Van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).
Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land‐use change influence broad‐scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).
Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).
Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Env. 20, 10–15 (2022).
Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).
Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).
Eggleton, P. The state of the world’s insects. Annu. Rev. Environ. Resour. 45, 61–82 (2020).
Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).
Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 12, e0189577 (2017).
McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).
Li, X. & Wiens, J. J. Estimating global biodiversity: the role of cryptic insect species. Syst. Biol. 72, 391–403 (2023).
van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).
Lindenmayer, D. B. et al. Value of long‐term ecological studies. Austral Ecol. 37, 745–757 (2012).
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).
Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl Acad. Sci. USA 118, e2002548117 (2021).
Bonebrake, T. C. & Deutsch, C. A. Climate heterogeneity modulates impact of warming on tropical insects. Ecology 93, 449–455 (2012).
Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).
Nash, L. N. et al. Latitudinal patterns of aquatic insect emergence driven by climate. Glob. Ecol. Biogeogr. 32, 1323–1335 (2023).
Dewenter, B. S. et al. The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis. Ecol. Evol. 14, e10937 (2024).
Colwell, R. K. & Feeley, K. J. Still little evidence of poleward range shifts in the tropics, but lowland biotic attrition may be underway. Biotropica https://doi.org/10.1111/btp.13358 (2024).
Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).
Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).
Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).
Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).
Crespo-Pérez, V., Kazakou, E., Roubik, D. W. & Cárdenas, R. E. The importance of insects on land and in water: a tropical view. Curr. Opin. Insect Sci. 40, 31–38 (2020).
Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).
Agrawal, A. A., Hastings, A. P., Johnson, M. T. J., Maron, J. L. & Salminen, J.-P. Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338, 113–116 (2012).
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115 (2022).
Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).
Wright, S. J. Tropical forests in a changing environment. Trends Ecol. Evol. 20, 553–560 (2005).
Nunes, C. A. et al. Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proc. Natl Acad. Sci. USA 119, e2202310119 (2022).
Olarewaju, J. A., Akinlolu, S. A., Olalekan, K. A. & Abiodun, M. A. in Vegetation Dynamics, Changing Ecosystems and Human Responsibility (eds Hufnagel, L. & El-Esawi, M. A.) Ch. 9 (InTechOpen, 2022).
Faria, D. et al. The breakdown of ecosystem functionality driven by deforestation in a global biodiversity hotspot. Biol. Conserv. 283, 110126 (2023).
Bos, M. M. et al. in Stability of Tropical Rainforest Margins: Linking Ecological, Economic and Social Constraints of Land Use and Conservation (eds. Tscharntke, T. et al.) 277–294 (Springer, 2007).
Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).
Lamarre, G. P. et al. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. 62, 295–330 (Elsevier, 2020).
Basset, Y. et al. Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. Ecol. Indic. 150, 110243 (2023).
Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl Acad. Sci. USA 118, e2002556117 (2021).
Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Diversity 13, 103–114 (2020).
Corlett, R. T. & Primack, R. B. Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 21, 104–110 (2006).
Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993 (2020).
Langner, A. & Siegert, F. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob. Change Biol. 15, 48–62 (2009).
Silveira, M. V. F., Silva-Junior, C. H. L., Anderson, L. O. & Aragão, L. E. O. C. Amazon fires in the 21st century: the year of 2020 in evidence. Glob. Ecol. Biogeogr. 31, 2026–2040 (2022).
Carvalho, R. L. et al. Pervasive gaps in Amazonian ecological research. Curr. Biol. 33, 3495–3504.e3494 (2023).
Dornelas, M. et al. Quantifying temporal change in biodiversity: challenges and opportunities. Proc. R. Soc. B 280, 20121931 (2013).
Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Env. 16, 222–230 (2018).
Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass has fluctuated over 50 years in Britain but lacks a clear trend. Nat. Ecol. Evol. 3, 1645–1649 (2019).
Chechina, M. & Hamann, A. Climatic drivers of dipterocarp mass-flowering in south-east Asia. J. Trop. Ecol. 35, 108–117 (2019).
Hosaka, T. et al. Abundance of insect seed predators and intensity of seed predation on Shorea (Dipterocarpaceae) in two consecutive masting events in peninsular Malaysia. J. Trop. Ecol. 27, 651–655 (2011).
Kishimoto-Yamada, K. et al. Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual environmental changes in a Bornean rainforest. Bull. Entomol. Res. 99, 217–227 (2009).
Adamescu, G. S. et al. Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica 50, 418–430 (2018).
Stork, N. E., Boyle, M. J., Wardhaugh, C. & Beaver, R. What can an analysis of Australian tropical rainforest bark beetles suggest about the missing millions of Earth’s insect species? Insect Conserv. Diversity 17, 1156–1166 (2024).
Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484 (2012).
Brydegaard, M. et al. Towards global insect biomonitoring with frugal methods. Phil. Trans. R. Soc. B 379, 20230103 (2024).
Bierman, A. & Lloyd, M. in Routledge Handbook of Insect Conservation (eds Pryke, J. S. et al.) 487–500 (Routledge, 2024).
Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).
Boyle, M. J. W. et al. Tropical beetles more sensitive to impacts are less likely to be known to science. Curr. Biol. 34, R770–R771 (2024).
França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Phil. Trans. R. Soc. B 375, 20190116 (2020).
Ismaeel, A. et al. Patterns of tropical forest understory temperatures. Nat. Commun. 15, 549 (2024).
Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).
Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Thomas, C., Jones, T. H. & Hartley, S. E. ‘‘Insectageddon”: a call for more robust data and rigorous analyses. Glob. Change Biol. 25, 1891–1892 (2019).
Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. Bioscience 70, 80–89 (2019).
