[ad_1]
Global Wind Energy Council. Global wind report 2024. GWEC https://www.gwec.net/reports/globaloffshorewindreport/2024#Download (2024).
IRENA & GWEC. Enabling frameworks for offshore wind scaleup: innovations in permitting. International Renewable Energy Agency https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Sep/IRENA_GWEC_Enabling_frameworks_offshore_wind_2023.pdf (2023).
Akhtar, N., Geyer, B. & Schrum, C. Larger wind turbines as a solution to reduce environmental impacts. Sci. Rep. 14, 6608 (2024).
Watson, S. C. L. et al. The global impact of offshore wind farms on ecosystem services. Ocean. Coast. Manag. 249, 107023 (2024).
Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquat. Biosyst. 10, 1–13 (2014).
Lloret, J. et al. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea. Sci. Total. Environ. 824, 153803 (2022).
Langhamer, O. Artificial reef effect in relation to offshore renewable energy conversion: state of the art. Sci. World J. 2012, 386713 (2012).
Willsteed, E. A., Jude, S., Gill, A. B. & Birchenough, S. N. R. Obligations and aspirations: a critical evaluation of offshore wind farm cumulative impact assessments. Renew. Sustain. Energy Rev. 82, 2332–2345 (2018).
Merchant, N. D. Underwater noise abatement: economic factors and policy options. Env. Sci. Policy 92, 116–123 (2019).
Hooper, T., Austen, M. & Lannin, A. Developing policy and practice for marine net gain. J. Env. Manage 277, 111387 (2021).
Edwards-Jones, A., Watson, S. C. L., Szostek, C. L. & Beaumont, N. J. Stakeholder insights into embedding marine net gain for offshore wind farm planning and delivery. Environ. Chall. 14, 100814 (2024).
Inger, R. et al. Marine renewable energy: potential benefits to biodiversity? An urgent call for research. J. Appl. Ecol. 46, 1145–1153 (2009).
Bennun, L. et al. Mitigating Biodiversity Impacts Associated with Solar and Wind Energy Development: Guidelines for Project Developers (IUCN, 2021).
Galparsoro, I. et al. Reviewing the ecological impacts of offshore wind farms. NPJ Ocean. Sustain. 1, 1–8 (2022).
Szostek, C. L., Edwards-Jones, A., Beaumont, N. J. & Watson, S. C. L. Primary vs grey: a critical evaluation of literature sources used to assess the impacts of offshore wind farms. Env. Sci. Policy 154, 103693 (2024).
Shafiee, M. & Adedipe, T. Offshore wind decommissioning: an assessment of the risk of operations. Int. J. Sustain. Energy 41, 1057–1083 (2022).
Kordan, M. B. & Yakan, S. D. The effect of offshore wind farms on the variation of the phytoplankton population. Reg. Stud. Mar. Sci. 69, 103358 (2024).
Daewel, U., Akhtar, N., Christiansen, N. & Schrum, C. Offshore wind farms are projected to impact primary production and bottom water deoxygenation in the North Sea. Commun. Earth Environ. 3, 292 (2022).
van Hal, R., Griffioen, A. B. & van Keeken, O. A. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm. Mar. Env. Res. 126, 26–36 (2017).
ter Hofstede, R., Driessen, F. M. F., Elzinga, P. J., Van Koningsveld, M. & Schutter, M. Offshore wind farms contribute to epibenthic biodiversity in the North Sea. J. Sea Res. 185, 102229 (2022).
Methratta, E. T. & Dardick, W. R. Meta-analysis of finfish abundance at offshore wind farms. Rev. Fish. Sci. Aquac. 27, 242–260 (2019).
Li, C. et al. Offshore wind energy and marine biodiversity in the North Sea: life cycle impact assessment for benthic communities. Env. Sci. Technol. 57, 6455–6464 (2023).
Song, M. et al. Evaluation of artificial reef habitats as reconstruction or enhancement tools of benthic fish communities in northern Yellow Sea. Mar. Pollut. Bull. 182, 113968 (2022).
Ashley, M. C., Mangi, S. C. & Rodwell, L. D. The potential of offshore windfarms to act as marine protected areas—a systematic review of current evidence. Mar. Policy 45, 301–309 (2014).
Degraer, S. et al. Offshore wind farm artificial reefs affect ecosystem structure and functioning. Oceanography 33, 48–57 (2020).
