Seidl, R. & Turner, M. G. Post-disturbance reorganization of forest ecosystems in a changing world. Proc. Natl. Acad. Sci. 119, e2202190119 (2022).
Senf, C. & Seidl, R. Post-disturbance canopy recovery and the resilience of Europe’s forests. Glob Ecol. Biogeogr. 31, 25–36 (2022).
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manag. 259, 660–684 (2010).
Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth. 4, 749–755 (2021).
Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
Batllori, E. et al. Forest and woodland replacement patterns following drought-related mortality. Proc. Natl. Acad. Sci. 117, 29720–29729 (2020).
Rammer, W. et al. Widespread regeneration failure in forests of greater Yellowstone under scenarios of future climate and fire. Glob Change Biol. 27, 4339–4351 (2021).
Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).
Bravard, J. P., Amoros, C. & Pautou, G. Impact of civil engineering works on the successions of communities in a fluvial system: A methodological and predictive approach applied to a section of the upper Rhône river, France. Oikos 47, 92 (1986).
Haase, D. & Gläser, J. Determinants of floodplain forest development illustrated by the example of the floodplain forest in the district of Leipzig. Ecol. Manag. 258, 887–894 (2009).
Kowalska, N. et al. Analysis of floodplain forest sensitivity to drought. Philos. Trans. R Soc. B Biol. Sci. 375, 20190518 (2020).
Leuschner, C. & Ellenberg, H. Ecology of Central European Forests: Vegetation Ecology of Central Europe, Volume I (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-43042-3
Tockner, K. & Stanford, J. A. Riverine flood plains: present state and future trends. Environ. Conserv. 29, 308–330 (2002).
BMU & BfN. Auenzustandsbericht-Flussauen in Deutschland. (2021).
Ellenberg, H. & Leuschner, C. Vegetation Mitteleuropas Mit Den Alpen: in Ökologischer, Dynamischer Und Historischer Sicht (UTB, 2010).
Haase, D. Holocene floodplains and their distribution in urban areas—functionality indicators for their retention potentials. Landsc. Urban Plan. 66, 5–18 (2003).
Havrdová, A., Douda, J. & Doudová, J. Threats, biodiversity drivers and restoration in temperate floodplain forests related to Spatial scales. Sci. Total Environ. 854, 158743 (2023).
Janik, D. et al. Tree layer dynamics of the Cahnov–Soutok near-natural floodplain forest after 33 years (1973–2006). Eur. J. Res. 127, 337–345 (2008).
Pörtner, H. O. et al. IPCC, : Summary for Policymakers [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) 3–33 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022). (2022).
Rakovec, O. et al. The 2018–2020 Multi-year drought sets a new benchmark in Europe. Earths Future. 10, e2021EF002394 (2022).
Wirth, C. et al. Ein biodiversitätshotspot an der Belastungsgrenze – Naturschutz und Klimawandel Im Leipziger Auwald. Biol. Unserer Zeit – BiuZ. 55–65. https://doi.org/10.11576/biuz-4107 (2021).
Hari, V., Rakovec, O., Markonis, Y., Hanel, M. & Kumar, R. Increased future occurrences of the exceptional 2018–2019 central European drought under global warming. Sci. Rep. 10, 12207 (2020).
Colangelo, M. et al. Drought decreases growth and increases mortality of coexisting native and introduced tree species in a temperate floodplain forest. Forests 9, 205 (2018).
Schnabel, F. et al. Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Glob Change Biol. 28, 1870–1883 (2022).
Skiadaresis, G., Schwarz, J. A. & Bauhus, J. Groundwater extraction in floodplain forests reduces radial growth and increases summer drought sensitivity of pedunculate oak trees (Quercus Robur L). Front. Glob Change. 2, 5 (2019).
Flower, C. E. & Gonzalez-Meler, M. A. Responses of temperate forest productivity to insect and pathogen disturbances. Annu. Rev. Plant. Biol. 66, 547–569 (2015).