Dudgeon, D., Ng, L. C. Y. & Tsang, T. P. N. Shifts in aquatic insect composition in a tropical forest stream after three decades of climatic warming. Glob. Change Biol. 26, 6399–6412 (2020).
Lamarre, G. P. A. et al. More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. Biol. Lett. 18, 20210519 (2022).
Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
Sundar, S., Silva, D. P., de Oliveira Roque, F., Simião-Ferreira, J. & Heino, J. Predicting climate effects on aquatic true bugs in a tropical biodiversity hotspot. J. Insect Conserv. 25, 229–241 (2021).
Abarca, M. & Spahn, R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Curr. Opin. Insect Sci. 47, 67–74 (2021).
Ma, G., Ma, C.-S., Lann, C. L. & van Baaren, J. in Effects of Climate Change on Insects: Physiological, Evolutionary, and Ecological Responses (eds González-Tokman, D. & Dáttilo, W.) Ch. 6 (Oxford Univ. Press, 2024).
Cornelissen, T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop. Entomol. 40, 155–163 (2011).
Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).
Boyle, M. J. et al. Localised climate change defines ant communities in human‐modified tropical landscapes. Funct. Ecol. 35, 1094–1108 (2021).
Mirtl, M. et al. Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci. Total. Env. 626, 1439–1462 (2018).
Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes. Glob. Change Biol. 24, 5243–5258 (2018).
Xing, S. et al. Ecological patterns and processes in the vertical dimension of terrestrial ecosystems. J. Anim. Ecol. 92, 538–551 (2023).
Bujan, J. & Yanoviak, S. P. Behavioral response to heat stress of twig-nesting canopy ants. Oecologia 198, 947–955 (2022).
Ewers, R. M. et al. Thresholds for adding degraded tropical forest to the conservation estate. Nature 631, 808–813 (2024).
Intergovernmental Panel on Climate Change (IPCC). AR6 Synthesis Report: Climate Change 2023. Contribution of Working Group I to the Six Assessment Report of the Intergovernmental Panel on Climate Change. IPCC https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (2023).
Harvey, J. A., Heinen, R., Gols, R. & Thakur, M. P. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob. Change Biol. 26, 6685–6701 (2020).
Newell, F. L., Ausprey, I. J. & Robinson, S. K. Wet and dry extremes reduce arthropod biomass independently of leaf phenology in the wet tropics. Glob. Change Biol. 29, 308–323 (2023).
Tng, D. Y. P. et al. Drought reduces the growth and health of tropical rainforest understory plants. For. Ecol. Manage 511, 120128 (2022).
McCluney, K. E. Implications of animal water balance for terrestrial food webs. Curr. Opin. Insect Sci. 23, 13–21 (2017).
Chaves, L. F., Morrison, A. C., Kitron, U. D. & Scott, T. W. Nonlinear impacts of climatic variability on the density-dependent regulation of an insect vector of disease. Glob. Change Biol. 18, 457–468 (2012).
Van Bael, S. A. et al. General herbivore outbreak following an El Niño-related drought in a lowland Panamanian forest. J. Trop. Ecol. 20, 625–633 (2004).
Céréghino, R. et al. Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a neotropical ecosystem. Ecol. Indic. 119, 106839 (2020).
Shivoga, W. A. The influence of hydrology on the structure of invertebrate communities in two streams flowing into Lake Nakuru, Kenya. Hydrobiologia 458, 121–130 (2001).
Walsh, R. P. Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J. Trop. Ecol. 12, 385–407 (1996).
Walsh, R. & Newbery, D. The ecoclimatology of Danum, Sabah, in the context of the world’s rainforest regions, with particular reference to dry periods and their impact. Phil. Trans. R. Soc. Lond. B 354, 1869–1883 (1999).
Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).
Sakai, S. General flowering in lowland mixed dipterocarp forests of south-east Asia. Biol. J. Linn. Soc. 75, 233–247 (2002).
Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).
Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nat. Clim. Change 7, 568–572 (2017).
Peng, Q., Xie, S.-P. & Deser, C. Collapsed upwelling projected to weaken ENSO under sustained warming beyond the twenty-first century. Nat. Clim. Change 14, 815–822 (2024).
Didham, R. K., Ghazoul, J., Stork, N. E. & Davis, A. J. Insects in fragmented forests: a functional approach. Trends Ecol. Evol. 11, 255–260 (1996).
França, F. M. et al. Selective logging intensity and time since logging drive tropical bird and dung beetle diversity: a case study from Amazonia. Env. Conserv. 51, 112–121 (2024).
Stork, N. E. et al. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa. Conserv. Biol. 31, 924–933 (2017).
Hamer, K. et al. Ecology of butterflies in natural and selectively logged forests of northern Borneo: the importance of habitat heterogeneity. J. Appl. Ecol. 40, 150–162 (2003).
Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).
Lewis, O. T. & Basset, Y. in Insect Conservation Biology (eds Stewart, A. J. A. et al.) 34–56 (Royal Entomological Society of London, 2007).
Solar, R. Rd. C. et al. How pervasive is biotic homogenization in human‐modified tropical forest landscapes? Ecol. Lett. 18, 1108–1118 (2015).
Faria, A. P. J., Paiva, C. K. S., Calvão, L. B., Cruz, G. M. & Juen, L. Response of aquatic insects to an environmental gradient in Amazonian streams. Env. Monit. Assess. 193, 763 (2021).
Brasil, L. S., de Lima, E. L., Spigoloni, Z. A., Ribeiro-Brasil, D. R. G. & Juen, L. The habitat integrity index and aquatic insect communities in tropical streams: a meta-analysis. Ecol. Indic. 116, 106495 (2020).
Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).