Zupan, M. et al. Life on every stone: characterizing benthic communities from scour protection layers of offshore wind farms in the southern North Sea. J. Sea Res. 201, 102522 (2024).
Glarou, M., Zrust, M. & Svendsen, J. C. Using artificial-reef knowledge to enhance the ecological function of offshore wind turbine foundations: implications for fish abundance and diversity. J. Mar. Sci. Eng. 8, 332 (2020).
Karlsson, R., Tivefälth, M., Duranovi, I., Kjølhamar, A. & Murvoll, K. M. Artificial hard substrate colonisation in the offshore Hywind Scotland pilot park. Wind Energy Sci. 7, 801–814 (2022).
Adgé, M., Lobry, J., Tessier, A. & Planes, S. Modeling the impact of floating offshore wind turbines on marine food webs in the Gulf of Lion, France. Front. Mar. Sci. 11, 1379331 (2024).
Bergström, L., Sundqvist, F. & Bergström, U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Mar. Ecol. Prog. Ser. 485, 199–210 (2013).
Reubens, J. T., De Rijcke, M., Degraer, S. & Vincx, M. Diel variation in feeding and movement patterns of juvenile Atlantic cod at offshore wind farms. J. Sea Res. 85, 214–221 (2014).
Reubens, J. T., Vandendriessche, S., Zenner, A. N., Degraer, S. & Vincx, M. Offshore wind farms as productive sites or ecological traps for gadoid fishes?—Impact on growth, condition index and diet composition. Mar. Env. Res. 90, 66–74 (2013).
Wilber, D. H., Carey, D. A. & Griffin, M. Flatfish habitat use near North America’s first offshore wind farm. J. Sea Res. 139, 24–32 (2018).
De Mesel, I., Kerckhof, F., Norro, A., Rumes, B. & Degraer, S. Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as stepping stones for non-indigenous species. Hydrobiologia 756, 37–50 (2015).
Bray, L. et al. Expected effects of offshore wind farms on Mediterranean marine life. J. Mar. Sci. Eng. 4, 18 (2016).
Lemasson, A. J. et al. A global meta-analysis of ecological effects from offshore marine artificial structures. Nat. Sustain. 7, 485–495 (2024).
Spielmann, V., Dannheim, J., Brey, T. & Coolen, J. W. P. Decommissioning of offshore wind farms and its impact on benthic ecology. J. Env. Manage 347, 119022 (2023).
Huang, L. F. et al. Underwater noise characteristics of offshore exploratory drilling and its impact on marine mammals. Front. Mar. Sci. 10, 1097701 (2023).
Rezaei, F., Contestabile, P., Vicinanza, D. & Azzellino, A. Towards understanding environmental and cumulative impacts of floating wind farms: lessons learned from the fixed-bottom offshore wind farms. Ocean. Coast. Management 243, 106772 (2023).
Carroll, A. G., Przeslawski, R., Duncan, A., Gunning, M. & Bruce, B. A critical review of the potential impacts of marine seismic surveys on fish & invertebrates. Mar. Pollut. Bull. 114, 9–24 (2017).
Raoux, A. et al. Benthic and fish aggregation inside an offshore wind farm: which effects on the trophic web functioning? Ecol. Indic. 72, 33–46 (2017).
Solé, M. et al. Commercial cuttlefish exposed to noise from offshore windmill construction show short-range acoustic trauma. Environ. Pollut. 312, 119853 (2022).
Scott, K., Piper, A. J. R., Chapman, E. C. N. & Rochas, C. M. V. Literature review of the effects of underwater sound, vibration and electromagnetic fields on crustaceans. Seafish https://www.seafish.org/document/?id=6ea84e37-c291-4769-8485-b3ac7786b29a (2020).
Gigot, M. et al. Noise pollution causes parental stress on marine invertebrates, the giant scallop example. Mar. Pollut. Bull. 203, 116454 (2024).
Tougaard, J., Carstensen, J., Teilmann, J., Skov, H. & Rasmussen, P. Pile driving zone of responsiveness extends beyond 20 km for harbor porpoises (Phocoena phocoena (L)). J. Acoust. Soc. Am. 126, 11–14 (2009).
Benhemma-Le Gall, A., Graham, I. M., Merchant, N. D. & Thompson, P. M. Broad-scale responses of harbor porpoises to pile-driving and vessel activities during offshore windfarm construction. Front. Mar. Sci. 8, 664724 (2021).
