Ash dieback and hydrology affect tree growth patterns under climate change in European floodplain forests


  • Seidl, R. & Turner, M. G. Post-disturbance reorganization of forest ecosystems in a changing world. Proc. Natl. Acad. Sci. 119, e2202190119 (2022).

  • Senf, C. & Seidl, R. Post-disturbance canopy recovery and the resilience of Europe’s forests. Glob Ecol. Biogeogr. 31, 25–36 (2022).

    MATH 

    Google Scholar
     

  • Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manag. 259, 660–684 (2010).

    MATH 

    Google Scholar
     

  • Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth. 4, 749–755 (2021).

    ADS 
    MATH 

    Google Scholar
     

  • Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    PubMed 
    MATH 

    Google Scholar
     

  • Batllori, E. et al. Forest and woodland replacement patterns following drought-related mortality. Proc. Natl. Acad. Sci. 117, 29720–29729 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rammer, W. et al. Widespread regeneration failure in forests of greater Yellowstone under scenarios of future climate and fire. Glob Change Biol. 27, 4339–4351 (2021).

    CAS 
    MATH 

    Google Scholar
     

  • Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bravard, J. P., Amoros, C. & Pautou, G. Impact of civil engineering works on the successions of communities in a fluvial system: A methodological and predictive approach applied to a section of the upper Rhône river, France. Oikos 47, 92 (1986).

    ADS 

    Google Scholar
     

  • Haase, D. & Gläser, J. Determinants of floodplain forest development illustrated by the example of the floodplain forest in the district of Leipzig. Ecol. Manag. 258, 887–894 (2009).

    MATH 

    Google Scholar
     

  • Kowalska, N. et al. Analysis of floodplain forest sensitivity to drought. Philos. Trans. R Soc. B Biol. Sci. 375, 20190518 (2020).

    CAS 
    MATH 

    Google Scholar
     

  • Leuschner, C. & Ellenberg, H. Ecology of Central European Forests: Vegetation Ecology of Central Europe, Volume I (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-43042-3

  • Tockner, K. & Stanford, J. A. Riverine flood plains: present state and future trends. Environ. Conserv. 29, 308–330 (2002).

    MATH 

    Google Scholar
     

  • BMU & BfN. Auenzustandsbericht-Flussauen in Deutschland. (2021).

  • Ellenberg, H. & Leuschner, C. Vegetation Mitteleuropas Mit Den Alpen: in Ökologischer, Dynamischer Und Historischer Sicht (UTB, 2010).

  • Haase, D. Holocene floodplains and their distribution in urban areas—functionality indicators for their retention potentials. Landsc. Urban Plan. 66, 5–18 (2003).

    MATH 

    Google Scholar
     

  • Havrdová, A., Douda, J. & Doudová, J. Threats, biodiversity drivers and restoration in temperate floodplain forests related to Spatial scales. Sci. Total Environ. 854, 158743 (2023).

    PubMed 

    Google Scholar
     

  • Janik, D. et al. Tree layer dynamics of the Cahnov–Soutok near-natural floodplain forest after 33 years (1973–2006). Eur. J. Res. 127, 337–345 (2008).

    MATH 

    Google Scholar
     

  • Pörtner, H. O. et al. IPCC, : Summary for Policymakers [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) 3–33 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022). (2022).

  • Rakovec, O. et al. The 2018–2020 Multi-year drought sets a new benchmark in Europe. Earths Future. 10, e2021EF002394 (2022).

    ADS 
    MATH 

    Google Scholar
     

  • Wirth, C. et al. Ein biodiversitätshotspot an der Belastungsgrenze – Naturschutz und Klimawandel Im Leipziger Auwald. Biol. Unserer Zeit – BiuZ. 55–65. https://doi.org/10.11576/biuz-4107 (2021).

  • Hari, V., Rakovec, O., Markonis, Y., Hanel, M. & Kumar, R. Increased future occurrences of the exceptional 2018–2019 central European drought under global warming. Sci. Rep. 10, 12207 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colangelo, M. et al. Drought decreases growth and increases mortality of coexisting native and introduced tree species in a temperate floodplain forest. Forests 9, 205 (2018).