Weed, A. S., Ayres, M. P. & Hicke, J. A. Consequences of climate change for biotic disturbances in North American forests. Ecol. Monogr. 83, 441–470 (2013).
(Klimo & Hager. The floodplain forests in Europe: Current situation and perspectives, Koninklijke Brill, N. V. & Leiden The Netherlands, Brill: Leiden, Boston, Köln, 2001). (2001).
Baral, H. O., Queloz, V. & Hosoya, T. Hymenoscyphus Fraxineus, the correct scientific name for the fungus causing Ash dieback in Europe. IMA Fungus. 5, 79–80 (2014).
Kowalski, T. Chalara Fraxinea Sp. Nov. Associated with dieback of Ash (Fraxinus excelsior) in Poland. Pathol. 36, 264–270 (2006).
Broome, A., Ray, D., Mitchell, R. & Harmer, R. Responding to Ash dieback (Hymenoscyphus fraxineus) in the UK: woodland composition and replacement tree species. Int. J. Res. 92, 108–119 (2019).
Erfmeier, A. et al. Ash dieback and its impact in near-natural forest remnants – a plant community-based inventory. Front. Plant. Sci. 10, 658 (2019).
Härdtle, W. et al. Pflanzengesellschaft des Jahres 2021: Hartholz-Auenwald (Ficario-Ulmetum). (2020). https://doi.org/10.14471/2020.40.007
Wirth, C. et al. Dynamik als Leitprinzip zur Revitalisierung des Leipziger Auensystems: 10 Thesen zur Revitalisierung der Leipziger Aue, eine Vision, ein konkreter Maßnahmenkatalog mit Karte zu Dynamisierungsoptionen und ein Ausblick mit Realisierungsvorschlägen. UFZ Discussion Paper 9 (2020), Helmholtz-Zentrum für Umweltforschung (UFZ), Leipzig.
Oliver, C. D. & Larson, B. A. Forest Stand Dynamics, Update Edition (FES Other, 1996).
McCarthy, J. Gap dynamics of forest trees: A review with particular attention to boreal forests. Environ. Rev. 9, 1–59 (2001).
Schliemann, S. A. & Bockheim, J. G. Methods for studying treefall gaps: A review. Ecol. Manag. 261, 1143–1151 (2011).
Jones, T. A., Domke, G. M. & Thomas, S. C. Canopy tree growth responses following selection harvest in seven species varying in shade tolerance. Can. J. Res. 39, 430–440 (2009).
Oliver, C. D., Murray, M. D. & Washington, W. Stand structure, thinning prescriptions, and density indexes in a Douglas-fir thinning study, U S Can. J. Res. 13, 126–136 (1983).
Pedersen, B. S. & Howard, J. L. The influence of canopy gaps on overstory tree and forest growth rates in a mature mixed-age, mixed-species forest. Ecol. Manag. 196, 351–366 (2004).
Wiser, S. K., Allen, R. B., Benecke, U., Baker, G. & Peltzer, D. Tree growth and mortality after small-group harvesting in new Zealand old-growth Nothofagus forests. Can. J. Res. 35, 2323–2331 (2005).
Muth, C. C. & Bazzaz, F. A. Tree canopy displacement at forest gap edges. Can. J. Res. 32, 247–254 (2002).
Stan, A. B. & Daniels, L. D. Growth releases across a natural canopy gap-forest gradient in old-growth forests. Ecol. Manag. 313, 98–103 (2014).
Pretzsch, H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Ecol. Manag. 327, 251–264 (2014).
Brüllhardt, M., Rotach, P., Bigler, C., Nötzli, M. & Bugmann, H. Growth and resource allocation of juvenile European Beech and sycamore maple along light availability gradients in uneven-aged forests. Ecol. Manag. 474, 118314 (2020).
Forrester, J. A., Lorimer, C. G., Dyer, J. H., Gower, S. T. & Mladenoff, D. J. Response of tree regeneration to experimental gap creation and deer herbivory in North temperate forests. Ecol. Manag. 329, 137–147 (2014).