Tougaard, J., Henriksen, O. D. & Miller, L. A. Underwater noise from three types of offshore wind turbines: estimation of impact zones for harbor porpoises and harbor seals. J. Acoust. Soc. Am. 125, 3766–3773 (2009).
Wahlberg, M. & Westerberg, H. Hearing in fish and their reactions to sounds from offshore wind farms. Mar. Ecol. Prog. Ser. 288, 295–309 (2005).
Maxwell, S. M. et al. Potential impacts of floating wind turbine technology for marine species and habitats. J. Environ. Manag. 307, 114577 (2022).
Baldachini, M. et al. Assessing the potential acoustic impact of floating offshore wind farms in the central Mediterranean Sea. Mar. Pollut. Bull. 212, 117615 (2025).
Hemery, L. G. et al. Animal displacement from marine energy development: mechanisms and consequences. Sci. Total. Environ. 917, 170390 (2024).
van Bemmelen, R. S. A. et al. Avoidance of offshore wind farms by sandwich terns increases with turbine density. Ornithological Applications 126, 1–10 (2024).
Garthe, S. et al. Large-scale effects of offshore wind farms on seabirds of high conservation concern. Sci. Rep. 13, 4779 (2023).
Russell, D. J. F. et al. Marine mammals trace anthropogenic structures at sea. Curr. Biol. 24, 638–639 (2014).
van Kooten T. et al The consequences of seabird habitat loss from offshore wind turbines, version 2: displacement and population-level effects in five selected species. Wageningen marine research report C063/19. Wageningen University & Research https://edepot.wur.nl/496173 (2019).
Smyth, K. et al. Renewables-to-reefs?—Decommissioning options for the offshore wind power industry. Mar. Pollut. Bull. 90, 247–258 (2015).
National Grid. Hornsea project three offshore wind farm: Appendix 19 to deadline I submission – Vattenfall and Ørsted circuit crossing -EMF information. planninginspectorate.gov.uk https://nsip-documents.planninginspectorate.gov.uk/published-documents/EN010080-001141-DI_HOW03_Appendix%2019.pdf (2018).
Klimley, A. P., Putman, N. F., Keller, B. A. & Noakes, D. A call to assess the impacts of electromagnetic fields from subsea cables on the movement ecology of marine migrants. Conserv. Sci. Pract. 3, e436 (2021).
Hutchison, Z. L., Gill, A. B., Sigray, P., He, H. & King, J. W. Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Sci. Rep. 10, 4219 (2020).
Dai, L., Ehlers, S., Rausand, M. & Utne, I. B. Risk of collision between service vessels and offshore wind turbines. Reliab. Eng. Syst. Saf. 109, 18–31 (2013).
Farmer, N. A. et al. Protected species considerations for ocean planning: a case study for offshore wind energy development in the U.S. Gulf of Mexico. Mar. Coast. Fish. 15, e10246 (2023).
Barkaszi M. J., Fonseca M., Foster T., Malhotra A. & Olsen, K. Risk assessment to model encounter rates between large whales and sea turtles and vessel traffic from offshore wind energy on the Atlantic OCS. OCS Study BOEM 2021-034. TETHYS https://tethys.pnnl.gov/publications/risk-assessment-model-encounter-rates-between-large-whales-sea-turtles-vessel-traffic (2021).
Kraus, S. D., Kenney, R. D. & Thomas, L. A framework for studying the effects of offshore wind development on marine mammals and turtles. BOEM https://www.boem.gov/about-boem/framework-studying-effects (2019).
Secor, D. H., O’brien, M. H. P. & Bailey, H. The flyway construct and assessment of offshore wind farm impacts on migratory marine fauna. ICES J. Mar. Sci. 82, fsae138 (2025).
Dyndo, M., Wiśniewska, D. M., Rojano-Doñate, L. & Madsen, P. T. Harbour porpoises react to low levels of high frequency vessel noise. Sci. Rep. 5, 11083 (2015).
Frankish, C. K. et al. Ship noise causes tagged harbour porpoises to change direction or dive deeper. Mar. Pollut. Bull. 197, 115755 (2023).
Platteeuw, M., Fijn, R., Jongbloed, R. & van Horssen, P. A. Framework for assessing ecological and cumulative effects (FAECE) of offshore wind farms on birds, bats and marine mammals in the southern North Sea. In Wind Energy and Wildlife Interactions: Presentations from the CWW2015 Conf. (ed. Köppel, J.) 219–237 (Springer International, 2017).