    MATH 

    Google Scholar
     

  • Schnabel, F. et al. Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Glob Change Biol. 28, 1870–1883 (2022).

    CAS 
    MATH 

    Google Scholar
     

  • Skiadaresis, G., Schwarz, J. A. & Bauhus, J. Groundwater extraction in floodplain forests reduces radial growth and increases summer drought sensitivity of pedunculate oak trees (Quercus Robur L). Front. Glob Change. 2, 5 (2019).


    Google Scholar
     

  • Flower, C. E. & Gonzalez-Meler, M. A. Responses of temperate forest productivity to insect and pathogen disturbances. Annu. Rev. Plant. Biol. 66, 547–569 (2015).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Weed, A. S., Ayres, M. P. & Hicke, J. A. Consequences of climate change for biotic disturbances in North American forests. Ecol. Monogr. 83, 441–470 (2013).


    Google Scholar
     

  • (Klimo & Hager. The floodplain forests in Europe: Current situation and perspectives, Koninklijke Brill, N. V. & Leiden The Netherlands, Brill: Leiden, Boston, Köln, 2001). (2001).

  • Baral, H. O., Queloz, V. & Hosoya, T. Hymenoscyphus Fraxineus, the correct scientific name for the fungus causing Ash dieback in Europe. IMA Fungus. 5, 79–80 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowalski, T. Chalara Fraxinea Sp. Nov. Associated with dieback of Ash (Fraxinus excelsior) in Poland. Pathol. 36, 264–270 (2006).

    MATH 

    Google Scholar
     

  • Broome, A., Ray, D., Mitchell, R. & Harmer, R. Responding to Ash dieback (Hymenoscyphus fraxineus) in the UK: woodland composition and replacement tree species. Int. J. Res. 92, 108–119 (2019).


    Google Scholar
     

  • Erfmeier, A. et al. Ash dieback and its impact in near-natural forest remnants – a plant community-based inventory. Front. Plant. Sci. 10, 658 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Härdtle, W. et al. Pflanzengesellschaft des Jahres 2021: Hartholz-Auenwald (Ficario-Ulmetum). (2020). https://doi.org/10.14471/2020.40.007

  • Wirth, C. et al. Dynamik als Leitprinzip zur Revitalisierung des Leipziger Auensystems: 10 Thesen zur Revitalisierung der Leipziger Aue, eine Vision, ein konkreter Maßnahmenkatalog mit Karte zu Dynamisierungsoptionen und ein Ausblick mit Realisierungsvorschlägen. UFZ Discussion Paper 9 (2020), Helmholtz-Zentrum für Umweltforschung (UFZ), Leipzig.

  • Oliver, C. D. & Larson, B. A. Forest Stand Dynamics, Update Edition (FES Other, 1996).

  • McCarthy, J. Gap dynamics of forest trees: A review with particular attention to boreal forests. Environ. Rev. 9, 1–59 (2001).

    MATH 

    Google Scholar
     

  • Schliemann, S. A. & Bockheim, J. G. Methods for studying treefall gaps: A review. Ecol. Manag. 261, 1143–1151 (2011).

    MATH 

    Google Scholar
     

  • Jones, T. A., Domke, G. M. & Thomas, S. C. Canopy tree growth responses following selection harvest in seven species varying in shade tolerance. Can. J. Res. 39, 430–440 (2009).


    Google Scholar
     

  • Oliver, C. D., Murray, M. D. & Washington, W. Stand structure, thinning prescriptions, and density indexes in a Douglas-fir thinning study, U S Can. J. Res. 13, 126–136 (1983).


    Google Scholar
     

  • Pedersen, B. S. & Howard, J. L. The influence of canopy gaps on overstory tree and forest growth rates in a mature mixed-age, mixed-species forest. Ecol. Manag. 196, 351–366 (2004).