Yoshida, T. & Kamitani, T. Effects of crown release on basal area growth rates of some broad-leaved tree species with different shade-tolerance. J. Res. 3, 181–184 (1998).
Loewenstein, N. J. & Pallardy, S. G. Drought tolerance, xylem Sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms. Tree Physiol. 18, 431–439 (1998).
Ward, J. V., Tockner, K. & Schiemer, F. Biodiversity of floodplain river ecosystems: ecotones and connectivity1. Regul. Rivers Res. Manag. 15, 125–139 (1999).
Richter, R. et al. Tree species matter for forest microclimate regulation during the drought year 2018: disentangling environmental drivers and biotic drivers. Sci. Rep. 12, 17559 (2022).
Scholz, M. et al. Das Projekt Lebendige Luppe – ein Beitrag zur Renaturierung der Leipziger Nord-West-Aue. Auenmagazin 14–21 (2018).
Kasperidus, H. D. & Scholz, M. Auen und Auenwälder in urbanen Räumen. in Der Leipziger Auwald – ein dynamischer Lebensraum; Tagungsband zum 5. Leipziger Auensymposium am 16. April 2011 (eds. Wirth, C., Reiher, A., Zäumer, U. & Kasperidus, H. D.) 26–30 (Helmholtz-Zentrum für Umweltforschung – UFZ, Leipzig, (2011).
Günther-Diringer, D. et al. Methodische grundlagen zum Auenzustandsbericht 2021: Erfassung, Bilanzierung und bewertung von flussauen. Deutschland/Bundesamt Für Naturschutz. https://doi.org/10.19217/skr591 (2021).
Kretz, L. et al. Functional traits explain growth resistance to successive hotter droughts across a wide set of common and future tree species in Europe. 07.04.602057 Preprint at (2024). https://doi.org/10.1101/2024.07.04.602057 (2024).
Gutte, P. Das Querco-Ulmetum minoris Issler 1942, der Stieleichen- Ulmen-Hartholzwald, in der Elster-Luppe-Aue Bei Leipzig. Mauritiana 22, 213–242 (2011).
Scholz, M. et al. Das Projekt Lebendige Luppe. Einführung in Den Projektraum Elster-Luppe-Aue. 7–20 (2022).
Kirsten, F., Herkelrath-Bleyl, A., Krüger, A. & Heinrich, J. Entstehung und Eigenschaften der Böden und Sedimente in der Elster-Luppe-Aue. 43–68 (2022).
Seele-Dilbat, C. et al. Untersuchungsdesign der naturwissenschaftlichen Begleitung im Projekt Lebendige Luppe. UFZ-Bericht 21–42 (2022).
Brückner, F., Sahlbach, T., Buschmann, T. & Vieweg, M. Gekoppeltes Grundwasser-Oberflächenwasser-Modell. UFZ-Bericht (2025).
Vieweg, M., Brückner, F., Kasperidus, H. D., Scholz, M. & Krieg, R. Einrichtung und Monitoring des Grund- und Oberflächenwassers. UFZ-Bericht (2025).
Prof Hellriegel-Institut. MANAGEMENTPLAN für das FFH-Gebiet Landesmeldenummer 050 E „Leipziger Auensystem (SCI 4639 – 301) und das SPA V05 „Leipziger Auwald. 573 (2012).
Gläser, J. & Schmidt, P. A. Zur historischen Entwicklung des Baumartenbestandes von Hartholz-Auenwäldern – dargestellt am Beispiel des Leipziger Auenwaldes. Allg Forst- Jagdztg. 178, 90–97 (2007).
Kuntze, O. Taschen-Flora von Leipzig (Leipzig, 1867).
