Biodiversity and human well-being trade-offs and synergies in villages


  • Hanspach, J., Loos, J., Dorresteijn, I., Abson, D. J. & Fischer, J. Characterizing social–ecological units to inform biodiversity conservation in cultural landscapes. Divers. Distrib. 22, 853–864 (2016).

    Article 

    Google Scholar
     

  • Rosin, Z. M. et al. Reduced biodiversity in modernized villages: a conflict between sustainable development goals. J. Appl. Ecol. 57, 467–475 (2020).

    Article 

    Google Scholar
     

  • Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Article 

    Google Scholar
     

  • Udy, K. L., Reininghaus, H., Scherber, C. & Tscharntke, T. Plant–pollinator interactions along an urbanization gradient from cities and villages to farmland landscapes. Ecosphere 11, e03020 (2020).

    Article 

    Google Scholar
     

  • Emmerson, M. et al. in Advances in Ecological Research Vol. 55 (eds Dumbrell, A. J. et al.) 43–97 (Elsevier, 2016).

  • Rosin, Z. M. et al. Villages and their old farmsteads are hot spots of bird diversity in agricultural landscapes. J. Appl. Ecol. 53, 1363–1372 (2016).

    Article 

    Google Scholar
     

  • Lovell, R., Wheeler, B. W., Higgins, S. L., Irvine, K. N. & Depledge, M. H. A systematic review of the health and well-being benefits of biodiverse environments. J. Toxicol. Environ. Health B 17, 1–20 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pett, T. J., Shwartz, A., Irvine, K. N., Dallimer, M. & Davies, Z. G. Unpacking the people–biodiversity paradox: a conceptual framework. Bioscience 66, 576–583 (2016).

    Article 

    Google Scholar
     

  • Papadimitriou, F. Modelling indicators and indices of landscape complexity: an approach using G.I.S. Ecol. Indic. 2, 17–25 (2002).

    Article 

    Google Scholar
     

  • Márquez, L. A. M. et al. Trends in valuation approaches for cultural ecosystem services: a systematic literature review. Ecosyst. Serv. 64, 101572 (2023).

    Article 

    Google Scholar
     

  • Hartig, T., Mitchell, R., De Vries, S. & Frumkin, H. Nature and health. Annu. Rev. Public Health 35, 207–228 (2014).

    Article 

    Google Scholar
     

  • Methorst, J. et al. The importance of species diversity for human well-being in Europe. Ecol. Econ. 181, 106917 (2021).

    Article 

    Google Scholar
     

  • Tscharntke, T., Ocampo-Ariza, C. & Kämper, W. Pollinator, pollen, and cultivar identity drive crop quality. Trends Plant Sci. 30, 283–290 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Garibaldi, L. A. et al. Exploring connections between pollinator health and human health. Phil. Trans. R. Soc. B 377, 20210158 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Methorst, J., Bonn, A., Marselle, M., Böhning-Gaese, K. & Rehdanz, K. Species richness is positively related to mental health—a study for Germany. Landsc. Urban Plan. 211, 104084 (2021).

    Article 

    Google Scholar
     

  • Fisher, J. C. et al. Human well-being responses to species’ traits. Nat. Sustain. 6, 1219–1227 (2023).

    Article 

    Google Scholar
     

  • Sutcliffe, L. M. E. et al. Harnessing the biodiversity value of Central and Eastern European farmland. Divers. Distrib. 21, 722–730 (2015).

    Article 

    Google Scholar
     

  • Smil, V. Detonator of the population explosion. Nature 400, 415 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Batáry, P. et al. The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture. Nat. Ecol. Evol. 1, 1279–1284 (2017).

    Article 

    Google Scholar
     

  • Vasárus, G., Bajmócy, P. & Lennert, J. In the shadow of the city: demographic processes and emerging conflicts in the rural–urban fringe of the Hungarian agglomerations. Geogr. Pannonica 22, 14–29 (2018).

    Article 

    Google Scholar
     

  • Kok, H. Migration from the city to the countryside in Hungary and Poland. GeoJournal 49, 53–62 (1999).

    Article 

    Google Scholar
     

  • Environmental Health Inequalities in Europe (WHO, 2019); https://apps.who.int/iris/rest/bitstreams/1265584/retrieve

  • Knapp, S. & Wittig, R. An analysis of temporal homogenisation and differentiation in Central European village floras. Basic Appl. Ecol. 13, 319–327 (2012).

    Article 

    Google Scholar
     

  • Durand, M. The OECD better life initiative: how’s life? And the measurement of well-being. Rev. Income Wealth 61, 4–17 (2015).

    Article 

    Google Scholar
     

  • Koronakos, G., Smirlis, Y., Sotiros, D. & Despotis, D. K. Assessment of OECD Better Life Index by incorporating public opinion. Socioecon. Plann. Sci. 70, 100699 (2020).

