Abiotic and biotic drivers of soil microbial diversity in an intensively grazed natural ecosystem


  • Hong, P. et al. Biodiversity promotes ecosystem functioning despite environmental change. Ecol. Lett. 25, 555–569 (2022).

    PubMed 

    Google Scholar
     

  • Barboza, F. R., Ito, M. & Franz, M. Biodiversity and the functioning of ecosystems in the age of global change: integrating knowledge across scales. in YOUMARES 8 – Oceans across boundaries: learning from each other (eds Jungblut, S., Liebich, V. & Bode, M.) 167–178 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-93284-2_12.

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. & Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: a review of Chinese literature. Biodivers. Conserv. 25, 2401–2420 (2016).


    Google Scholar
     

  • Bouwer, C., Kinsbergen, D. T. P. & Oostermeijer, J. G. B. Begrazing opent pad voor invasief bezemkruiskruid. Levende Nat 125, 132–135 (2024).


    Google Scholar
     

  • UN Environment. Global Environment Outlook – GEO-6: Healthy Planet, Healthy People. https://doi.org/10.1017/9781108627146 (2019).

  • Coban, O., de Deyn, G. B. & van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 375, abe0725 (2022).

    PubMed 

    Google Scholar
     

  • Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Cavagnaro, R. A., Pero, E., Dudinszky, N., Golluscio, R. A. & Grimoldi, A. A. Under pressure from above: overgrazing decreases mycorrhizal colonization of both preferred and unpreferred grasses in the Patagonian steppe. Fungal Ecol 40, 92–97 (2019).


    Google Scholar
     

  • Qu, T. et al. Impacts of grazing intensity and plant community composition on soil bacterial community diversity in a steppe grassland. PLoS One 11, 1–16 (2016).


    Google Scholar
     

  • Wang, Z. et al. Coupling between the responses of plants, soil, and microorganisms following grazing exclusion in an overgrazed grassland. Front. Plant Sci. 12, 1–16 (2021).


    Google Scholar
     

  • Yang, X., Zang, J., Feng, J. & Shen, Y. High grazing intensity suppress soil microorganisms in grasslands in China: a meta-analysis. Appl. Soil Ecol. 177, 1–6 (2022).


    Google Scholar
     

  • Wang, Z. et al. Soil bacterial and fungal communities are linked with plant functional types and soil properties under different grazing intensities. Eur. J. Soil Sci. 73, 1–19 (2022).

    CAS 

    Google Scholar
     

  • Wu, X. et al. The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecol. Indic. 129, 107989 (2021).


    Google Scholar
     

  • Lundgren, E. J. et al. Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities. Science 383, 531–537 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Roy, S., Naidu, D. G. T. & Bagchi, S. Functional substitutability of native herbivores by livestock for soil carbon stock is mediated by microbial decomposers. Glob. Chang. Biol. 29, 2141–2155 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wells, H. B. M. et al. At high stocking rates, cattle do not functionally replace wild herbivores in shaping understory community composition. Ecol. Appl. 32, e2520 (2022).

    PubMed 

    Google Scholar
     

  • Müller, F. Gradients in ecological systems. Ecol. Modell. 108, 3–21 (1998).


    Google Scholar
     

  • Bagchi, S., Bhatnagar, Y. V. & Ritchie, M. E. Comparing the effects of livestock and native herbivores on plant production and vegetation composition in the Trans-Himalayas. Pastor. Res. Policy Pract. 2, 1–16 (2012).


    Google Scholar
     

  • Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13, 261–265 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).


    Google Scholar
     

  • Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).

  • Garrido, M., Hansen, S. K., Yaari, R. & Hawlena, H. A model selection approach to structural equation modelling: a critical evaluation and a road map for ecologists. Methods Ecol. Evol. 13, 42–53 (2022).


    Google Scholar
     

  • Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75, 1182–1189 (2006).

    PubMed 

    Google Scholar
     

  • Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference. A practical information-theoretic approach. (Springer-Verlag, 2002). https://doi.org/10.1016/j.ecolmodel.2003.11.004.

  • Freckleton, R. P. Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behav. Ecol. Sociobiol. 65, 91–101 (2011).


    Google Scholar
     

  • Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Cruz-Paredes, C. et al. Bacteria respond stronger than fungi across a steep wood ash-driven pH gradient. Front. For. Glob. Chang. 4, 1–10 (2021).


    Google Scholar
     

  • Krulwich, T. A., Sachs, G. & Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9, 330–343 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kooijman, A. M. et al. Resilience in coastal dune grasslands: pH and soil organic matter effects on P nutrition, plant strategies, and soil communities. Ecosphere 11, e03112 (2020).


    Google Scholar
     

  • Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in northern Europe. Front. Microbiol. 11, 1–31 (2020).


    Google Scholar
     

  • Rousk, J., Brookes, P. C. & Bååth, E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol. Biochem. 42, 926–934 (2010).