    MATH 

    Google Scholar
     

  • Wiser, S. K., Allen, R. B., Benecke, U., Baker, G. & Peltzer, D. Tree growth and mortality after small-group harvesting in new Zealand old-growth Nothofagus forests. Can. J. Res. 35, 2323–2331 (2005).


    Google Scholar
     

  • Muth, C. C. & Bazzaz, F. A. Tree canopy displacement at forest gap edges. Can. J. Res. 32, 247–254 (2002).


    Google Scholar
     

  • Stan, A. B. & Daniels, L. D. Growth releases across a natural canopy gap-forest gradient in old-growth forests. Ecol. Manag. 313, 98–103 (2014).

    MATH 

    Google Scholar
     

  • Pretzsch, H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Ecol. Manag. 327, 251–264 (2014).


    Google Scholar
     

  • Brüllhardt, M., Rotach, P., Bigler, C., Nötzli, M. & Bugmann, H. Growth and resource allocation of juvenile European Beech and sycamore maple along light availability gradients in uneven-aged forests. Ecol. Manag. 474, 118314 (2020).


    Google Scholar
     

  • Forrester, J. A., Lorimer, C. G., Dyer, J. H., Gower, S. T. & Mladenoff, D. J. Response of tree regeneration to experimental gap creation and deer herbivory in North temperate forests. Ecol. Manag. 329, 137–147 (2014).


    Google Scholar
     

  • Yoshida, T. & Kamitani, T. Effects of crown release on basal area growth rates of some broad-leaved tree species with different shade-tolerance. J. Res. 3, 181–184 (1998).

    MATH 

    Google Scholar
     

  • Loewenstein, N. J. & Pallardy, S. G. Drought tolerance, xylem Sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms. Tree Physiol. 18, 431–439 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Ward, J. V., Tockner, K. & Schiemer, F. Biodiversity of floodplain river ecosystems: ecotones and connectivity1. Regul. Rivers Res. Manag. 15, 125–139 (1999).


    Google Scholar
     

  • Richter, R. et al. Tree species matter for forest microclimate regulation during the drought year 2018: disentangling environmental drivers and biotic drivers. Sci. Rep. 12, 17559 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scholz, M. et al. Das Projekt Lebendige Luppe – ein Beitrag zur Renaturierung der Leipziger Nord-West-Aue. Auenmagazin 14–21 (2018).

  • Kasperidus, H. D. & Scholz, M. Auen und Auenwälder in urbanen Räumen. in Der Leipziger Auwald – ein dynamischer Lebensraum; Tagungsband zum 5. Leipziger Auensymposium am 16. April 2011 (eds. Wirth, C., Reiher, A., Zäumer, U. & Kasperidus, H. D.) 26–30 (Helmholtz-Zentrum für Umweltforschung – UFZ, Leipzig, (2011).

  • Günther-Diringer, D. et al. Methodische grundlagen zum Auenzustandsbericht 2021: Erfassung, Bilanzierung und bewertung von flussauen. Deutschland/Bundesamt Für Naturschutz. https://doi.org/10.19217/skr591 (2021).

    Article 

    Google Scholar
     

  • Kretz, L. et al. Functional traits explain growth resistance to successive hotter droughts across a wide set of common and future tree species in Europe. 07.04.602057 Preprint at (2024). https://doi.org/10.1101/2024.07.04.602057 (2024).

  • Gutte, P. Das Querco-Ulmetum minoris Issler 1942, der Stieleichen- Ulmen-Hartholzwald, in der Elster-Luppe-Aue Bei Leipzig. Mauritiana 22, 213–242 (2011).


    Google Scholar
     

  • Scholz, M. et al. Das Projekt Lebendige Luppe. Einführung in Den Projektraum Elster-Luppe-Aue. 7–20 (2022).

  • Kirsten, F., Herkelrath-Bleyl, A., Krüger, A. & Heinrich, J. Entstehung und Eigenschaften der Böden und Sedimente in der Elster-Luppe-Aue. 43–68 (2022).

