061 (2000).
Correa, J., Postma, J. A., Watt, M. & Wojciechowski, T. Soil compaction and the architectural plasticity of root systems. J. Exp. Bot. 70, 6019–6034 (2019).
Beylich, A., Oberholzer, H. R., Schrader, S., Höper, H. & Wilke, B. M. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res 109, 133–143 (2010).
Harris, K., Young, I. M., Gilligan, C. A., Otten, W. & Ritz, K. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol. Ecol. 44, 45–56 (2003).
Powell, J. R. et al. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nat. Commun. 6, 8444 (2015).
Wilson, J. M. & Griffin, D. M. Water potential and the respiration of microorganisms in the soil. Soil Biol. Biochem. 7, 199–204 (1975).
He, L., Viovy, N. & Xu, X. Macroecology differentiation between bacteria and fungi in topsoil across the United States. Global Biogeochem. Cycles 37, 1–17 (2023).
Niklas, K. J. Modelling below- and above-ground biomass for non-woody and woody plants. Ann. Bot. 95, 315–321 (2005).
Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 1–8 (2017).
Scheifes, D. J. P., Olde Venterink, H., Jansen, A., Kinsbergen, D. T. P. & Wassen, M. J. The plant root economics space in relation to nutrient limitation in Eurasian herbaceous plant communities. Ecol. Lett. 27, e14402 (2024).
Hao, Y. & He, Z. Effects of grazing patterns on grassland biomass and soil environments in China: a meta-analysis. PLoS One 14, e0215223 (2019).
Wang, S., Fan, J., Li, Y. & Huang, L. Effects of grazing exclusion on biomass growth and species diversity among various grassland types of the Tibetan Plateau. Sustainability 11, 1705 (2019).
Van Breemen, N., Driscoll, C. T. & Mulder, J. Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307, 599–604 (1984).
Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).
Guo, X. et al. Nitrogen deposition effects on invasive and native plant competition: implications for future invasions. Ecotoxicol. Environ. Saf. 259, 1–10 (2023).
Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).
Zhang, X. et al. Effect of intermediate disturbance on soil microbial functional diversity depends on the amount of effective resources. Environ. Microbiol. 20, 3862–3875 (2018).
Connel, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
van der Spek, V. The impact of fallow deer (Dama dama) grazing on the biodiversity of a Dutch coastal dune system. Lutra 67, 3–20 (2024).
Zhang, R. et al. Diversity of plant and soil microbes mediates the response of ecosystem multifunctionality to grazing disturbance. Sci. Total Environ. 776, 145730 (2021).
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, e1 (2013).
Bellemain, E. et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10, 1–9 (2010).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11, 2639–2643 (2017).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47, D259–D264 (2019).
Werner, J. J. et al. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J 6, 94–103 (2012).
Jost, L. Mismeasuring biological diversity: response to Hoffmann and Hoffmann (2008). Ecol. Econ. 68, 925–928 (2009).
Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography (Cop.). 33, 23–45 (2010).
Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).
Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Thompson, C. G., Kim, R. S., Aloe, A. M. & Becker, B. J. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl. Soc. Psych. 39, 81–90 (2017).
Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
Grace, J. B., Scheiner, S. M. & Schoolmaster, D. R. J. Structural equation modeling: building and evaluating causal models. in Ecological statistics: contemporary theory and application (eds. Fox, G. A., Negrete-Yankelevich, S. & Sosa, V. J.) 168–199 (Oxford University Press, 2015). https://doi.org/10.4324/9780429325038-8.
Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).
Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
Lukacs, P. M., Burnham, K. P. & Anderson, D. R. Model selection bias and Freedman’s paradox. Ann. Inst. Stat. Math. 62, 117–125 (2010).
Grace, J. B. & Bollen, K. A. Interpreting the results from multiple regression and structural equation models. Bull. Ecol. Soc. Am. 86, 283–295 (2005).
Dudgeon, P. A comparative investigation of confidence intervals for independent variables in linear regression. Multivariate Behav. Res. 51, 139–153 (2016).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Bartoń, K. MuMIn: Multi-Model inference. R package version 1.47.1. (2022).
Roswell, M. & Dushoff, J. MeanRarity: Hill diversity estimation and visualization. R package version 0.0.1.0004. (2022).
Murphy, M. semEff: automatic calculation of effects for piecewise structural equation models. R package version 0.6.0. (2021).