    CAS 

    Google Scholar
     

  • Xun, W. et al. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Microbiome 6, 1–13 (2018).


    Google Scholar
     

  • Eldridge, D. J. et al. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology 98, 1922–1931 (2017).

    PubMed 

    Google Scholar
     

  • Millard, P. & Singh, B. K. Does grassland vegetation drive soil microbial diversity? Nutr. Cycl. Agroecosystems 88, 147–158 (2010).


    Google Scholar
     

  • Tian, J. et al. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Funct. Ecol. 32, 61–70 (2018).


    Google Scholar
     

  • De Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).

    PubMed 

    Google Scholar
     

  • Kooijman, A. M. & Smit, A. Grazing as a measure to reduce nutrient availability and plant productivity in acid dune grasslands and pine forests in The Netherlands. Ecol. Eng. 17, 63–77 (2001).


    Google Scholar
     

  • Wu, G.-L., Ren, G.-H., Dong, Q.-M., Shi, J.-J. & Wang, Y.-L. Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. Clean – Soil, Air, Water 42, 319–323 (2014).

    CAS 

    Google Scholar
     

  • Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C. & Waller, D. M. Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. Syst. 35, 113–147 (2004).


    Google Scholar
     

  • Grime, J. P., Cornelissen, J. H. H. C., Thompson, K. & John, G. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77, 489–494 (1996).


    Google Scholar
     

  • Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: a question of microbial competition? Soil Biol. Biochem. 35, 837–843 (2003).

    CAS 

    Google Scholar
     

  • Bardgett, R. D. & Wardle, D. A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268 (2003).


    Google Scholar
     

  • Bezemer, T. M. et al. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands. J. Ecol. 94, 893–904 (2006).

    CAS 

    Google Scholar
     

  • Hedlund, K. et al. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos 103, 45–58 (2003).


    Google Scholar
     

  • Kowalchuk, G. A., Buma, D. S., de Boer, W., Klinkhamer, P. G. L. & van Veen, J. A. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81, 509–520 (2002).

    PubMed 

    Google Scholar
     

  • Lamb, E. G., Kennedy, N. & Siciliano, S. D. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant Soil 338, 483–495 (2011).

    CAS 

    Google Scholar
     

  • Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Lorite, M. J. et al. The Rhizobia-Lotus symbioses: deeply specific and widely diverse. Front. Microbiol. 9, 1–17 (2018).


    Google Scholar
     

  • Galindo-Castañeda, T., Hartmann, M. & Lynch, J. P. Location: root architecture structures rhizosphere microbial associations. J. Exp. Bot. 75, 594–604 (2024).

    PubMed 

    Google Scholar
     

  • Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Plant diversity has stronger linkage with soil fungal diversity than with bacterial diversity across grasslands of northern. Glob. Ecol. Biogeogr. 31, 886–900 (2022).


    Google Scholar
     

  • Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 1–8 (2015).


    Google Scholar
     

  • Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms? Ecol. Evol. 6, 7387–7396 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H., Gilbert, B., Wang, W., Liu, J. & Zhou, S. Grazer exclusion alters plant spatial organization at multiple scales, increasing diversity. Ecol. Evol. 3, 3604–3612 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lozano, Y. M., Hortal, S., Armas, C. & Pugnaire, F. I. Interactions among soil, plants, and microorganisms drive secondary succession in a dry environment. Soil Biol. Biochem. 78, 298–306 (2014).

    CAS 

    Google Scholar
     

  • Lin, Y. et al. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agric. Ecosyst. Environ. 138, 282–292 (2010).


    Google Scholar
     

  • Hooper, D. U. et al. Aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50, 1049–1061 (2000).


    Google Scholar
     

  • Correa, J., Postma, J. A., Watt, M. & Wojciechowski, T. Soil compaction and the architectural plasticity of root systems. J. Exp. Bot. 70, 6019–6034 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beylich, A., Oberholzer, H. R., Schrader, S., Höper, H. & Wilke, B. M. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res 109, 133–143 (2010).


    Google Scholar
     

  • Harris, K., Young, I. M., Gilligan, C. A., Otten, W. & Ritz, K. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol. Ecol. 44, 45–56 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Powell, J. R. et al. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nat. Commun. 6, 8444 (2015).

  • Wilson, J. M. & Griffin, D. M. Water potential and the respiration of microorganisms in the soil. Soil Biol. Biochem. 7, 199–204 (1975).


    Google Scholar
     

  • He, L., Viovy, N. & Xu, X. Macroecology differentiation between bacteria and fungi in topsoil across the United States. Global Biogeochem. Cycles 37, 1–17 (2023).

    CAS 

    Google Scholar
     

  • Niklas, K. J. Modelling below- and above-ground biomass for non-woody and woody plants. Ann. Bot. 95, 315–321 (2005).

    PubMed 

    Google Scholar
     

  • Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 1–8 (2017).