    Article 

    Google Scholar
     

  • Mu, H. et al. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 9, 1–9 (2022).

    Article 

    Google Scholar
     

  • Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. 87, 661–685 (2012).

    Article 

    Google Scholar
     

  • Batáry, P., Kurucz, K., Suarez-Rubio, M. & Chamberlain, D. E. Non-linearities in bird responses across urbanization gradients: a meta-analysis. Glob. Change Biol. 24, 1046–1054 (2018).

    Article 

    Google Scholar
     

  • Simkin, R. D., Seto, K. C., McDonald, R. I. & Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl Acad. Sci. USA 119, e2117297119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Concepción, E. D. Urban sprawl into Natura 2000 network over Europe. Conserv. Biol. 35, 1063–1072 (2021).

    Article 

    Google Scholar
     

  • O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Article 

    Google Scholar
     

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chamberlain, D. et al. Wealth, water and wildlife: landscape aridity intensifies the urban luxury effect. Glob. Ecol. Biogeogr. 29, 1595–1605 (2020).

    Article 

    Google Scholar
     

  • Carrus, G. et al. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 134, 221–228 (2015).

    Article 

    Google Scholar
     

  • Báldi, A. et al. Roadmap for transformative agriculture: from research through policy towards a liveable future in Europe. Adv. Ecol. Res 68, 131–154 (2023).

    Article 

    Google Scholar
     

  • Batáry, P., Báldi, A., Kleijn, D. & Tscharntke, T. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc. R. Soc. B 278, 1894–1902 (2011).

    Article 

    Google Scholar
     

  • Coldwell, D. F. & Evans, K. L. Visits to urban green-space and the countryside associate with different components of mental well-being and are better predictors than perceived or actual local urbanisation intensity. Landsc. Urban Plan. 175, 114–122 (2018).

    Article 

    Google Scholar
     

  • Lampinen, J. et al. Acceptance of near-natural greenspace management relates to ecological and socio-cultural assigned values among European urbanites. Basic Appl. Ecol. 50, 119–131 (2021).

    Article 

    Google Scholar
     

  • Süle, G. et al. First steps of pollinator-promoting interventions in Eastern European urban areas—positive outcomes, challenges, and recommendations. Urban Ecosyst. 26, 1783–1797 (2023).

    Article 

    Google Scholar
     

  • Dietzel, S., Rojas-Botero, S., Dichtl, A., Kollmann, J. & Fischer, C. Winners and losers at enhanced urban roadsides: trait-based structuring of wild bee communities at local and landscape scale. Biol. Conserv. 291, 110480 (2024).

    Article 

    Google Scholar
     

  • Klaus, V. H. & Kiehl, K. A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol. 52, 82–94 (2021).

    Article 

    Google Scholar
     

  • Cumming, G. S. et al. Implications of agricultural transitions and urbanization for ecosystem services. Nature 515, 50–57 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126 (2015).

    Article 

    Google Scholar
     

  • Gunawardena, K. R., Wells, M. J. & Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 584–585, 1040–1055 (2017).

    Article 

    Google Scholar
     

  • Lloret, F., Escudero, A., Lloret, J. & Valladares, F. An ecological perspective for analysing rural depopulation and abandonment. People Nat. 6, 490–506 (2024).

    Article 

    Google Scholar
     

  • Gerits, F. et al. Participation changed my mindset. Transformative learning about agrobiodiversity in citizen science projects. Environ. Educ. Res. 30, 283–305 (2024).

    Article 

    Google Scholar
     

  • Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Article 

    Google Scholar
     

  • Lakatos, T. et al. Landscape complexity and edge effects shape bird community composition and filter functional traits in villages. Ecol. Indic. 176, 113644 (2025).

    Article 

    Google Scholar
     

  • Térképek, listák (OpenStreetMap, 2024); https://data2.openstreetmap.hu/

  • Romania—Subnational Administrative Boundaries (Humanitarian Data Exchange, 2024); https://data.humdata.org/dataset/geoboundaries-admin-boundaries-for-romania

  • Magyarország településhálózata 1. Agglomerációk, településegyüttesek (Hungarian Central Statistical Office, 2014).

  • Ionescu-Heroiu, M. et al. Romania Catching-Up Regions: Metropolitan Romania (World Bank Group, 2019); http://documents.worldbank.org/curated/en/255131580296079611/Romania-Catching-Up-Regions-Metropolitan-Romania

  • Copernicus Land Monitoring Service CORINE Land Cover 2018 (Copernicus, accessed 2024); https://land.copernicus.eu

  • Magyarország közigazgatási helynévkönyve 2018. január 1 (Hungarian Central Statistical Office, 2018).

  • Populaţia României pe localităţi la 1 ianuarie 2016 (Institutul Naţional De Statistică, 2016).

  • Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 

    Google Scholar
     

  • Panagos, P. et al. European Soil Data Centre 2.0: soil data and knowledge in support of the EU policies. Eur. J. Soil Sci. 73, e13315 (2022).

    Article 

    Google Scholar
     

  • Tóth, G. et al. Continental-scale assessment of provisioning soil functions in Europe. Ecol. Process. 2, 32 (2013).

    Article 

    Google Scholar
     

  • ArcGIS Desktop Release 10.8 (Environmental Systems Research Institute, 2022); https://www.esri.com/

  • Quantum GIS Development Team. Quantum GIS geographic information system. QGIS http://qgis.osgeo.org (2020).

  • Hijmans, R. raster: geographic data analysis and modeling. R package v.3.6-26. CRAN https://doi.org/10.32614/CRAN.package.raster (2023).

  • Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R (Chapman and Hall/CRC, 2023); https://doi.org/10.1201/9780429459016

  • Aybar, C. rgee: R bindings for calling the ‘Earth Engine’ API. R package v.1.1.7. CRAN https://doi.org/10.32614/CRAN.package.rgee (2023).

  • R Core Team. R version 4.4.3: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2025).

  • Császár, P., Torma, A., Gallé-Szpisjak, N., Tölgyesi, C. & Gallé, R. Efficiency of pitfall traps with funnels and/or roofs in capturing ground-dwelling arthropods. Eur. J. Entomol. 115, 15–24 (2018).

    Article 

    Google Scholar
     

  • Duelli, P., Obrist, M. K. & Schmatz, D. R. Biodiversity evaluation in agricultural landscapes: above-ground insects. Agric. Ecosyst. Environ. 74, 33–64 (1999).

    Article 

    Google Scholar
     

  • Staab, M., Pufal, G., Tscharntke, T. & Klein, A.-M. Trap nests for bees and wasps to analyse trophic interactions in changing environments—a systematic overview and user guide. Methods Ecol. Evol. 2018, 2226–2239 (2018).

    Article 

    Google Scholar
     

  • Bibby, C. J., Burgess, N. D., Hill, D. A. & Mustoe, S. Bird Census Techniques (Academic Press, 2000).

  • Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Article 

    Google Scholar
     

  • Allart, L. et al. Species richness: a pivotal factor mediating the effects of land use intensification and climate on grassland multifunctionality. J. Appl. Ecol. 61, 1053–1066 (2024).

    Article 

    Google Scholar
     

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).

  • Kéry, M. & Hatfield, J. S. Normality of raw data in general linear models: the most widespread myth in statistics. Bull. Ecol. Soc. Am. 84, 92–94 (2003).

    Article 

    Google Scholar
     

  • Bartoń, K. MuMIn: Multi-Model Inference. R package v.1.48.4. CRAN https://doi.org/10.32614/CRAN.package.MuMIn (2024).

  • Batáry, P. Dataset accompanying Batáry et al. 2025 Nature Sustainability. Zenodo https://doi.org/10.5281/zenodo.15516259 (2025).

  • City Population Database (citypopulation.de, accessed 28 May 2024); https://www.citypopulation.de/

  • Europe Topographic Map (topographic-map.com, accessed 28 May 2024); https://en-gb.topographic-map.com/map-cvtgt/Europe

  • Hungarian Central Statistical Office Hungarian Census Database (KSH, accessed 28 May 2024); https://nepszamlalas2022.ksh.hu/en/database/

  • Hungarian Central Statistical Office TIMEA (KSH, accessed 28 May 2024); https://map.ksh.hu/timea/?locale=en

  • Wei, J. et al. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nat. Commun. 14, 8349 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Anenberg, S. C. et al. Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: estimates from global datasets. Lancet Planet. Health 6, e49–e58 (2022).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Biodiversity modeling to manage urban ecosystems for people and nature

    Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).Article  ...
    Biodiversity
    10
    minutes

    Multiple floods interactions shape riparian plant communities and diversity

    Study areaThe survey was conducted in the riparian area of the Akigawa River (Fig. 4), covering a regulated section spanning 33.57 km with a...
    Biodiversity
    7
    minutes

    First detection and entomological characterisation of invasive malaria vector Anopheles stephensi...

    Study site and samplingOur team from the Ecology, Health, and Environment (ECOSEN) group, Université André Salifou, Zinder, embarked on a study of biodiversity...
    Biodiversity
    4
    minutes

    Morphological and molecular assessment of muscle metacercariae infecting tench Tinca tinca...

    Waikagul, J. & Thaenkham, U. Approaches To Research on the Systematics of Fish Borne Trematodes1–16 (Academic, 2014).Chai, J. & Jung, B. Epidemiology of...
    Biodiversity
    11
    minutes
    spot_imgspot_img