Assessing the implications of habitat transformations on human-large carnivore interactions outside protected areas


  • Frank, B., Glikman, J. A. & Marchini, S. Human–Wildlife Interactions: Turning Conflict into Coexistence – Google Books. Cambridge University Press vol. 23 (2019).

  • Nyhus, P. J. Human-Wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).


    Google Scholar
     

  • Bhatia, S., Redpath, S. M., Suryawanshi, K. & Mishra, C. Beyond conflict: exploring the spectrum of human-wildlife interactions and their underlying mechanisms. Oryx 54, 621–628 (2020).


    Google Scholar
     

  • Peterson, M. N., Birckhead, J. L., Leong, K., Peterson, M. J. & Peterson, T. R. Rearticulating the myth of human-wildlife conflict. Conserv. Lett. 3, 74–82 (2010).


    Google Scholar
     

  • Barua, M., Bhagwat, S. A. & Jadhav, S. The hidden dimensions of human-wildlife conflict: health impacts, opportunity and transaction costs. Biol. Conserv. 157, 309–316 (2013).


    Google Scholar
     

  • Distefano, E. Human-Wildlife Conflict worldwide: collection of case studies, analysis of management strategies and good practices. (2005). http://www.fao.org/3/a-au241e.pdf

  • Acharya, K. P., Paudel, P. K., Neupane, P. R. & Köhl, M. Human-wildlife conflicts in nepal: patterns of human fatalities and injuries caused by large mammals. PLoS One. 11, 1–18 (2016).


    Google Scholar
     

  • Pop, M. I., Gradinaru, S. R., Popescu, V. D., Haase, D. & Iojă, C. I. Emergency-line calls as an indicator to assess human–wildlife interaction in urban areas. Ecosphere 14, 1–22 (2023).


    Google Scholar
     

  • Chanchani, P. et al. Tigers of the transboundary Terai Arc Landscape: Status, distribution and movement in the Terai of India and Nepal. (2014). http://assets.worldwildlife.org/publications/728/files/original/Final_Tigers_of_the_Transboundary_Terai_Arc_Landscape.pdf

  • Qureshi, Q., Jhala, Y. V., Yadav, S. P. & Mallick, A. Status of tigers, co-predators and prey in India, 2022. (2023).

  • Kshettry, A., Vaidyanathan, S. & Athreya, V. Leopard in a tea-cup: A study of Leopard habitat-use and human-leopard interactions in north-eastern India. PLoS One. 12, e0177013 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • UNEP-WCMC. Protected areas map of the world, September 2023. www.protectedplanet.net. (2023).

  • Treves, A., Wallace, R. B., Naughton-Treves, L. & Morales, A. Co-managing human–wildlife conflicts: A review. Hum. Dimens Wildl. 11, 383–396 (2006).


    Google Scholar
     

  • Braczkowski, A. R. et al. The unequal burden of human-wildlife conflict. Commun. Biol. 6, 1–9 (2023).


    Google Scholar
     

  • Ogra, M. & Badola, R. Compensating human-wildlife conflict in protected area communities: Ground-Level perspectives from uttarakhand, India. Hum. Ecol. 36, 717–729 (2008).


    Google Scholar
     

  • Mustățea, M. & Pătru-Stupariu, I. Using landscape change analysis and stakeholder perspective to identify driving forces of human–wildlife interactions. Land 10, 1–22 (2021).


    Google Scholar
     

  • Holland, K. K., Larson, L. R. & Powell, R. B. Characterizing conflict between humans and big cats Panthera spp: A systematic review of research trends and management opportunities. PLoS One. 13, e0203877 (2018).


    Google Scholar
     

  • Poor, E. E., Scheick, B. K. & Mullinax, J. M. Multiscale consensus habitat modeling for landscape level conservation prioritization. Sci. Rep. 10, 1–13 (2020).


    Google Scholar
     

  • Naha, D. et al. Landscape predictors of human–leopard conflicts within multi-use areas of the Himalayan region. Sci. Rep. 10, 1–12 (2020).