Voigt, C. C., Kaiser, K., Look, S., Scharnweber, K. & Scholz, C. Wind turbines without curtailment produce large numbers of bat fatalities throughout their lifetime: a call against ignorance and neglect. Glob. Ecol. Conserv. 37, e02149 (2022).
Rydell, J. & Wickman, A. Bat activity at a small wind turbine in the Baltic Sea. Acta Chiropt. 17, 359–364 (2015).
Marques, A. T. et al. Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).
Schwemmer, P. et al. Assessing potential conflicts between offshore wind farms and migration patterns of a threatened shorebird species. Anim. Conserv. 26, 303–316 (2023).
Mikami, K., Kazama, K., Kazama, M. T. & Watanuki, Y. Mapping the collision risk between two gull species and offshore wind turbines: modelling and validation. J. Env. Manage 316, 115220 (2022).
Harnois, V., Smith, H. C. M., Benjamins, S. & Johanning, L. Assessment of entanglement risk to marine megafauna due to offshore renewable energy mooring systems. Int. J. Mar. Energy 11, 27–49 (2015).
Fortune, I. S. & Paterson, D. M. Ecological best practice in decommissioning: a review of scientific research. ICES J. Mar. Sci. 77, 1079–1091 (2020).
Perrow, M. R., Gilroy, J. J., Skeate, E. R. & Tomlinson, M. L. Effects of the construction of Scroby Sands offshore wind farm on the prey base of little tern Sternula albifrons at its most important UK colony. Mar. Pollut. Bull. 62, 1661–1670 (2011).
Slavik, K. et al. The large-scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea. Hydrobiologia 845, 35–53 (2019).
Voet, H. E. E., Van Colen, C. & Vanaverbeke, J. Climate change effects on the ecophysiology and ecological functioning of an offshore wind farm artificial hard substrate community. Sci. Total. Environ. 810, 152194 (2022).
Raghukumar, K. et al. Projected cross-shore changes in upwelling induced by offshore wind farm development along the California coast. Commun. Earth Environ. 4, 116 (2023).
Sellers, A. J., Leung, B. & Torchin, M. E. Global meta-analysis of how marine upwelling affects herbivory. Glob. Ecol. Biogeogr. 29, 370–383 (2020).
Chen, C. et al. Potential impacts of offshore wind energy development on physical processes and scallop larval dispersal over the US northeast shelf. Prog. Oceanogr. 224, 103263 (2024).
Farr, H., Ruttenberg, B., Walter, R. K., Wang, Y. H. & White, C. Potential environmental effects of deepwater floating offshore wind energy facilities. Ocean. Coast. Manag. 207, 105611 (2021).
Fowler, A. M. et al. The ecology of infrastructure decommissioning in the North Sea: what we need to know and how to achieve it. ICES J. Mar. Sci. 77, 1109–1126 (2020).
James, M. K. et al. The ‘everything is everywhere’ framework: holistic network analysis as a marine spatial management tool. Ecol. Inf. 87, 103105 (2025).
Dannheim, J. et al. Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Mar. Sci. 77, 1092–1108 (2020).
Coates, D. A., Deschutter, Y., Vincx, M. & Vanaverbeke, J. Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea. Mar. Env. Res. 95, 1–12 (2014).
Hutchison, Z. et al. Offshore wind energy and benthic habitat changes: lessons from block island wind farm. Oceanography 33, 58–69 (2020).
Wilson, J. C. & Elliott, M. The habitat-creation potential of offshore wind farms. Wind. Energy 12, 203–212 (2009).
Lange, C. J., Ballard, B. M. & Collins, D. P. Impacts of wind turbines on redheads in the Laguna Madre. J. Wildl. Manag. 82, 531–537 (2018).
Kirchgeorg, T. et al. Emissions from corrosion protection systems of offshore wind farms: evaluation of the potential impact on the marine environment. Mar. Pollut. Bull. 136, 257–268 (2018).
Hengstmann, E. et al. Chemical emissions from offshore wind farms: from identification to challenges in impact assessment and regulation. Mar. Pollut. Bull. 215, 117915 (2025).