Rieland, G. et al. Tree inventory dataset of floodplain forest. Leipzig Ger. PANGAEA (2024). https://doi.pangaea.de/10.1594/PANGAEA.968663
Seele-Dilbat, C., Pruschitzki, U., Engelmann, R., Scholz, M. & Wirth, C. Anweisung Waldinventur – Projekt Lebendige Luppe – Attraktive Auenlandschaft als Leipziger Lebensader – Biologische Vielfalt bringt Lebensqualität in die Stadt. (2020).
Grala-Michalak, J. & Kaźmierczak, K. Discriminant analysis for Kraft’s classes of trees. Biom Lett. 48, 67–81 (2011).
Scholz, M. et al. Die Entwicklung des Eschentriebsterbens von 2016 bis 2023 im Leipziger Auwald. (2025).
Scholz, M. et al. Nine years of monitoring ash dieback in the floodplain forest of Leipzig, Germany. PANGAEA. https://doi.pangaea.de/10.1594/PANGAEA.977358 (2025).
Langer, G. & Bressem, U. Eschentriebsterben Nordwestdtsch Forstl Vers NW-FVA Abt Waldschutz 4, 1–30 (2016).
Lenz, H., Straßer, L., Baumann, M. & Baier, U. Boniturschlüssel zur Einstufung der Vitalität von Alteschen. AFZ-DerWald 18–19 (2012).
Peters, S., Langer, G. & Kätzel, R. Bonitur geschädigter Eschen im Kontext des Eschentriebsterbens. AFZ-DerWald 12, 28–31 (2021).
Peters, S., Langer, G. & Kätzel, R. Eschentriebsterben – Kriterien zur Schadensbonitur an Eschen (Fachagentur Nachwachsende Rohstoffe e. V. (FNR), 2021).
Engelmann, R. A. et al. Reiner Prozessschutz gefährdet Artenvielfalt im Leipziger Auwald. UFZ Discuss. Pap (2019).
Bartha, B., Lenz, H. & Petercord, R. Keine Entwarnung beim Eschentriebsterben. LWF Aktuell. 101, 51–53 (2014).
Baayen, R. H. Analyzing Linguistic Data. A Practical Introduction To Statistics (Cambridge University Press, 2008).
Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68 https://doi.org/10.1016/j.jml.2012.11.001 (2013).
Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).
Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65, 47–55 (2011).
Dobson, A. J. An Introduction To Generalized Linear Models (Chapman & Hall/CRC, 2002).
Luke, S. G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods. 49, 1494–1502 (2017).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmertest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
Field, A. Discovering Statistics Using SPSS, 2nd Ed. xxxiv, 779 Sage Publications, Inc, Thousand Oaks, CA, US, (2005).
Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511806384
Nieuwenhuis, R., Grotenhuis, M. & Pelzer, B. te influence.ME: Tools for detecting influential data in Mixed Effects Models. R J. 4, 38 (2012).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Fox, J. & Weisberg, S. An R companion to applied regression. (Sage, Thousand Oaks CA, (2019).
Bartón, K. & MuMIn Multi-model inference. (2023).
Sánchez-Pérez, J. M., Lucot, E., Bariac, T. & Trémolières, M. Water uptake by trees in a riparian hardwood forest (Rhine floodplain, France). Hydrol. Process. 22, 366–375 (2008).
Singer, M. B. et al. Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees. Water Resour. Res. 50, 4490–4513 (2014).
Mikac, S. et al. Drought-induced shift in tree response to climate in floodplain forests of southeastern Europe. Sci. Rep. 8, 16495 (2018).
Stojanović, D. B., Levanič, T., Matović, B. & Orlović, S. Growth decrease and mortality of oak floodplain forests as a response to change of water regime and climate. Eur. J. Res. 134, 555–567 (2015).
Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant. Sci. 6, (2015).
Pretzsch, H. Grundlagen der Waldwachstumsforschung (Springer Berlin Heidelberg, 2019). https://doi.org/10.1007/978-3-662-58155-1
Izworska, K., Muter, E., Fleischer, P. & Zielonka, T. Delay of growth release after a windthrow event and climate response in a light-demanding species (European larch Larix decidua Mill). Trees 36, 427–438 (2022).