    Google Scholar
     

  • Miller, J. R. B. Mapping attack hotspots to mitigate human–carnivore conflict: approaches and applications of Spatial predation risk modeling. Biodivers. Conserv. 24, 2887–2911 (2015).


    Google Scholar
     

  • Medan, D., Torretta, J. P., Hodara, K., de la Fuente, E. B. & Montaldo, N. H. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers. Conserv. 20, 3077–3100 (2011).


    Google Scholar
     

  • Choi, Y. E., Song, K., Kim, M. & Lee, J. Transformation planning for resilientwildlife habitats in ecotourism systems. Sustain 9, 487 (2017).


    Google Scholar
     

  • Carrete, M., Tella, J. L., Blanco, G. & Bertellotti, M. Effects of habitat degradation on the abundance, richness and diversity of raptors across Neotropical biomes. Biol. Conserv. 142, 2002–2011 (2009).


    Google Scholar
     

  • De Angelo, C., Paviolo, A. & Di Bitetti, M. Differential impact of landscape transformation on pumas (Puma concolor) and Jaguars (Panthera onca) in the upper Paraná Atlantic forest. Divers. Distrib. 17, 422–436 (2011).


    Google Scholar
     

  • Odden, M., Athreya, V., Rattan, S. & Linnell, J. D. C. Adaptable neighbours: movement patterns of GPS-collared leopards in human dominated landscapes in India. PLoS One 9, e112044 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Theobald, D. M., Reed, S. E., Fields, K. & Soulé, M. Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the united States. Conserv. Lett. 5, 123–133 (2012).


    Google Scholar
     

  • Yang, Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang mountains in Hebei province, China. Ecol. Indic. 129, 107967 (2021).


    Google Scholar
     

  • Coon, C. A. C., Nichols, B. C., McDonald, Z. & Stoner, D. C. Effects of land-use change and prey abundance on the body condition of an obligate carnivore at the wildland-urban interface. Landsc. Urban Plan. 192, 103648 (2019).


    Google Scholar
     

  • Dorresteijn, I. et al. Incorporating anthropogenic effects into trophic ecology: Predator – Prey interactions in a human-dominated landscape. Proc. R. Soc. B Biol. Sci. 282, (2015).

  • de Souza, J. C., da Silva, R. M., Gonçalves, M. P. R., Jardim, R. J. D. & Markwith, S. H. Habitat use, ranching, and human-wildlife conflict within a fragmented landscape in the pantanal, Brazil. Biol. Conserv. 217, 349–357 (2018).


    Google Scholar
     

  • Lee, S. X. T., Amir, Z., Moore, J. H., Gaynor, K. M. & Luskin, M. S. Effects of human disturbances on wildlife behaviour and consequences for predator-prey overlap in Southeast Asia. Nat. Commun. 15, 1521 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nickel, B. A., Suraci, J. P., Allen, M. L. & Wilmers, C. C. Human presence and human footprint have non-equivalent effects on wildlife Spatiotemporal habitat use. Biol. Conserv. 241, 108383 (2020).


    Google Scholar
     

  • Shannon, G. et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 91, 982–1005 (2016).

    PubMed 

    Google Scholar
     

  • Nielsen, S. E., McDermid, G., Stenhouse, G. B. & Boyce, M. S. Dynamic wildlife habitat models: seasonal foods and mortality risk predict occupancy-abundance and habitat selection in Grizzly bears. Biol. Conserv. 143, 1623–1634 (2010).


    Google Scholar
     

  • Linuma, O. F., Mahenge, A. S., Mato, R. R. A. M. & Greenwood, A. D. Drivers of Human–wildlife interactions in a co-existence area: a case study of the Ngorongoro conservation area, Tanzania. Discov Sustain. 3, 1–15 (2022).


    Google Scholar
     

  • van Eeden, L. M. et al. Managing conflict between large carnivores and livestock. Conserv. Biol. 32, 26–34 (2018).