  • Seele-Dilbat, C. et al. Untersuchungsdesign der naturwissenschaftlichen Begleitung im Projekt Lebendige Luppe. UFZ-Bericht 21–42 (2022).

  • Brückner, F., Sahlbach, T., Buschmann, T. & Vieweg, M. Gekoppeltes Grundwasser-Oberflächenwasser-Modell. UFZ-Bericht (2025).

  • Vieweg, M., Brückner, F., Kasperidus, H. D., Scholz, M. & Krieg, R. Einrichtung und Monitoring des Grund- und Oberflächenwassers. UFZ-Bericht (2025).

  • Prof Hellriegel-Institut. MANAGEMENTPLAN für das FFH-Gebiet Landesmeldenummer 050 E „Leipziger Auensystem (SCI 4639 – 301) und das SPA V05 „Leipziger Auwald. 573 (2012).

  • Gläser, J. & Schmidt, P. A. Zur historischen Entwicklung des Baumartenbestandes von Hartholz-Auenwäldern – dargestellt am Beispiel des Leipziger Auenwaldes. Allg Forst- Jagdztg. 178, 90–97 (2007).


    Google Scholar
     

  • Kuntze, O. Taschen-Flora von Leipzig (Leipzig, 1867).

  • Rieland, G. et al. Tree inventory dataset of floodplain forest. Leipzig Ger. PANGAEA (2024). https://doi.pangaea.de/10.1594/PANGAEA.968663

  • Seele-Dilbat, C., Pruschitzki, U., Engelmann, R., Scholz, M. & Wirth, C. Anweisung Waldinventur – Projekt Lebendige Luppe – Attraktive Auenlandschaft als Leipziger Lebensader – Biologische Vielfalt bringt Lebensqualität in die Stadt. (2020).

  • Grala-Michalak, J. & Kaźmierczak, K. Discriminant analysis for Kraft’s classes of trees. Biom Lett. 48, 67–81 (2011).

    MATH 

    Google Scholar
     

  • Scholz, M. et al. Die Entwicklung des Eschentriebsterbens von 2016 bis 2023 im Leipziger Auwald. (2025).

  • Scholz, M. et al. Nine years of monitoring ash dieback in the floodplain forest of Leipzig, Germany. PANGAEA. https://doi.pangaea.de/10.1594/PANGAEA.977358 (2025).

  • Langer, G. & Bressem, U. Eschentriebsterben Nordwestdtsch Forstl Vers NW-FVA Abt Waldschutz 4, 1–30 (2016).


    Google Scholar
     

  • Lenz, H., Straßer, L., Baumann, M. & Baier, U. Boniturschlüssel zur Einstufung der Vitalität von Alteschen. AFZ-DerWald 18–19 (2012).

  • Peters, S., Langer, G. & Kätzel, R. Bonitur geschädigter Eschen im Kontext des Eschentriebsterbens. AFZ-DerWald 12, 28–31 (2021).


    Google Scholar
     

  • Peters, S., Langer, G. & Kätzel, R. Eschentriebsterben – Kriterien zur Schadensbonitur an Eschen (Fachagentur Nachwachsende Rohstoffe e. V. (FNR), 2021).

  • Engelmann, R. A. et al. Reiner Prozessschutz gefährdet Artenvielfalt im Leipziger Auwald. UFZ Discuss. Pap (2019).

  • Bartha, B., Lenz, H. & Petercord, R. Keine Entwarnung beim Eschentriebsterben. LWF Aktuell. 101, 51–53 (2014).


    Google Scholar
     

  • Baayen, R. H. Analyzing Linguistic Data. A Practical Introduction To Statistics (Cambridge University Press, 2008).

  • Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68 https://doi.org/10.1016/j.jml.2012.11.001 (2013).

  • Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).

    PubMed 

    Google Scholar
     

  • Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65, 47–55 (2011).

    PubMed 

    Google Scholar
     

  • Dobson, A. J. An Introduction To Generalized Linear Models (Chapman & Hall/CRC, 2002).