Amaral, P. H. M. D., Silveira, L. S. D., Rosa, B. F. J. V., Oliveira, V. C. D. & Alves, R. D. G. Influence of habitat and land use on the assemblages of Ephemeroptera, Plecoptera, and Trichoptera in neotropical streams. J. Insect Sci. 15, 60 (2015).
de Paiva, C. K. S., de Faria, A. P. J., Calvao, L. B. & Juen, L. Effect of oil palm on the Plecoptera and Trichoptera (Insecta) assemblages in streams of eastern Amazon. Env. Monit. Assess. 189, 393 (2017).
Oliveira-Junior, J. & Juen, L. The Zygoptera/Anisoptera ratio (Insecta: Odonata): a new tool for habitat alterations assessment in Amazonian streams. Neotrop. Entomol. 48, 552–560 (2019).
Dias-Silva, K., Brasil, L. S., Veloso, G. K. O., Cabette, H. S. R. & Juen, L. Land use change causes environmental homogeneity and low beta-diversity in Heteroptera of streams. Int. J. Limnol. 56, 9 (2020).
Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).
Pimm, S. L. & Raven, P. Extinction by numbers. Nature 403, 843–845 (2000).
Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 23, 538–545 (2008).
Wilker, I. et al. Land-use change in the Amazon decreases ant diversity but increases ant-mediated predation. Insect Conserv. Diversity 16, 379–392 (2023).
Perry, J. et al. How natural forest conversion affects insect biodiversity in the Peruvian Amazon: can agroforestry help? Forests 7, 82 (2016).
Novotny, V. et al. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–695 (2007).
Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. & Laurance, W. F. Remaining natural vegetation in the global biodiversity hotspots. Biol. Conserv. 177, 12–24 (2014).
Stoll, E., Roopsind, A., Maharaj, G., Velazco, S. & Caughlin, T. T. Detecting gold mining impacts on insect biodiversity in a tropical mining frontier with SmallSat imagery. Remote. Sens. Ecol. Conserv. 8, 379–390 (2022).
Kyerematen, R., Adu-Acheampong, S., Acquah-Lamptey, D. & Anderson, R. S. Using Orthoptera and Hymenoptera indicator groups as evidence of degradation in a mining concession (Tarkwa gold mine) in Ghana. Int. J. Trop. Insect Sci. 40, 221–224 (2020).
Monge-Salazar, M. J. The effect of artisanal gold mining on aquatic insect communities: a case study in Costa Rica. Aquat. Insects 42, 160–178 (2021).
Enríquez Espinosa, A. C. et al. Effects of mining and reduced turnover of Ephemeroptera (Insecta) in streams of the Eastern Brazilian Amazon. J. Insect Conserv. 24, 1061–1072 (2020).
Rivera-Pérez, J. M. et al. Effect of mining on the EPT (Ephemeroptera, Plecoptera and Trichoptera) assemblage of Amazonian streams based on their environmental specificity. Hydrobiologia 850, 645–664 (2023).
Dedieu, N., Rhone, M., Vigouroux, R. & Céréghino, R. Assessing the impact of gold mining in headwater streams of eastern Amazonia using Ephemeroptera assemblages and biological traits. Ecol. Indic. 52, 332–340 (2015).
Sarkar, S., Gil, J. D. B., Keeley, J. & Jansen, K. The use of pesticides in developing countries and their impact on health and the right to food. European Union https://op.europa.eu/en/publication-detail/-/publication/652ce244-6b53-11eb-aeb5-01aa75ed71a1/language-en (2021).
Weiss, F. T., Ruepert, C., Echeverría-Sáenz, S., Eggen, R. I. L. & Stamm, C. Agricultural pesticides pose a continuous ecotoxicological risk to aquatic organisms in a tropical horticulture catchment. Environ. Adv. 11, 100339 (2023).
Pelinson, R. M., Valente, B. R. S., Shimabukuro, E. M. & Schiesari, L. Impacts of agrochemical intensification and spatial isolation on the assembly and reassembly of temporary pond metacommunities. J. Appl. Ecol. 60, 2235–2250 (2023).
Rodríguez-Rodríguez, C. E. et al. Environmental monitoring and risk assessment in a tropical Costa Rican catchment under the influence of melon and watermelon crop pesticides. Env. Pollut. 284, 117498 (2021).
Cabrera, M. et al. Effects of intensive agriculture and urbanization on water quality and pesticide risks in freshwater ecosystems of the Ecuadorian Amazon. Chemosphere 337, 139286 (2023).
Rico, A. et al. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere 291, 132821 (2022).
Ali, U. et al. Organochlorine pesticides (OCPs) in South Asian region: a review. Sci. Total. Env. 476–477, 705–717 (2014).
Wong, F. et al. Organochlorine pesticides in soils and air of southern Mexico: chemical profiles and potential for soil emissions. Atmos. Env. 42, 7737–7745 (2008).
Dalla Villa, R., de Carvalho Dores, E. F. G., Carbo, L. & Cunha, M. L. F. Dissipation of DDT in a heavily contaminated soil in Mato Grosso, Brazil. Chemosphere 64, 549–554 (2006).
Chakraborty, P., Zhang, G., Li, J., Sivakumar, A. & Jones, K. C. Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air–soil exchange. Env. Pollut. 204, 74–80 (2015).
Lalah, J., Kaigwara, P., Getenga, Z., Mghenyi, J. & Wandiga, S. The major environmental factors that influence rapid disappearance of pesticides from tropical soils in Kenya. Toxicol. Environ. Chem. 81, 161–197 (2001).
Rosendahl, I., Laabs, V., Atcha-Ahowé, C., James, B. & Amelung, W. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa. J. Env. Monit. 11, 1157–1164 (2009).
Vryzas, Z. Pesticide fate in soil–sediment–water environment in relation to contamination preventing actions. Curr. Opin. Environ. Sci. Health 4, 5–9 (2018).
Schulz, R., Bub, S., Petschick, L. L., Stehle, S. & Wolfram, J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372, 81–84 (2021).
Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392 (2021).
de Carvalho Dores, E. F. G. & Naria De-Lamonica-Freire, E. Contaminação do ambiente aquático por pesticidas: vias de contaminação e dinâmica dos pesticidas no ambiente aquático. Pesticidas Rev. Ecotoxicol. E https://doi.org/10.5380/pes.v9i0.39598 (1999).
Hamada, N. et al. Insetos aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia (Editora do INPA, 2014).
Corbi, J. J., Froehlich, C. G., Strixino, S. T. & dos Santos, A. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Química Nova 33, 644–648 (2010).
Heye, K., Lotz, T., Wick, A. & Oehlmann, J. Interactive effects of biotic and abiotic environmental stressors on carbamazepine toxicity in the non-biting midge Chironomus riparius. Water Res. 156, 92–101 (2019).
Couceiro, S. R., Forsberg, B. R., Hamada, N. & Ferreira, R. Effects of an oil spill and discharge of domestic sewage on the insect fauna of Cururu stream, Manaus, AM, Brazil. Braz. J. Biol. 66, 35–44 (2006).
Martins, R. T., Couceiro, S. R., Melo, A. S., Moreira, M. P. & Hamada, N. Effects of urbanization on stream benthic invertebrate communities in Central Amazon. Ecol. Indic. 73, 480–491 (2017).
Monchanin, C., Devaud, J.-M., Barron, A. B. & Lihoreau, M. Current permissible levels of metal pollutants harm terrestrial invertebrates. Sci. Total. Env. 779, 146398 (2021).
Archer, C. et al. State of the Tropics 2020 report. James Cook University https://www.jcu.edu.au/state-of-the-tropics/publications/state-of-the-tropics-2020-report (2020).
Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).
Bonebrake, T. C. et al. Tropical cities as windows into the ecosystems of our present and future. Biotropica 57, e13369 (2025).
New, T. R. Promoting and developing insect conservation in Australia’s urban environments. Austral Entomol. 57, 182–193 (2018).
Md Meftaul, I., Venkateswarlu, K., Dharmarajan, R., Annamalai, P. & Megharaj, M. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total. Environ. 711, 134612 (2020).
Gaona, F. P., Iñiguez-Armijos, C., Brehm, G., Fiedler, K. & Espinosa, C. I. Drastic loss ofinsects (Lepidoptera: Geometridae) in urban landscapes in a tropical biodiversity hotspot. J. Insect Conserv. 25, 395–405 (2021).
Zakardjian, M., Geslin, B., Mitran, V., Franquet, E. & Jourdan, H. Effects of urbanization on plant–pollinator interactions in the tropics: an experimental approach using exotic plants. Insects 11, 773 (2020).
Wenzel, A., Grass, I., Nölke, N., Pannure, A. & Tscharntke, T. Wild bees benefit from low urbanization levels and suffer from pesticides in a tropical megacity. Agricult. Ecosyst. Environ. 336, 108019 (2022).
Sing, K.-W. et al. Diversity and human perceptions of bees (Hymenoptera: Apoidea) in southeast Asian megacities. Genome 59, 827–839 (2016).
Antonini, Y., Martins, R. P., Aguiar, L. M. & Loyola, R. D. Richness, composition and trophic niche of stingless bee assemblages in urban forest remnants. Urban. Ecosyst. 16, 527–541 (2013).
Wiederkehr, F. et al. Urbanisation affects ecosystem functioning more than structure in tropical streams. Biol. Conserv. 249, 108634 (2020).
Ensaldo-Cárdenas, A. S., Rocha-Ortega, M., Schneider, D., Robertson, B. A. & Córdoba-Aguilar, A. Ultraviolet polarized light and individual condition drive habitat selection in tropical damselflies and dragonflies. Anim. Behav. 180, 229–238 (2021).
Shivanna, K. R. Impact of light pollution on nocturnal pollinators and their pollination services. Proc. Indian Natl Sci. Acad. 88, 626–633 (2022).
Desouhant, E., Gomes, E., Mondy, N. & Amat, I. Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomol. Exp. Appl. 167, 37–58 (2019).
Freitas, J. R. D., Bennie, J., Mantovani, W. & Gaston, K. J. Exposure of tropical ecosystems to artificial light at night: Brazil as a case study. PLoS ONE 12, e0171655 (2017).
Andrade-Núñez, M. J. & Aide, T. M. Using nighttime lights to assess infrastructure expansion within and around protected areas in South America. Environ. Res. Commun. 2, 021002 (2020).
Camacho, L. F., Barragán, G. & Espinosa, S. Local ecological knowledge reveals combined landscape effects of light pollution, habitat loss, and fragmentation on insect populations. Biol. Conserv. 262, 109311 (2021).
Pan, H., Liang, G. & Lu, Y. Response of different insect groups to various wavelengths of light under field conditions. Insects 12, 427 (2021).
Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. O. Street lighting has detrimental impacts on local insect populations. Sci. Adv. 7, eabi8322 (2021).
Deichmann, J. L. et al. Reducing the blue spectrum of artificial light at night minimises insect attraction in a tropical lowland forest. Insect Conserv. Divers. 14, 247–259 (2021).
Coleman, J. L., Lum, D. W. H. & Yao, X. From sodium-vapour to LEDs: how an outdoor lighting retrofit affects insects in Singapore. J. Urban. Ecol. 9, juad009 (2023).
Wilson, A. A. et al. Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Glob. Change Biol. 27, 3987–4004 (2021).
Kalinkat, G. et al. Assessing long-term effects of artificial light at night on insects: what is missing and how to get there. Insect Conserv. Divers. 14, 260–270 (2021).
Kfir, R. Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 90, 619–624 (1997).
Overholt, W. A. In Encyclopedia of Entomology (ed. Capinera, J. L.) 1640–1641 (Springer Netherlands, 2008).