    PubMed 

    Google Scholar
     

  • Dickman, A. J. Complexities of conflict: the importance of considering social factors for effectively resolving human-wildlife conflict. Anim. Conserv. 13, 458–466 (2010).


    Google Scholar
     

  • Bargali, H. S. & Ahmed, T. Patterns of livestock depredation by tiger (panthera tigris) and Leopard (panthera pardus) in and around Corbett tiger reserve, uttarakhand, India. PLoS One. 13, e0195612 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naha, D., Dash, S. K., Kupferman, C., Beasley, J. C. & Sathyakumar, S. Movement behavior of a solitary large carnivore within a hotspot of human-wildlife conflicts in India. Sci. Rep. 11, 3862 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Löe, J. & Röskaft, E. Large carnivores and human safety: A review. AMBIO J. Hum. Environ. 33, 283–288 (2009).


    Google Scholar
     

  • Puri, M., Srivathsa, A., Karanth, K. K., Patel, I. & Kumar, N. S. Links in a sink: interplay between habitat structure, ecological constraints and interactions with humans can influence connectivity conservation for Tigers in forest corridors. Sci. Total Environ. 809, 151106 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Corlett, R. T. Vertebrate carnivores and predation in the Oriental (Indomalayan) region. Raffles Bull. Zool. 59, 325–360 (2011).


    Google Scholar
     

  • Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality Downloaded from. (2018). http://science.sciencemag.org/

  • Li, X. et al. Functional diversity loss and change in nocturnal behavior of mammals under anthropogenic disturbance. Conserv. Biol. 36, e13839 (2022).

    PubMed 

    Google Scholar
     

  • Thapa, S. & Chapman, D. S. Impacts of resource extraction on forest structure and diversity in Bardia National park, Nepal. Ecol. Manage. 259, 641–649 (2010).


    Google Scholar
     

  • Manral, U., Sengupta, S., Hussain, S. A., Rana, S. & Badola, R. Human wildlife conflict in india: a review of economic implication of loss. Indian For. 142, 928–940 (2016).


    Google Scholar
     

  • Malik, Z. A., Bhat, J. A. & Bhatt, A. B. Forest resource use pattern in Kedarnath wildlife sanctuary and its fringe areas (a case study from Western himalaya, India). Energy Policy. 67, 138–145 (2014).


    Google Scholar
     

  • Ranjan, V., Hussain, S. A., Badola, R., Vashistha, G. & Dhakate, P. M. Feeding dynamics of sympatric large carnivores in an anthropogenic landscape of the Indian Terai. J. Threat Taxa. 16, 25791–25801 (2024).


    Google Scholar
     

  • Bhattarai, B. P. & Kindlmann, P. Human disturbance is the major determinant of the habitat and prey preference of the Bengal tiger (Panthera Tigris Tigris) in the Chitwan National park, Nepal. Eur. J. Ecol. 4, 13–21 (2018).


    Google Scholar
     

  • Roberts, N. J. et al. Cattle grazing effects on vegetation and wild ungulates in the forest ecosystem of a National park in Northeastern China. Front. Ecol. Evol. 9, 680367 (2021).


    Google Scholar
     

  • Athreya, V., Odden, M., Linnell, J. D. C., Krishnaswamy, J. & Karanth, U. Big cats in our backyards: persistence of large carnivores in a human dominated landscape in India. PLoS One 8, e57872 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, J. R. B., Jhala, Y. V. & Schmitz, O. J. Human perceptions mirror realities of carnivore attack risk for livestock: implications for mitigating Human-Carnivore conflict. PLoS One. 11, e0162685 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pillay, R., Johnsingh, A. J. T., Raghunath, R. & Madhusudan, M. D. Patterns of Spatiotemporal change in large mammal distribution and abundance in the Southern Western ghats, India. Biol. Conserv. 144, 1567–1576 (2011).


    Google Scholar
     

  • Frey, S., Fisher, J. T., Burton, A. C. & Volpe, J. P. Investigating animal activity patterns and Temporal niche partitioning using camera-trap data: challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132 (2017).