  • Luke, S. G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods. 49, 1494–1502 (2017).

    PubMed 
    MATH 

    Google Scholar
     

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmertest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    MATH 

    Google Scholar
     

  • Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).


    Google Scholar
     

  • Field, A. Discovering Statistics Using SPSS, 2nd Ed. xxxiv, 779 Sage Publications, Inc, Thousand Oaks, CA, US, (2005).

  • Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511806384

  • Nieuwenhuis, R., Grotenhuis, M. & Pelzer, B. te influence.ME: Tools for detecting influential data in Mixed Effects Models. R J. 4, 38 (2012).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).


    Google Scholar
     

  • Fox, J. & Weisberg, S. An R companion to applied regression. (Sage, Thousand Oaks CA, (2019).

  • Bartón, K. & MuMIn Multi-model inference. (2023).

  • Sánchez-Pérez, J. M., Lucot, E., Bariac, T. & Trémolières, M. Water uptake by trees in a riparian hardwood forest (Rhine floodplain, France). Hydrol. Process. 22, 366–375 (2008).

    ADS 

    Google Scholar
     

  • Singer, M. B. et al. Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees. Water Resour. Res. 50, 4490–4513 (2014).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mikac, S. et al. Drought-induced shift in tree response to climate in floodplain forests of southeastern Europe. Sci. Rep. 8, 16495 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stojanović, D. B., Levanič, T., Matović, B. & Orlović, S. Growth decrease and mortality of oak floodplain forests as a response to change of water regime and climate. Eur. J. Res. 134, 555–567 (2015).


    Google Scholar
     

  • Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant. Sci. 6, (2015).

  • Pretzsch, H. Grundlagen der Waldwachstumsforschung (Springer Berlin Heidelberg, 2019). https://doi.org/10.1007/978-3-662-58155-1

  • Izworska, K., Muter, E., Fleischer, P. & Zielonka, T. Delay of growth release after a windthrow event and climate response in a light-demanding species (European larch Larix decidua Mill). Trees 36, 427–438 (2022).


    Google Scholar
     

  • Costilow, K. C., Knight, K. S. & Flower, C. E. Disturbance severity and canopy position control the radial growth response of maple trees (Acer spp.) in forests of Northwest Ohio impacted by Emerald Ash borer (Agrilus planipennis). Ann. Sci. 74, 10 (2017).


    Google Scholar
     

  • Mu, M. et al. Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth Syst. Dyn. 12, 919–938 (2021).

    ADS 
    MATH 

    Google Scholar
     

  • Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on central European forests. Basic. Appl. Ecol. 45, 86–103 (2020).

    MATH 

    Google Scholar
     

  • Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E. & Abatzoglou, J. T. Microclimatic buffering in forests of the future: the role of local water balance. Ecography 42, 1–11 (2019).

    ADS 

    Google Scholar
     

  • De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob Change Biol. 27, 2279–2297 (2021).

    ADS 
    MATH 

    Google Scholar
     

  • Facciano, L., Sasal, Y. & Suarez, M. L. How do understory trees deal with small canopy openings? The case of release in growth following drought-induced tree mortality. Ecol. Manag. 529, 120692 (2023).


    Google Scholar
     

  • Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New. Phytol. 226, 1550–1566 (2020).

    PubMed 
    MATH 

    Google Scholar
     

  • Rollinson, C. R. et al. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 102, e03264 (2021).

    PubMed 

    Google Scholar
     

  • Meyer, P., Spînu, A. P., Mölder, A. & Bauhus, J. Management alters drought-induced mortality patterns in European Beech (Fagus sylvatica L.) forests. Plant. Biol. 24, 1157–1170 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob Change Biol. 23, 1675–1690 (2017).

    ADS 
    MATH 

    Google Scholar
     

  • Gillner, S., Rüger, N., Roloff, A. & Berger, U. Low relative growth rates predict future mortality of common Beech (Fagus sylvatica L). Ecol. Manag. 302, 372–378 (2013).