Costilow, K. C., Knight, K. S. & Flower, C. E. Disturbance severity and canopy position control the radial growth response of maple trees (Acer spp.) in forests of Northwest Ohio impacted by Emerald Ash borer (Agrilus planipennis). Ann. Sci. 74, 10 (2017).
Mu, M. et al. Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth Syst. Dyn. 12, 919–938 (2021).
Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on central European forests. Basic. Appl. Ecol. 45, 86–103 (2020).
Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).
Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E. & Abatzoglou, J. T. Microclimatic buffering in forests of the future: the role of local water balance. Ecography 42, 1–11 (2019).
De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob Change Biol. 27, 2279–2297 (2021).
Facciano, L., Sasal, Y. & Suarez, M. L. How do understory trees deal with small canopy openings? The case of release in growth following drought-induced tree mortality. Ecol. Manag. 529, 120692 (2023).
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New. Phytol. 226, 1550–1566 (2020).
Rollinson, C. R. et al. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 102, e03264 (2021).
Meyer, P., Spînu, A. P., Mölder, A. & Bauhus, J. Management alters drought-induced mortality patterns in European Beech (Fagus sylvatica L.) forests. Plant. Biol. 24, 1157–1170 (2022).
Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob Change Biol. 23, 1675–1690 (2017).
Gillner, S., Rüger, N., Roloff, A. & Berger, U. Low relative growth rates predict future mortality of common Beech (Fagus sylvatica L). Ecol. Manag. 302, 372–378 (2013).
Pedersen, B. S. The role of stress in the mortality of Midwestern Oaks as indicated by growth prior to death. Ecology 79, 79–93 (1998).
Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J. Ecol. https://doi.org/10.1111/1365-2745.13022 (2018).
Bourdier, T. et al. Tree size inequality reduces forest productivity: an analysis combining inventory data for ten European species and a light competition model. PLOS One. 11, e0151852 (2016).
Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Ecol. Manag. 260, 1623–1639 (2010).
Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).
Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. & Werner, W. Zeigerwerte Von Pflanzen in Mitteleuropa (Verlag Erich Goltze KG, Göttingen, 2001).
Leuschner, C. & Meier, I. C. The ecology of central European tree species: trait spectra, functional trade-offs, and ecological classification of adult trees. Perspect. Plant. Ecol. Evol. Syst. 33, 89–103 (2018).
Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257 (2008).
Lübbe, T., Schuldt, B. & Leuschner, C. Acclimation of leaf water status and stem hydraulics to drought and tree neighbourhood: alternative strategies among the saplings of five temperate deciduous tree species. Tree Physiol. 37, 456–468 (2017).
Engelmann, R. A. et al. Der Gehölzbestand des Stieleichen-Ulmen-Hartholzauenwalds (Querco-Ulmetum minoris ISSLER 1942) im Projektgebiet Lebendige Luppe in der Nordwestlichen Elster-Luppe-Aue bei Leipzig. UFZ-Bericht 115–132 (2022).
Darnstaedt, F. et al. Gehölzbestand der Strauchschicht im Stieleichen-Ulmen-Hartholzauenwald (Querco-Ulmetum Minoris ISSLER 1942) im Projekt-Gebiet Lebendige Luppe in der Elster-Luppe-Aue bei Leipzig. UFZ-Bericht (2025).
Hanfstängl, M. Response of the Natural Regeneration To Mortality and management-induced Thinning in the Floodplain Forest in Leipzig (University Greifswald, 2024).
Glenz, C., Schlaepfer, R., Iorgulescu, I. & Kienast, F. Flooding tolerance of central European tree and shrub species. Ecol. Manag. 235, 1–13 (2006).
Koop, H. Vegetative reproduction of trees in some European natural forests. Vegetatio 72, 103–110 (1987).