    Google Scholar
     

  • Zhuo, Y. et al. The effect of mining and road development on habitat fragmentation and connectivity of Khulan (Equus hemionus) in Northwestern China. Biol. Conserv. 275, 109770 (2022).


    Google Scholar
     

  • Rudnick, D. A. et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues Ecol. 16, 1–23 (2012).


    Google Scholar
     

  • Qureshi, Q. et al. Connecting Tiger Populations for Long-Term Conservation. National Tiger Conservation Authority and Wildlife Institute of India vols TR2014-02 (2014).

  • Thapa, K. et al. Tigers in the Terai: strong evidence for meta-population dynamics contributing to tiger recovery and conservation in the Terai Arc landscape. PLoS One. 12, e0177548 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semwal, R. L. The Terai Arc Landscape in India: Securing Protected Areas in the Face of Global Change. WWF- India, New Delhi (2005).

  • Dinerstein, E. et al. William Andrew Publishing,. Setting Priorities for the Conservation and Restoration of Wild Tigers: 2005–2015. A User’s Guide. in In Noyes Series in Animal Behavior, Ecology, Conservation, and Management, Tigers of the World (eds. Tilson, R. & Nyhus, P. J.) 143–161 (2010). https://doi.org/10.1016/B978-0-8155-1570-8.00009-8

  • WWF & RESOLVE. ‘Tx2 Tiger Conservation Landscapes.’ Global Forest Watch www.globalforestwatch.org (2015).

  • Johnsingh, A. J. T. et al. Conservation Status of Tiger and Associated Species in the Terai Arc Landscape, India Conservation Status of Tiger and Associated Species in the Terai Arc Landscape, India. RR-04/001, Wildlife Institute of India, Dehradun (2004).

  • Ranjan, V. et al. A baseline study of herpetofauna in Surai-Khatima-Kilpura wildlife corridor and its adjoining areas, uttarakhand, India. Herpetol Notes. 14, 283–290 (2021).


    Google Scholar
     

  • Harihar, A. & Pandav, B. Influence of connectivity, wild prey and disturbance on occupancy of Tigers in the human-dominated Western Terai Arc landscape. PLoS One. 7, 1–10 (2012).


    Google Scholar
     

  • Harihar, A., Pandav, B. & Macmillan, D. C. Identifying realistic recovery targets and conservation actions for Tigers in a human-dominated landscape using spatially explicit densities of wild prey and their determinants. Divers. Distrib. 20, 567–578 (2014).


    Google Scholar
     

  • Rodgers, W. A., Panwar, H. S. & Mathur, V. B. Biogeographical classifications of India. Wildlife Protected Area Netw. India: Review 44 (2000).

  • Varghese, A. O., Suryavanshi, A. S. & Jha, C. S. Geospatial applications in wildlife conservation and management. in Geospatial Technologies for Resources Planning and Management (eds Jha, C. S., Pandey, A., Chowdary, V. M. & Singh, V.) 727–750 (Springer International Publishing, doi:https://doi.org/10.1007/978-3-030-98981-1_31. (2022).

  • Ruda, A., Kolejka, J. & Silwal, T. GIS-assisted prediction and risk zonation of wildlife attacks in the Chitwan National Park in Nepal. ISPRS Int. J. Geo-Information 7, (2018).

  • Chamling, M. & Bera, B. Likelihood of elephant death risk applying kernel density Estimation model along the railway track within biodiversity hotspot of Bhutan–Bengal Himalayan foothill. Model. Earth Syst. Environ. 6, 2565–2580 (2020).


    Google Scholar
     

  • Hart, T. & Zandbergen, P. Kernel density Estimation and hotspot mapping: examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting. Policing 37, 305–323 (2014).


    Google Scholar
     

  • Silverman, B. W. Density estimation: for statistics and data analysis. Density Estimation: Stat. Data Anal. https://doi.org/10.1201/9781315140919 (2018).