    Google Scholar
     

  • Pedersen, B. S. The role of stress in the mortality of Midwestern Oaks as indicated by growth prior to death. Ecology 79, 79–93 (1998).

    MATH 

    Google Scholar
     

  • Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J. Ecol. https://doi.org/10.1111/1365-2745.13022 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Bourdier, T. et al. Tree size inequality reduces forest productivity: an analysis combining inventory data for ten European species and a light competition model. PLOS One. 11, e0151852 (2016).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Ecol. Manag. 260, 1623–1639 (2010).

    MATH 

    Google Scholar
     

  • Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. & Werner, W. Zeigerwerte Von Pflanzen in Mitteleuropa (Verlag Erich Goltze KG, Göttingen, 2001).

  • Leuschner, C. & Meier, I. C. The ecology of central European tree species: trait spectra, functional trade-offs, and ecological classification of adult trees. Perspect. Plant. Ecol. Evol. Syst. 33, 89–103 (2018).

    MATH 

    Google Scholar
     

  • Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257 (2008).

    MATH 

    Google Scholar
     

  • Lübbe, T., Schuldt, B. & Leuschner, C. Acclimation of leaf water status and stem hydraulics to drought and tree neighbourhood: alternative strategies among the saplings of five temperate deciduous tree species. Tree Physiol. 37, 456–468 (2017).

    PubMed 

    Google Scholar
     

  • Engelmann, R. A. et al. Der Gehölzbestand des Stieleichen-Ulmen-Hartholzauenwalds (Querco-Ulmetum minoris ISSLER 1942) im Projektgebiet Lebendige Luppe in der Nordwestlichen Elster-Luppe-Aue bei Leipzig. UFZ-Bericht 115–132 (2022).

  • Darnstaedt, F. et al. Gehölzbestand der Strauchschicht im Stieleichen-Ulmen-Hartholzauenwald (Querco-Ulmetum Minoris ISSLER 1942) im Projekt-Gebiet Lebendige Luppe in der Elster-Luppe-Aue bei Leipzig. UFZ-Bericht (2025).

  • Hanfstängl, M. Response of the Natural Regeneration To Mortality and management-induced Thinning in the Floodplain Forest in Leipzig (University Greifswald, 2024).

  • Glenz, C., Schlaepfer, R., Iorgulescu, I. & Kienast, F. Flooding tolerance of central European tree and shrub species. Ecol. Manag. 235, 1–13 (2006).

    MATH 

    Google Scholar
     

  • Koop, H. Vegetative reproduction of trees in some European natural forests. Vegetatio 72, 103–110 (1987).

    MATH 

    Google Scholar
     

  • Henkel, S. et al. Veränderungen des Baumbestandes des Stieleichen-Ulmen-Hartholzauenwaldes (Querco-Ulmetum Minoris) in der Leipziger Elster-Luppe-Aue. UFZ-Bericht (2025).

  • Wiegand, J. Development and Composition of the Regeneration Layer of the Floodplain Forest of Leipzig in Dependence on Environmental Conditions, Interspecific Competition and the Overstorey (Universität Leipzig, 2021).

  • Arndt, E., Bernhard, D., Jesche, C., Kupillas, S. & Voigt, W. Species diversity and tree association of Heteroptera (Insecta) in the canopy of a Quercus-Fraxinus-Tilia floodplain forest. in The Canopy of a Temperate Floodplain Forest – First results from 5 years of research at the Leipzig Canopy Crane (eds. Unterseher, M., Morawetz, W., Klotz, S. & Arndt, E.) 81–90 (Universität Leipzig, Merkur, Leipzig, (2007).

  • Schmidt, C., Bernhard, D. & Arndt, E. Ecological examinations concerning xylobiontic Coleoptera in the canopy of a Quercus-Fraxinus forest. in The Canopy of a Temperate Floodplain Forest – First results from 5 years of research at the Leipzig Canopy Crane (eds. Unterseher, M., Morawetz, W., Klotz, S. & Arndt, E.) 97–105 (Universität Leipzig, Merkur, Leipzig, (2007).