Watson, G. J., Watson, S. C. L., Beaumont, N. J. & Hodkin, A. Offshore wind energy: assessing trace element inputs and the risks for co-location of aquaculture. npj Ocean Sustain. 4, 1 (2025).
Szostek, C. L., Watson, S. C. L., Trifonova, N., Beaumont, N. J. & Scott, B. E. Spatial conflict in offshore wind farms: challenges and solutions for the commercial fishing industry. Energy Policy 200, 114555 (2025).
Hammar, L., Perry, D. & Gullström, M. Offshore wind power for marine conservation. Open. J. Mar. Sci. 6, 66–78 (2016).
Vandendriessche, S., Derweduwen, J. & Hostens, K. Equivocal effects of offshore wind farms in Belgium on soft substrate epibenthos and fish assemblages. Hydrobiologia 756, 19–35 (2015).
Halouani, G. et al. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. J. Mar. Syst. 212, 103434 (2020).
Reubens, J. T. et al. Aggregation at windmill artificial reefs: CPUE of Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) at different habitats in the Belgian part of the North Sea. Fish. Res. 139, 28–34 (2013).
Stelzenmüller, V. et al. Sustainable co-location solutions for offshore wind farms and fisheries need to account for socio-ecological trade-offs. Sci. Total. Environ. 776, 145918 (2021).
Thatcher, H., Stamp, T., Wilcockson, D. & Moore, P. J. Residency and habitat use of European lobster (Homarus gammarus) within an offshore wind farm. ICES J. Mar. Sci. 80, 1410–1421 (2023).
Berkenhagen, J. et al. Decision bias in marine spatial planning of offshore wind farms: problems of singular versus cumulative assessments of economic impacts on fisheries. Mar. Policy 34, 733–736 (2010).
Willis-Norton, E., Mangin, T., Schroeder, D. M., Cabral, R. B. & Gaines, S. D. A synthesis of socioeconomic and sociocultural indicators for assessing the impacts of offshore renewable energy on fishery participants and fishing communities. Mar. Policy 161, 106013 (2024).
Hooper, T., Ashley, M. & Austen, M. Perceptions of fishers and developers on the co-location of offshore wind farms and decapod fisheries in the UK. Mar. Policy 61, 16–22 (2015).
Bergström, L. et al. Effects of offshore wind farms on marine wildlife—a generalized impact assessment. Environ. Res. Lett. 9, 034012 (2014).
Lindeboom, H. J. et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; acompilation. Environ. Res. Lett. 6, 035101 (2011).
World Bank Group. Key factors for successful development of offshore wind in emerging markets. World Bank Group https://documents1.worldbank.org/curated/en/343861632842395836/pdf/Key-Factors-for-Successful-Development-of-Offshore-Wind-in-Emerging-Markets.pdf (2021).
Lindeboom, H., Degraer, S., Dannheim, J., Gill, A. B. & Wilhelmsson, D. Offshore wind park monitoring programmes, lessons learned and recommendations for the future. Hydrobiologia 756, 169–180 (2015).
Pardo, J. C. F., Aune, M., Harman, C., Walday, M. & Skjellum, S. F. A synthesis review of nature positive approaches and coexistence in the offshore wind industry. ICES J. Mar. Sci. 82 (4), fsad191 (2023).
Croll, D. A. et al. Framework for assessing and mitigating the impacts of offshore wind energy development on marine birds. Biol. Conserv. 276, 109795 (2022).
Stephenson, P. J. A review of biodiversity data needs and monitoring protocols for the offshore wind energy sector in the Baltic Sea and North Sea. Renewables Grid Initiative https://renewables-grid.eu/fileadmin/user_upload/_RGI_Report_PJ-Stephenson_October.pdf (2021).
Offshore Renewable Energy (ORE). Accelerating offshore wind: developing a regional ecosystem monitoring programme for the uk offshore wind industry. Catapult https://cms.ore.catapult.org.uk/wp-content/uploads/2024/11/LUN2629_REMP-report_AW_3_digital_DP.pdf (2024).
Bureau of Ocean Energy Management. Vineyard wind 1 offshore wind energy project: final environmental impact statement. BOEM https://www.boem.gov/sites/default/files/documents/renewable-energy/state-activities/Vineyard-Wind-1-FEIS-Volume-1.pdf (2021).
Bicknell, A. W. J. et al. The role of acoustic telemetry to assess the effects of offshore wind infrastructure on fish behaviour, populations and predation. Renewable Sustainable Energy Rev. 212, 115306 (2025).