Fortuna, T. M., Le Gall, P., Mezdour, S. & Calatayud, P.-A. Impact of invasive insects on native insect communities. Curr. Opin. Insect Sci. 51, 100904 (2022).
Lach, L., Tillberg, C. V. & Suarez, A. V. Contrasting effects of an invasive ant on a native and an invasive plant. Biol. Invasions 12, 3123–3133 (2010).
Berggren, Å., Jansson, A. & Low, M. Approaching ecological sustainability in the emerging insects-as-food industry. Trends Ecol. Evol. 34, 132–138 (2019).
Tallamy, D. W., Narango, D. L. & Mitchell, A. B. Do non-native plants contribute to insect declines? Ecol. Entomol. 46, 729–742 (2021).
Stroud, J. T. & Feeley, K. J. A downside of diversity? A response to Gallagher et al. Trends Ecol. Evol. 30, 296–297 (2015).
Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).
Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).
Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Phil. Trans. R. Soc. B 372, 20160345 (2017).
Law, S. J. et al. Darker ants dominate the canopy: testing macroecological hypotheses for patterns in colour along a microclimatic gradient. J. Anim. Ecol. 89, 347–359 (2020).
Jucker, T. et al. A research agenda for microclimate ecology in human-modified tropical forests. Front. For. Glob. Change 2, 92 (2020).
Williamson, J. et al. Local‐scale temperature gradients driven by human disturbance shape the physiological and morphological traits of dung beetle communities in a Bornean oil palm–forest mosaic. Funct. Ecol. 36, 1655–1667 (2022).
Moore, M. P., Nalley, S. E. & Hamadah, D. An evolutionary innovation for mating facilitates ecological niche expansion and buffers species against climate change. Proc. Natl Acad. Sci. USA 121, e2313371121 (2024).
Parrett, J. M., Mann, D. J., Chung, A. Y., Slade, E. M. & Knell, R. J. Sexual selection predicts the persistence of populations within altered environments. Ecol. Lett. 22, 1629–1637 (2019).
Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).
Årevall, J., Early, R., Estrada, A., Wennergren, U. & Eklöf, A. C. Conditions for successful range shifts under climate change: the role of species dispersal and landscape configuration. Divers. Distrib. 24, 1598–1611 (2018).
Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).
Schebeck, M. et al. Seasonality of forest insects: why diapause matters. Trends Ecol. Evol. 39, 757–770 (2024).
Hoffmann, A. A. & Bridle, J. Plasticity and the costs of incorrect responses. Trends Ecol. Evol. 38, 219–220 (2023).
da Silva, C. R., Beaman, J. E., Youngblood, J. P., Kellermann, V. & Diamond, S. E. Vulnerability to climate change increases with trophic level in terrestrial organisms. Sci. Total. Environ. 865, 161049 (2023).
Wenda, C. et al. Heat tolerance variation reveals vulnerability of tropical herbivore–parasitoid interactions to climate change. Ecol. Lett. 26, 278–290 (2023).
Parr, C. L. & Bishop, T. R. The response of ants to climate change. Glob. Change Biol. 28, 3188–3205 (2022).
Novotny, V. et al. Why are there so many species of herbivorous insects in tropical rainforests? Science 313, 1115–1118 (2006).
Coley, P. D. & Barone, J. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).
Agrawal, A. A. & Maron, J. L. Long‐term impacts of insect herbivores on plant populations and communities. J. Ecol. 110, 2800–2811 (2022).
Szefer, P., Molem, K., Sau, A. & Novotny, V. Impact of pathogenic fungi, herbivores and predators on secondary succession of tropical rainforest vegetation. J. Ecol. 108, 1978–1988 (2020).
Ruiz‐Guerra, B., Guevara, R., Mariano, N. A. & Dirzo, R. Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119, 317–325 (2010).
Lewis, O. T. & Gripenberg, S. Insect seed predators and environmental change. J. Appl. Ecol. 45, 1593–1599 (2008).
Novotny, V. et al. Guild‐specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J. Anim. Ecol. 79, 1193–1203 (2010).
Ingala, M. R. et al. Molecular diet analysis of neotropical bats based on fecal DNA metabarcoding. Ecol. Evol. 11, 7474–7491 (2021).
Hemprich‐Bennett, D. R. et al. Altered structure of bat–prey interaction networks in logged tropical forests revealed by metabarcoding. Mol. Ecol. 30, 5844–5857 (2021).
Hawkins, B. A., Cornell, H. V. & Hochberg, M. E. Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78, 2145–2152 (1997).
Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc. R. Soc. B 283, 20161634 (2016).
Ashton, L. A. et al. Termites mitigate the ecosystem-wide effects of drought in tropical rainforest. Science 363, 174–177 (2019).
Griffiths, H. M., Ashton, L. A., Parr, C. L. & Eggleton, P. The impact of invertebrate decomposers on plants and soil. N. Phytol. 231, 2142–2149 (2021).
Barton, P. S. & Evans, M. J. Insect biodiversity meets ecosystem function: differential effects of habitat and insects on carrion decomposition. Ecol. Entomol. 42, 364–374 (2017).
Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).
Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).
Zeng, X. et al. Global contribution of invertebrates to forest litter decomposition. Ecol. Lett. 27, e14423 (2024).
Medina Madariaga, G. et al. Multiple-stressor effects on leaf litter decomposition in freshwater ecosystems: a meta-analysis. Funct. Ecol. 38, 1523–1536 (2024).
Lemes da Silva, A. L., Lemes, W. P., Andriotti, J., Petrucio, M. M. & Feio, M. J. Recent land-use changes affect stream ecosystem processes in a subtropical island in Brazil. Austral Ecol. 45, 644–658 (2020).