  • Stenchly, K., Bernhard, D. & Finch, O. D. Arboricolous spiders (Arachnida, Araneae) of the Leipzig floodplain forest – first results. in The Canopy of a Temperate Floodplain Forest – First results from 5 years of research at the Leipzig Canopy Crane (eds. Unterseher, M., Morawetz, W., Klotz, S. & Arndt, E.) 72–80 (Universität Leipzig, Merkur, Leipzig, (2007).

  • Unterseher, M., Reiher, A., Otto, P. & Schnittler, M. Pilze im Kronenraum lebender Bäume – 5 Jahre mykologische Biodiversitätsforschung am Leipziger Auwald Kran. Z. Für Mykol. 74, 203–220 (2008).


    Google Scholar
     

  • Haack, N. et al. Patterns of richness across forest beetle communities—A methodological comparison of observed and estimated species numbers. Ecol. Evol. 11, 626–635 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hahn, L., Brunk, I., Haack, N. L., Preuss, L. & Bernhard, D. Die Diversität der Coleoptera im Leipziger Auwald – erste Ergebnisse einer mehrjährigen Untersuchung mit Flugfensterfallen im Kronenraum und in der Strauchschicht. Entomol. Nachr. Berichte. 66, 69–89 (2022).


    Google Scholar
     

  • Boyce, J. et al. How can oak regeneration in the Leipzig floodplain forest be effectively supported by Femel plantations? Application of a demographic forest model. Ecol. Model. 499, 110920 (2025).

    MATH 

    Google Scholar
     

  • European Environment Agency. European Forest Ecosystems: State and Trends (Publications Office, 2016).

  • Petsch, D. K., Cionek, V. M. & Thomaz, S. M. & Dos Santos, N. C. L. Ecosystem services provided by river-floodplain ecosystems. Hydrobiologia https://doi.org/10.1007/s10750-022-04916-7 (2022).

    Article 

    Google Scholar
     

  • Scholz, M. et al. Ökosystemfunktionen von Flussauen. BfN Naturschutz Biol. Vielfalt 124, (2012).

  • Evans, M. R. Will natural resistance result in populations of Ash trees remaining in British woodlands after a century of Ash dieback disease? R Soc. Open. Sci. 6, 190908 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKinney, L. V. et al. The Ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant. Pathol. 63, 485–499 (2014).

    MATH 

    Google Scholar
     

  • Pautasso, M., Aas, G., Queloz, V. & Holdenrieder, O. European Ash (Fraxinus excelsior) dieback – A conservation biology challenge. Biol. Conserv. 158, 37–49 (2013).


    Google Scholar
     

  • Elles, L. et al. Supporting conservation planning in a National biodiversity hotspot – Projecting species composition across a groundwater level gradient using a demographic forest model. Ecol. Model. 501, 110996 (2025).

    MATH 

    Google Scholar
     



  • Source link

    More From Forest Beat

    The global determinants of climate niche breadth in birds

    We begin our analyses by leveraging the highest quality breeding range maps available for birds, inferred with state-of-the-art species distribution models and powered...
    Biodiversity
    18
    minutes

    Allowing forests to regrow and regenerate is a great way to...

    Queensland is widely known as the land clearing capital of Australia. But what’s not so well known is many...
    Biodiversity
    4
    minutes

    ‘De-extinction’ of dire wolves promotes false hope: technology can’t undo extinction

    Over the past week, the media have been inundated with news of the “de-extinction” of the dire wolf (Aenocyon...
    Biodiversity
    3
    minutes

    NDVI and vegetation volume as predictors of urban bird diversity

    UNHSP. World Cities Report 2022. (2022). https://unhabitat.org/wcr/.Lai, H., Flies, E. J., Weinstein, P. & Woodward, A. The impact of green space and biodiversity...
    Biodiversity
    10
    minutes
    spot_imgspot_img