Serivichyaswat, P. T., Scholte, T., Wilms, T., Stranddorf, L. & van der Valk, T. Metagenomic biodiversity assessment within an offshore wind farm. Sci. Rep. 15, 16786 (2025).
Masoumi, M. Machine learning solutions for offshore wind farms: a review of applications and impacts. J. Mar. Sci. Eng. 11, 1855 (2023).
Danovaro, R. et al. Making eco-sustainable floating offshore wind farms: siting, mitigations, and compensations. Renew. Sustain. Energy Rev. 197, 114386 (2024).
Knights, A., Lemasson, A., Frost, M. & Somerfield, P. The world must rethink plans for ageing oil and gas platforms. Nature 627, 34–37 (2024).
Greenhill, L. Mitigating the Impacts of Offshore Wind Farms on Protected Sites and Species in the UK. Technical Report No. ME5602 (Howell Marine Consulting for Defra, 2021).
The Biodiversity Consultancy. A cross-sector guide for implementing the mitigation hierarchy. The Biodiversity Consultancy https://www.thebiodiversityconsultancy.com/fileadmin/user_upload/A_cross-sector_guide_for_implementing_the_Mitigation_Hierarchy.pdf (2015).
Gulka, J. et al., Strategies for mitigating impacts to aerofauna from offshore wind energy development: available evidence and data gaps. Preprint at bioRxiv https://doi.org/10.1101/2024.08.20.608845 (2024).
Verfuss, U. K., Sparling, C. E., Arnot, C., Judd, A. & Coyle, M. Review of offshore wind farm impact monitoring and mitigation with regard to marine mammals. In The Effects of Noise on Aquatic Life II (Adv. Exp. Med. Biol. 875) (eds Popper, A. N. & Hawkins, A. D.) 1175–1182 (Springer, 2016).
Macrander, A. M., Brzuzy, L., Raghukumar, K., Preziosi, D. & Jones, C. Convergence of emerging technologies: development of a risk-based paradigm for marine mammal monitoring for offshore wind energy operations. Integr. Env. Assess. Manag. 18, 939–949 (2022).
Gill, A. B. et al. Limited evidence base for determining impacts (or not) of offshore wind energy developments on commercial fisheries species. Fish. Fish. 26, 155–170 (2025).
Knights, A. M. et al. To what extent can decommissioning options for marine artificial structures move us toward environmental targets? J. Env. Manage 350, 119644 (2024).
Isaksson, N. et al. A paradigm for understanding whole ecosystem effects of offshore wind farms in shelf seas. ICES J. Mar. Sci. 82, 194 (2025).
Christiansen, S., Durussel, C., Guilhon, M., Singh, P. & Unger, S. Towards an ecosystem approach to management in areas beyond national jurisdiction: REMPs for deep seabed mining and the proposed BBNJ instrument. Front. Mar. Sci. 9, 830 (2022).
Willmott, J. R., Forcey, G. & Vukovich, M. New insights into the influence of turbines on the behaviour of migrant birds: implications for predicting impacts of offshore wind developments on wildlife. J. Physics Conf. Ser. 2507, 012006 (2023).
Vanermen, N. et al. Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756, 51–61 (2015).
Dierschke, V., Furness, R. W. & Garthe, S. Seabirds and offshore wind farms in European waters: avoidance and attraction. Biol. Conservation. 202, 59–68 (2016).
Peschko, V., Mercker, M. & Garthe, S. Telemetry reveals strong effects of offshore wind farms on behaviour and habitat use of common guillemots (Uria aalge) during the breeding season. Mar. Biol. 167, 13 (2020).
Welcker, J. & Nehls, G. Displacement of seabirds by an offshore wind farm in the North Sea. Mar. Ecol. Prog. Ser. 554, 173–182 (2016).
Thaxter, C. B. et al. Dodging the blades: new insights into three-dimensional space use of offshore wind farms by lesser black-backed gulls Larus fuscus. Mar. Ecol. Prog. Ser. 587, 247–253 (2018).
Vilela, R. et al. Use of an INLA latent gaussian modeling approach to assess bird population changes due to the development of offshore wind farms. Front. Mar. Sci. 8, 11 (2021).
Guillemette, M. & Larsen, J. K. Postdevelopment experiments to detect anthropogenic disturbances: the case of sea ducks and wind parks. Ecol. Appl. 12, 868–877 (2002).