Pérez, J. et al. Agricultural impacts on lowland tropical streams detected through leaf litter decomposition. Ecol. Indic. 154, 110819 (2023).
Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C. & Davies, R. G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers. Conserv. 23, 2817–2832 (2014).
Nooten, S. S., Chan, K. H., Schultheiss, P., Bogar, T. A. & Guénard, B. Ant body size mediates functional performance and species interactions in carrion decomposer communities. Funct. Ecol. 36, 1279–1291 (2022).
Nichols, E. et al. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol. Conserv. 137, 1–19 (2007).
Gregory, N., Gómez, A., Oliveira, T. M. Fd. S. & Nichols, E. Big dung beetles dig deeper: trait-based consequences for faecal parasite transmission. Int. J. Parasitol. 45, 101–105 (2015).
Alvarado-Montero, S., Boesing, A. L., Metzger, J. P. & Jaffé, R. Higher forest cover and less contrasting matrices improve carrion removal service by scavenger insects in tropical landscapes. J. Appl. Ecol. 58, 2637–2649 (2021).
Ferreira, P. A. et al. Forest and connectivity loss simplify tropical pollination networks. Oecologia 192, 577–590 (2020).
Millard, J. et al. Key tropical crops at risk from pollinator loss due to climate change and land use. Sci. Adv. 9, eadh0756 (2023).
Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351, 388–391 (2016).
Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481 (2019).
Saunders, M. E. et al. Climate mediates roles of pollinator species in plant–pollinator networks. Glob. Ecol. Biogeogr. 32, 511–518 (2023).
Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).
Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl Acad. Sci. USA 113, 146–151 (2016).
Li, K., Tscharntke, T., Saintes, B., Buchori, D. & Grass, I. Critical factors limiting pollination success in oil palm: a systematic review. Agric. Ecosyst. Environ. 280, 152–160 (2019).
Chai, S. K. & Wong, S. Y. Five pollination guilds of aroids (Araceae) at Mulu National Park (Sarawak, Malaysian Borneo). Webbia 74, 353–371 (2019).
Sakai, S., Momose, K., Yumoto, T., Kato, M. & Inoue, T. Beetle pollination of Shorea parvifolia (section Mutica, Dipterocarpaceae) in a general flowering period in Sarawak, Malaysia. Am. J. Bot. 86, 62–69 (1999).
Wardhaugh, C. W. How many species of arthropods visit flowers? Arthropod–Plant Interact. 9, 547–565 (2015).
Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant–pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628 (2015).
Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).
Soares, R. G. S., Ferreira, P. A. & Lopes, L. E. Can plant–pollinator network metrics indicate environmental quality? Ecol. Indic. 78, 361–370 (2017).
Zoller, L., Bennett, J. & Knight, T. M. Plant–pollinator network change across a century in the subarctic. Nat. Ecol. Evol. 7, 102–112 (2023).
Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).
Saunders, M. Ecosystem services in agriculture: understanding the multifunctional role of invertebrates. Agric. For. Entomol. 20, 298–300 (2018).
Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).
Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015).
Blonder, B. et al. Extreme and highly heterogeneous microclimates in selectively logged tropical forests. Front. For. Glob. Change 1, 5 (2018).
van Klink, R. Delivering on a promise: futureproofing automated insect monitoring methods. Phil. Trans. R. Soc. B 379, 20230105 (2024).
Buchner, D. et al. Upscaling biodiversity monitoring: metabarcoding estimates 31,846 insect species from Malaise traps across Germany. Mol. Ecol. Resour. 25, e14023 (2024).
Alvarado-Robledo, E. J. et al. Metabarcoding: opportunities for accelerating monitoring and understanding insect tropical biodiversity. J. Insect Conserv. 28, 589–604 (2024).
Strutzenberger, P. et al. DNA metabarcoding of light trap samples vs. morphological species identification. Ecol. Entomol. 49, 245–256 (2024).
Sire, L. et al. Persisting roadblocks in arthropod monitoring using non-destructive metabarcoding from collection media of passive traps. PeerJ 11, e16022 (2023).
Souto-Vilarós, D. et al. Illuminating arthropod diversity in a tropical forest: assessing biodiversity by automatic light trapping and DNA metabarcoding. Environ. DNA 6, e540 (2024).
Creedy, T. J., Ng, W. S. & Vogler, A. P. Toward accurate species‐level metabarcoding of arthropod communities from the tropical forest canopy. Ecol. Evol. 9, 3105–3116 (2019).
Iwaszkiewicz-Eggebrecht, E. et al. FAVIS: fast and versatile protocol for non-destructive metabarcoding of bulk insect samples. PLoS ONE 18, e0286272 (2023).
Macher, T.-H., Schütz, R., Hörren, T., Beermann, A. J. & Leese, F. It’s raining species: rainwash eDNA metabarcoding as a minimally invasive method to assess tree canopy invertebrate diversity. Environ. DNA 5, 3–11 (2023).
Arribas, P. et al. Toward global integration of biodiversity big data: a harmonized metabarcode data generation module for terrestrial arthropods. GigaScience 11, giac065 (2022).
Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117 (2021).
Chua, P. Y. S. et al. Future of DNA-based insect monitoring. Trends Genet. 39, 531–544 (2023).
Meier, R., Hartop, E., Pylatiuk, C. & Srivathsan, A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Phil. Trans. R. Soc. B 379, 20230120 (2024).
Geiger, M. F. et al. Testing the global Malaise trap program — how well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).
Do Nascimento, L. A., Pérez-Granados, C., Alencar, J. B. R. & Beard, K. H. Time and habitat structure shape insect acoustic activity in the Amazon. Phil. Trans. R. Soc. B 379, 20230112 (2024).
Sethi, S. S. et al. Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set. Proc. Natl Acad. Sci. USA 117, 17049–17055 (2020).