    Google Scholar
     

  • Akbar, T. A. et al. Investigative Spatial distribution and modelling of existing and future urban land changes and its impact on urbanization and economy. Remote Sens. 11, 105 (2019).

    ADS 

    Google Scholar
     

  • Lucas, R., Rowlands, A., Brown, A., Keyworth, S. & Bunting, P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm Remote Sens. 62, 165–185 (2007).

    ADS 

    Google Scholar
     

  • Wang, Z. et al. Continuous change detection of forest/grassland and cropland in the loess plateau of China using all available Landsat data. Remote Sens. 10, 1775 (2018).

    ADS 

    Google Scholar
     

  • Prishchepov, A. V., Radeloff, V. C., Dubinin, M. & Alcantara, C. The effect of Landsat ETM/ETM + image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 126, 195–209 (2012).

    ADS 

    Google Scholar
     

  • Rwanga, S. S. & Ndambuki, J. M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 08, 611–622 (2017).


    Google Scholar
     

  • Howard, F. F., Boye, C. B., Yakubu, I. & Kuma, J. S. Y. Image Classification and Accuracy Assessment Using the Confusion Matrix, Contingency Matrix, and Kappa Coefficient. 17, 511–518 (2023).

  • Habib, B., Ghaskadbi, P., Khan, S., Hussain, Z. & Nigam, P. Not a cakewalk: insights into movement of large carnivores in human-dominated landscapes in India. Ecol. Evol. 11, 1653–1666 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mkonyi, F. J., Estes, A. B., Lichtenfeld, L. L. & Durant, S. M. Large carnivore distribution in relationship to environmental and anthropogenic factors in a multiple-use landscape of Northern Tanzania. Afr. J. Ecol. 56, 972–983 (2018).


    Google Scholar
     

  • Mallegowda, P., Rengaian, G., Krishnan, J. & Niphadkar, M. Assessing habitat quality of forest-corridors through NDVI analysis in dry tropical forests of South india: implications for conservation. Remote Sens. 7, 1619–1639 (2015).

    ADS 

    Google Scholar
     

  • Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F. C. & Taneja, J. Annual time series of global Viirs nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 13, 1–14 (2021).


    Google Scholar
     

  • Mellander, C., Lobo, J., Stolarick, K. & Matheson, Z. Night-time light data: A good proxy measure for economic activity? PLoS One. 10, e0139779 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anand, A. & Kim, D. H. Pandemic induced changes in economic activity around African protected areas captured through night-time light data. Remote Sens. 13, 1–15 (2021).


    Google Scholar
     

  • Xi, C., Wu, Z., Qian, T., Liu, L. & Wang, J. A bayesian model for estimating the effects of human disturbance on wildlife habitats based on nighttime light data and INLA-SPDE. Appl. Spat. Anal. Policy. 15, 573–594 (2022).


    Google Scholar
     

  • Harihar, A., Pandav, B. & Goyal, S. P. Responses of Leopard Panthera Pardus to the recovery of a tiger Panthera Tigris population. J. Appl. Ecol. 48, 806–814 (2011).


    Google Scholar
     



  • Source link

    More From Forest Beat

    Stronger El Niños reduce tropical forest arthropod diversity and function

    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).PubMed  ...
    Biodiversity
    9
    minutes

    Unlocking historical plant interactions in herbarium collections

    Davis, C. C. The herbarium of the future. Trends Ecol. Evol. 38, 412–423 (2023). ...
    Biodiversity
    24
    minutes

    Conserve marine migratory species to protect ecological links between land and...

    At the third United Nations Ocean Conference in June, UN member states committed to reducing the flow of pollutants from rivers to oceans...
    Biodiversity
    0
    minutes

    Elucidating the impact of soil’s physico-chemical properties and seasonal variation on...

    Earthworm populationA total of 347 earthworms were collected, (217 from agricultural sites and 130 from non-agricultural sites). The earthworms belonged to three ecological...
    Biodiversity
    11
    minutes
    spot_imgspot_img