Jech, J. M., Lipsky, A., Moran, P., Matte, G. & Diaz, G. Fish distribution in three dimensions around the block island wind farm as observed with conventional and volumetric echosounders. Mar. Coast. Fish. 15, e210265 (2023).
Wilber, D. H., Brown, L., Griffin, M., Decelles, G. R. & Carey, D. A. Demersal fish and invertebrate catches relative to construction and operation of North America’s first offshore wind farm. ICES J. Mar. Sci. 79, 1274–1288 (2022).
Kilfoyle, A. K., Jermain, R. F., Dhanak, M. R., Huston, J. P. & Spieler, R. E. Effects of EMF emissions from undersea electric cables on coral reef fish. Bioelectromagnetics 39, 35–52 (2018).
Wilber, D. H., Brown, L., Griffin, M., DeCelles, G. R. & Carey, D. A. Offshore wind farm effects on flounder and gadid dietary habits and condition on the northeastern US coast. Mar. Ecol. Prog. Ser. 683, 123–138 (2022).
Siddagangaiah, S., Chen, C. F., Hu, W. C. & Pieretti, N. Impact of pile-driving and offshore windfarm operational noise on fish chorusing. Remote. Sens. Ecol. Conserv. 8, 119–134 (2022).
Karama, K. S. et al. Movement pattern of red seabream Pagrus major and yellowtail Seriola quinqueradiata around offshore wind turbine and the neighboring habitats in the waters near Goto Islands. Japan. Aquac. Fish. 6, 300–308 (2021).
Wright, S. R. et al. Structure in a sea of sand: fish abundance in relation to man-made structures in the North Sea. ICES J. Mar. Sci. 77, 1206–1218 (2020).
Kok, A. C. M. et al. An echosounder view on the potential effects of impulsive noise pollution on pelagic fish around windfarms in the North Sea. Environ. Pollut. 290, 118063 (2021).
Langhamer, O., Dahlgren, T. G. & Rosenqvist, G. Effect of an offshore wind farm on the viviparous eelpout: biometrics, brood development and population studies in Lillgrund, Sweden. Ecol. Indic. 84, 1–6 (2018).
Scheidat, M. et al. Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea. Environ. Res. Lett. 6, 025102 (2011).
Fernandez-Betelu, O., Graham, I. M. & Thompson, P. M. Reef effect of offshore structures on the occurrence and foraging activity of harbour porpoises. Front. Mar. Sci. 9, 980388 (2022).
Brandt, M. J. et al. Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany. Mar. Ecol. Prog. Ser. 596, 213–232 (2018).
Virgili, A. et al. Prospective modelling of operational offshore wind farms on the distribution of marine megafauna in the southern North Sea. Front. Mar. Sci. 11, 1344013 (2024).
Vallejo, G. C. et al. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 7, 8698–8708 (2017).
Cones, S. F. et al. Offshore windfarm construction elevates metabolic rate and increases predation vulnerability of a key marine invertebrate. Environ. Pollut. 360, 124709 (2024).
Love, M. S., Nishimoto, M. M., Clark, S., McCrea, M. & Bull, A. S. Assessing potential impacts of energized submarine power cables on crab harvests. Cont. Shelf Res. 151, 23–29 (2017).
Wang, T. et al. Evidence that offshore wind farms might affect marine sediment quality and microbial communities. Sci. Total. Environ. 856, 158782 (2023).
Pearce, B. et al. Repeated mapping of reefs constructed by Sabellaria spinulosa Leuckart 1849 at an offshore wind farm site. Cont. Shelf Res. 83, 3–13 (2014).
Krone, R., Gutow, L., Brey, T., Dannheim, J. & Schröder, A. Mobile demersal megafauna at artificial structures in the German bight—likely effects of offshore wind farm development. Estuar. Coast. Shelf Sci. 125, 1–9 (2013).
Jakubowska, M., Urban-Malinga, B., Otremba, Z. & Andrulewicz, E. Effect of low frequency electromagnetic field on the behavior and bioenergetics of the polychaete Hediste diversicolor. Mar. Env. Res. 150, 104766 (2019).
Pine, M. K., Jeffs, A. G. & Radford, C. A. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae. PLoS One 7, e51790 (2012).