Sethi, S. S., Ewers, R. M., Jones, N. S., Orme, C. D. L. & Picinali, L. Robust, real‐time and autonomous monitoring of ecosystems with an open, low‐cost, networked device. Methods Ecol. Evol. 9, 2383–2387 (2018).
Haest, B. et al. Continental-scale patterns in diel flight timing of high-altitude migratory insects. Phil. Trans. R. Soc. B 379, 20230116 (2024).
Bauer, S., Tielens, E. K. & Haest, B. Monitoring aerial insect biodiversity: a radar perspective. Phil. Trans. R. Soc. B 379, 20230113 (2024).
Liu, D. et al. Radar monitoring unveils migration dynamics of the yellow-spined bamboo locust (Orthoptera: Arcypteridae). Comput. Electron. Agric. 187, 106306 (2021).
Anjita, N. A. et al. Doppler weather radars as a game changer in desert locust swarm tracking. Sci. Rep. 14, 31715 (2024).
Chen, H. et al. Lidar as a potential tool for monitoring migratory insects. iScience 27, 109588 (2024).
Wang, Y., Zhao, C., Dong, D. & Wang, K. Real-time monitoring of insects based on laser remote sensing. Ecol. Indic. 151, 110302 (2023).
Rydhmer, K. et al. Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 12, 2603 (2022).
Møller, A. P. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9, 6581–6587 (2019).
Møller, A. P. et al. Citizen science for quantification of insect abundance on windshields of cars across two continents. Front. Ecol. Evol. 9, 657178 (2021).
Slade, E. M. & Ong, X. R. The future of tropical insect diversity: strategies to fill data and knowledge gaps. Curr. Opin. Insect Sci. 58, 101063 (2023).
Sánchez Herrera, M. et al. Systematic challenges and opportunities in insect monitoring: a Global South perspective. Phil. Trans. R. Soc. B 379, 20230102 (2024).
Grinder, R. M. & Wiens, J. J. Niche width predicts extinction from climate change and vulnerability of tropical species. Glob. Change Biol. 29, 618–630 (2023).
Ollerton, J. Biogeography: are tropical species less specialised? Curr. Biol. 22, R914–R915 (2012).
Doré, M. et al. Mutualistic interactions shape global spatial congruence and climatic niche evolution in neotropical mimetic butterflies. Ecol. Lett. 26, 843–857 (2023).
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Gibb, H. et al. Habitat disturbance selects against both small and large species across varying climates. Ecography 41, 1184–1193 (2018).
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).
Boyle, M. J. The Resilience of Tropical Forest Invertebrates to Microclimate Change. PhD thesis (Imperial College London, 2020).
Overgaard, J., Kristensen, T. N., Mitchell, K. A. & Hoffmann, A. A. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Am. Nat. 178, S80–S96 (2011).
Shah, A. A., Funk, W. C. & Ghalambor, C. K. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 57, 977–987 (2017).
Scheffers, B. R., Evans, T. A., Williams, S. E. & Edwards, D. P. Microhabitats in the tropics buffer temperature in a globally coherent manner. Biol. Lett. 10, 20140819 (2014).
Kang, C. et al. Climate predicts both visible and near-infrared reflectance in butterflies. Ecol. Lett. 24, 1869–1879 (2021).
Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471–12476 (2018).
Henle, K., Sarre, S. & Wiegand, K. The role of density regulation in extinction processes and population viability analysis. Biodivers. Conserv. 13, 9–52 (2004).
Porter, E. E. & Hawkins, B. A. Latitudinal gradients in colony size for social insects: termites and ants show different patterns. Am. Nat. 157, 97–106 (2001).
Kaspari, M. & Vargo, E. L. Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am. Nat. 145, 610–632 (1995).
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Muñoz Sabater, J. ERA5 — Land monthly averaged data from 1981 to present. Copernicus Climate Change Service Climate Data Store https://essd.copernicus.org/articles/13/4349/2021/essd-13-4349-2021-assets.html (2019).
Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote. Sens. 13, 922 (2021).
Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).
Chuvieco, E. et al. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Pixel product, version 5.1. Centre for Environmental Data Analysis https://cir.nii.ac.jp/crid/1880583643079782016 (2018).
Maggi, F., Tang, F., La Cecilia, D. & McBratney, A. Global pesticide grids (PEST-CHEMGRIDS), version 1.01. NASA Socioeconomic Data and Applications Center (SEDAC) https://www.earthdata.nasa.gov/data/catalog/sedac-ciesin-sedac-fermanv1-pestg-v1.01-1.01 (2020)
Fernández-Palacios, J. M. et al. Scientists’ warning — the outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021).
Sharp, A. C., Barclay, M. V., Chung, A. Y. & Ewers, R. M. Tropical logging and deforestation impacts multiple scales of weevil beta-diversity. Biol. Conserv. 234, 172–179 (2019).
Tawatao, N. et al. Biodiversity of leaf-litter ants in fragmented tropical rainforests of Borneo: the value of publically and privately managed forest fragments. Biodivers. Conserv. 23, 3113–3126 (2014).
Scriven, S. A. et al. Assessing the effectiveness of protected areas for conserving range‐restricted rain forest butterflies in Sabah, Borneo. Biotropica 52, 380–391 (2020).
Hanski, I., Koivulehto, H., Cameron, A. & Rahagalala, P. Deforestation and apparent extinctions of endemic forest beetles in Madagascar. Biol. Lett. 3, 344–347 (2007).
Fonseca, C. R. The silent mass extinction of insect herbivores in biodiversity hotspots. Conserv. Biol. 23, 1507–1515 (2009).
Ranarilalatiana, T. et al. Remaining forests on the central highlands of Madagascar — endemic and endangered aquatic beetle fauna uncovered. Ecol. Evol. 12, e9580 (2022).