    CAS 

    Google Scholar
     

  • Scheifes, D. J. P., Olde Venterink, H., Jansen, A., Kinsbergen, D. T. P. & Wassen, M. J. The plant root economics space in relation to nutrient limitation in Eurasian herbaceous plant communities. Ecol. Lett. 27, e14402 (2024).

    PubMed 

    Google Scholar
     

  • Hao, Y. & He, Z. Effects of grazing patterns on grassland biomass and soil environments in China: a meta-analysis. PLoS One 14, e0215223 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S., Fan, J., Li, Y. & Huang, L. Effects of grazing exclusion on biomass growth and species diversity among various grassland types of the Tibetan Plateau. Sustainability 11, 1705 (2019).


    Google Scholar
     

  • Van Breemen, N., Driscoll, C. T. & Mulder, J. Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307, 599–604 (1984).


    Google Scholar
     

  • Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X. et al. Nitrogen deposition effects on invasive and native plant competition: implications for future invasions. Ecotoxicol. Environ. Saf. 259, 1–10 (2023).


    Google Scholar
     

  • Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Effect of intermediate disturbance on soil microbial functional diversity depends on the amount of effective resources. Environ. Microbiol. 20, 3862–3875 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Connel, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).


    Google Scholar
     

  • van der Spek, V. The impact of fallow deer (Dama dama) grazing on the biodiversity of a Dutch coastal dune system. Lutra 67, 3–20 (2024).


    Google Scholar
     

  • Zhang, R. et al. Diversity of plant and soil microbes mediates the response of ecosystem multifunctionality to grazing disturbance. Sci. Total Environ. 776, 145730 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, e1 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Bellemain, E. et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10, 1–9 (2010).


    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).


    Google Scholar
     

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47, D259–D264 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Werner, J. J. et al. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J 6, 94–103 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Jost, L. Mismeasuring biological diversity: response to Hoffmann and Hoffmann (2008). Ecol. Econ. 68, 925–928 (2009).


    Google Scholar
     

  • Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography (Cop.). 33, 23–45 (2010).


    Google Scholar
     

  • Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).


    Google Scholar
     

  • Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).


    Google Scholar
     

  • Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).


    Google Scholar
     

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).


    Google Scholar
     

  • Thompson, C. G., Kim, R. S., Aloe, A. M. & Becker, B. J. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl. Soc. Psych. 39, 81–90 (2017).


    Google Scholar
     

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).


    Google Scholar
     

  • Grace, J. B., Scheiner, S. M. & Schoolmaster, D. R. J. Structural equation modeling: building and evaluating causal models. in Ecological statistics: contemporary theory and application (eds. Fox, G. A., Negrete-Yankelevich, S. & Sosa, V. J.) 168–199 (Oxford University Press, 2015). https://doi.org/10.4324/9780429325038-8.

  • Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).


    Google Scholar
     

  • Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed 

    Google Scholar
     

  • Lukacs, P. M., Burnham, K. P. & Anderson, D. R. Model selection bias and Freedman’s paradox. Ann. Inst. Stat. Math. 62, 117–125 (2010).


    Google Scholar
     

  • Grace, J. B. & Bollen, K. A. Interpreting the results from multiple regression and structural equation models. Bull. Ecol. Soc. Am. 86, 283–295 (2005).


    Google Scholar
     

  • Dudgeon, P. A comparative investigation of confidence intervals for independent variables in linear regression. Multivariate Behav. Res. 51, 139–153 (2016).

    PubMed 

    Google Scholar
     

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).


    Google Scholar
     

  • Bartoń, K. MuMIn: Multi-Model inference. R package version 1.47.1. (2022).

  • Roswell, M. & Dushoff, J. MeanRarity: Hill diversity estimation and visualization. R package version 0.0.1.0004. (2022).

  • Murphy, M. semEff: automatic calculation of effects for piecewise structural equation models. R package version 0.6.0. (2021).



  • Source link

    More From Forest Beat

    The global determinants of climate niche breadth in birds

    We begin our analyses by leveraging the highest quality breeding range maps available for birds, inferred with state-of-the-art species distribution models and powered...
    Biodiversity
    18
    minutes

    Allowing forests to regrow and regenerate is a great way to...

    Queensland is widely known as the land clearing capital of Australia. But what’s not so well known is many...
    Biodiversity
    4
    minutes

    ‘De-extinction’ of dire wolves promotes false hope: technology can’t undo extinction

    Over the past week, the media have been inundated with news of the “de-extinction” of the dire wolf (Aenocyon...
    Biodiversity
    3
    minutes

    NDVI and vegetation volume as predictors of urban bird diversity

    UNHSP. World Cities Report 2022. (2022). https://unhabitat.org/wcr/.Lai, H., Flies, E. J., Weinstein, P. & Woodward, A. The impact of green space and biodiversity...
    Biodiversity
    10
    minutes
    spot_imgspot_img