Janßen, H., Augustin, C. B., Hinrichsen, H. H. & Kube, S. Impact of secondary hard substrate on the distribution and abundance of Aurelia aurita in the western Baltic Sea. Mar. Pollut. Bull. 75, 224–234 (2013).
Bergman, M. J. N., Ubels, S. M., Duineveld, G. C. A. & Meesters, E. W. G. Effects of a 5-year trawling ban on the local benthic community in a wind farm in the Dutch coastal zone. ICES J. Mar. Sci. 72, 962–972 (2015).
Boutin, K., Gaudron, S. M., Denis, J. & Ben Rais Lasram, F. Potential marine benthic colonisers of offshore wind farms in the English channel: a functional trait-based approach. Mar. Env. Res. 190, 106061 (2023).
Wang, J., Zou, X., Yu, W., Zhang, D. & Wang, T. Effects of established offshore wind farms on energy flow of coastal ecosystems: a case study of the Rudong offshore wind farms in China. Ocean. Coast. Manag. 171, 111–118 (2019).
Wang, T. et al. Zooplankton community responses and the relation to environmental factors from established offshore wind farms within the Rudong coastal area of China. J. Coast. Res. 344, 843–855 (2018).
Hooper, T., Beaumont, N. & Hattam, C. The implications of energy systems for ecosystem services: a detailed case study of offshore wind. Renew. Sustain. Energy Rev. 70, 230–241 (2017).
Van Parijs, S. M. et al. NOAA and BOEM minimum recommendations for use of passive acoustic listening systems in offshore wind energy development monitoring and mitigation programs. Front. Mar. Sci. 8,760840 (2021).
McLeod, L. E. & Costello, M. J. Light traps for sampling marine biodiversity. Helgoland Marine Res. 71, 2 (2017).
Brandao, I. L. S., van der Molen, J. & van der Wal, D. Effects of offshore wind farms on suspended particulate matter derived from satellite remote sensing. Sci. Total. Environ. 866, 161114 (2023).
Hu, C., Albertani, R. & Suryan, R. M. Wind turbine sensor array for monitoring avian and bat collisions. Wind. Energy 21, 255–263 (2018).
Jiang, B., Xu, Z., Yang, S., Chen, Y. & Ren, Q. Profile autonomous underwater vehicle system for offshore surveys. Sensors 23, 3722 (2023).
Campos, D. F., Matos, A. & Pinto, A. M. Multi-domain inspection of offshore wind farms using an autonomous surface vehicle. SN Appl. Sci. 3, 455 (2021).
Zhang, K., Pakrashi, V., Murphy, J. & Hao, G. Inspection of floating offshore wind turbines using multi-rotor unmanned aerial vehicles: literature review and trends. Sensors. 24, 911 (2024).
Niemi, J. & Tanttu, J. T. Deep learning-based automatic bird identification system for offshore wind farms. Wind. Energy 23, 1394–1407 (2020).
Carstensen, J., Henriksen, O. D. & Teilmann, J. Impacts of offshore wind farm construction on harbour porpoises: acoustic monitoring of echolocation activity using porpoise detectors (T-PODs). Mar. Ecol. Prog. Ser. 321, 295–308 (2006).
Berges, B. J. P., van der Knaap, I., van Keeken, O. A., Reubens, J. & Winter, H. V. Strong site fidelity, residency and local behaviour of Atlantic cod (Gadus morhua) at two types of artificial reefs in an offshore wind farm. R. Soc. Open. Sci. 11, 240339 (2024).
Ahlén, I., Baagøe, H. J. & Bach, L. Behavior of Scandinavian bats during migration and foraging at sea. J. Mammal. 90, 1318–1323 (2009).
Lengkeek, W. Benthic communities on hard substrates within the first Dutch offshore wind farm (OWEZ). Ned. Faun. Meded. 41, 59–67 (2013).
Methratta, E. T. Monitoring fisheries resources at offshore wind farms: BACI vs. BAG designs. ICES J. Mar. Sci. 77, 890–900 (2020).
BVG Associates. Guide to an offshore wind farm. Crown Estate https://www.thecrownestate.co.uk/media/2860/guide-to-offshore-wind-farm-2019.pdf (2019).
Declerck, M., Trifonova, N., Hartley, J. & Scott, B. E. Cumulative effects of offshore renewables: from pragmatic policies to holistic marine spatial planning tools. Env. Impact Assess. Rev. 101, 107153 (2023).
[ad_2]
Source link