Steibl, S., Franke, J. & Laforsch, C. Tourism and urban development as drivers for invertebrate diversity loss on tropical islands. R. Soc. Open. Sci. 8, 210411 (2021).
Wagner, D. L. & Van Driesche, R. G. Threats posed to rare or endangered insects by invasions of non-native species. Annu. Rev. Entomol. 55, 547–568 (2010).
Corlett, R. T. Invasive aliens on tropical East Asian islands. Biodivers. Conserv. 19, 411–423 (2010).
Roy, H. et al. Summary for policymakers of the thematic assessment report on invasive alien species and their control. IPBES https://www.ipbes.net/ias (2023).
Gray, A. et al. The status of the invertebrate fauna on the South Atlantic island of St Helena: problems, analysis, and recommendations. Biodivers. Conserv. 28, 275–296 (2019).
Tercel, M. P., Cuff, J. P., Symondson, W. O. & Vaughan, I. P. Non‐native ants drive dramatic declines in animal community diversity: a meta‐analysis. Insect Conserv. Divers. 16, 733–744 (2023).
Sharp, A. & Tawatao, N. Colonization and coexistence of non‐native ants on a model Atlantic island. Divers. Distrib. 29, 1278–1288 (2023).
Roura‐Pascual, N., Sanders, N. J. & Hui, C. The distribution and diversity of insular ants: do exotic species play by different rules? Glob. Ecol. Biogeogr. 25, 642–654 (2016).
Aulus-Giacosa, L., Ollier, S. & Bertelsmeier, C. Non-native ants are breaking down biogeographic boundaries and homogenizing community assemblages. Nat. Commun. 15, 2266 (2024).
Wetterer, J. K. Worldwide spread of the African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Myrmecol. N. 17, 51–62 (2012).
Nakamura, A. et al. The role of human disturbance in island biogeography of arthropods and plants: an information theoretic approach. J. Biogeogr. 42, 1406–1417 (2015).
Wetterer, J. K. Biology and impacts of Pacific Island invasive species. 3. The African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Pacif. Sci. 61, 437–456 (2007).
Wetterer, J. K. & Espadaler, X. Ants (Hymenoptera: Formicidae) of the Cabo Verde Islands. Trans. Am. Entomol. Soc. 147, 485–502 (2021).
St Clair, J. J. The impacts of invasive rodents on island invertebrates. Biol. Conserv. 144, 68–81 (2011).
Harper, G. A. & Bunbury, N. Invasive rats on tropical islands: their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).
Ashmole, P. & Ashmole, M. St Helena and Ascension Island: a Natural History (Anthony Nelson, 2000).
Priddel, D., Carlile, N., Humphrey, M., Fellenberg, S. & Hiscox, D. Rediscovery of the ‘extinct’ Lord Howe Island stick-insect (Dryococelus australis (Montrouzier)) (Phasmatodea) and recommendations for its conservation. Biodivers. Conserv. 12, 1391–1403 (2003).
Kwak, M. L. Australia’s vanishing fleas (Insecta: Siphonaptera): a case study in methods for the assessment and conservation of threatened flea species. J. Insect Conserv. 22, 545–550 (2018).
Pickering, J. & Norris, C. A. New evidence concerning the extinction of the endemic murid Rattus macleari from Christmas Island, Indian Ocean. Aust. Mammal. 19, 19–25 (1996).
Russell, J. C. & Holmes, N. D. Tropical island conservation: rat eradication for species recovery. Biol. Conserv. 185, 1–7 (2015).
Gaigher, R., Samways, M., Jolliffe, K. & Jolliffe, S. Precision control of an invasive ant on an ecologically sensitive tropical island: a principle with wide applicability. Ecol. Appl. 22, 1405–1412 (2012).
Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).
Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).
Fukagawa, N. K. & Ziska, L. H. Rice: importance for global nutrition. J. Nutr. Sci. Vitaminol. 65, S2–S3 (2019).
Heong. K. L., Song, Y. H., Pimsamarn, S., Zhang, R. & Bae, S. D. in Climate Change and Rice (eds Peng, S. et al.) 326–335 (Springer, 1995).
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
Malcolm, S. B. Anthropogenic impacts on mortality and population viability of the monarch butterfly. Annu. Rev. Entomol. 63, 277–302 (2018).
Kenna, D. et al. Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol. Evol. 9, 5637–5650 (2019).
Farnan, H., Yeeles, P. & Lach, L. Sublethal doses of insecticide reduce thermal tolerance of a stingless bee and are not avoided in a resource choice test. R. Soc. Open. Sci. 10, 230949 (2023).
Gintoron, C. S. et al. Factors affecting pollination and pollinators in oil palm plantations: a review with an emphasis on the Elaeidobius kamerunicus weevil (Coleoptera: Curculionidae). Insects 14, 454 (2023).
Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).
Williamson, J. et al. Riparian buffers act as a microclimatic refugia in oil palm landscapes. J. Appl. Ecol. 58, 431–442 (2021).
Mohd-Azlan, J., Conway, S., Travers, T. & Lawes, M. The filtering effect of oil palm plantations on potential insect pollinator assemblages from remnant forest patches. Land 12, 1256 (2023).
Vector-borne diseases. World Health Organization https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (2024).
Paixão, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob. Health 3, e000530 (2018).
Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).
Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in southeast Asia. Nat. Commun. 10, 4299 (2019).
KM, F. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208 (2016).
Brady, O. J. & Hay, S. I. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 65, 191–208 (2020).
Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).
Chaves, L. F., Cohen, J. M., Pascual, M. & Wilson, M. L. Social exclusion modifies climate and deforestation impacts on a vector-borne disease. PLoS Negl. Trop. Dis. 2, e176 (2008).
Narladkar, B. W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet. World 11, 151–160 (2018).