Henkel, S. et al. Veränderungen des Baumbestandes des Stieleichen-Ulmen-Hartholzauenwaldes (Querco-Ulmetum Minoris) in der Leipziger Elster-Luppe-Aue. UFZ-Bericht (2025).
Wiegand, J. Development and Composition of the Regeneration Layer of the Floodplain Forest of Leipzig in Dependence on Environmental Conditions, Interspecific Competition and the Overstorey (Universität Leipzig, 2021).
Arndt, E., Bernhard, D., Jesche, C., Kupillas, S. & Voigt, W. Species diversity and tree association of Heteroptera (Insecta) in the canopy of a Quercus-Fraxinus-Tilia floodplain forest. in The Canopy of a Temperate Floodplain Forest – First results from 5 years of research at the Leipzig Canopy Crane (eds. Unterseher, M., Morawetz, W., Klotz, S. & Arndt, E.) 81–90 (Universität Leipzig, Merkur, Leipzig, (2007).
Schmidt, C., Bernhard, D. & Arndt, E. Ecological examinations concerning xylobiontic Coleoptera in the canopy of a Quercus-Fraxinus forest. in The Canopy of a Temperate Floodplain Forest – First results from 5 years of research at the Leipzig Canopy Crane (eds. Unterseher, M., Morawetz, W., Klotz, S. & Arndt, E.) 97–105 (Universität Leipzig, Merkur, Leipzig, (2007).
Stenchly, K., Bernhard, D. & Finch, O. D. Arboricolous spiders (Arachnida, Araneae) of the Leipzig floodplain forest – first results. in The Canopy of a Temperate Floodplain Forest – First results from 5 years of research at the Leipzig Canopy Crane (eds. Unterseher, M., Morawetz, W., Klotz, S. & Arndt, E.) 72–80 (Universität Leipzig, Merkur, Leipzig, (2007).
Unterseher, M., Reiher, A., Otto, P. & Schnittler, M. Pilze im Kronenraum lebender Bäume – 5 Jahre mykologische Biodiversitätsforschung am Leipziger Auwald Kran. Z. Für Mykol. 74, 203–220 (2008).
Haack, N. et al. Patterns of richness across forest beetle communities—A methodological comparison of observed and estimated species numbers. Ecol. Evol. 11, 626–635 (2020).
Hahn, L., Brunk, I., Haack, N. L., Preuss, L. & Bernhard, D. Die Diversität der Coleoptera im Leipziger Auwald – erste Ergebnisse einer mehrjährigen Untersuchung mit Flugfensterfallen im Kronenraum und in der Strauchschicht. Entomol. Nachr. Berichte. 66, 69–89 (2022).
Boyce, J. et al. How can oak regeneration in the Leipzig floodplain forest be effectively supported by Femel plantations? Application of a demographic forest model. Ecol. Model. 499, 110920 (2025).
European Environment Agency. European Forest Ecosystems: State and Trends (Publications Office, 2016).
Petsch, D. K., Cionek, V. M. & Thomaz, S. M. & Dos Santos, N. C. L. Ecosystem services provided by river-floodplain ecosystems. Hydrobiologia https://doi.org/10.1007/s10750-022-04916-7 (2022).
Scholz, M. et al. Ökosystemfunktionen von Flussauen. BfN Naturschutz Biol. Vielfalt 124, (2012).
Evans, M. R. Will natural resistance result in populations of Ash trees remaining in British woodlands after a century of Ash dieback disease? R Soc. Open. Sci. 6, 190908 (2019).
McKinney, L. V. et al. The Ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant. Pathol. 63, 485–499 (2014).
Pautasso, M., Aas, G., Queloz, V. & Holdenrieder, O. European Ash (Fraxinus excelsior) dieback – A conservation biology challenge. Biol. Conserv. 158, 37–49 (2013).
Elles, L. et al. Supporting conservation planning in a National biodiversity hotspot – Projecting species composition across a groundwater level gradient using a demographic forest model. Ecol. Model. 501, 110996 (2025).