Causes and consequences of insect decline in tropical forests


  • Van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    Article 

    Google Scholar
     

  • Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land‐use change influence broad‐scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).

    Article 

    Google Scholar
     

  • Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Env. 20, 10–15 (2022).

    Article 

    Google Scholar
     

  • Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Eggleton, P. The state of the world’s insects. Annu. Rev. Environ. Resour. 45, 61–82 (2020).

    Article 

    Google Scholar
     

  • Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).

    Article 

    Google Scholar
     

  • Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 12, e0189577 (2017).

    Article 

    Google Scholar
     

  • McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).

    Article 

    Google Scholar
     

  • Li, X. & Wiens, J. J. Estimating global biodiversity: the role of cryptic insect species. Syst. Biol. 72, 391–403 (2023).

    Article 

    Google Scholar
     

  • van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

    Article 

    Google Scholar
     

  • Lindenmayer, D. B. et al. Value of long‐term ecological studies. Austral Ecol. 37, 745–757 (2012).

    Article 

    Google Scholar
     

  • Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl Acad. Sci. USA 118, e2002548117 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bonebrake, T. C. & Deutsch, C. A. Climate heterogeneity modulates impact of warming on tropical insects. Ecology 93, 449–455 (2012).

    Article 

    Google Scholar
     

  • Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nash, L. N. et al. Latitudinal patterns of aquatic insect emergence driven by climate. Glob. Ecol. Biogeogr. 32, 1323–1335 (2023).

    Article 

    Google Scholar
     

  • Dewenter, B. S. et al. The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis. Ecol. Evol. 14, e10937 (2024).

    Article 

    Google Scholar
     

  • Colwell, R. K. & Feeley, K. J. Still little evidence of poleward range shifts in the tropics, but lowland biotic attrition may be underway. Biotropica https://doi.org/10.1111/btp.13358 (2024).

  • Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

    Article 

    Google Scholar
     

  • Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).

    Article 

    Google Scholar
     

  • Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

    Article 

    Google Scholar
     

  • Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Crespo-Pérez, V., Kazakou, E., Roubik, D. W. & Cárdenas, R. E. The importance of insects on land and in water: a tropical view. Curr. Opin. Insect Sci. 40, 31–38 (2020).

    Article 

    Google Scholar
     

  • Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Agrawal, A. A., Hastings, A. P., Johnson, M. T. J., Maron, J. L. & Salminen, J.-P. Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338, 113–116 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115 (2022).

    Article 

    Google Scholar
     

  • Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    Article 

    Google Scholar
     

  • Wright, S. J. Tropical forests in a changing environment. Trends Ecol. Evol. 20, 553–560 (2005).

    Article 

    Google Scholar
     

  • Nunes, C. A. et al. Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proc. Natl Acad. Sci. USA 119, e2202310119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Olarewaju, J. A., Akinlolu, S. A., Olalekan, K. A. & Abiodun, M. A. in Vegetation Dynamics, Changing Ecosystems and Human Responsibility (eds Hufnagel, L. & El-Esawi, M. A.) Ch. 9 (InTechOpen, 2022).

  • Faria, D. et al. The breakdown of ecosystem functionality driven by deforestation in a global biodiversity hotspot. Biol. Conserv. 283, 110126 (2023).

    Article 

    Google Scholar
     

  • Bos, M. M. et al. in Stability of Tropical Rainforest Margins: Linking Ecological, Economic and Social Constraints of Land Use and Conservation (eds. Tscharntke, T. et al.) 277–294 (Springer, 2007).

  • Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lamarre, G. P. et al. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. 62, 295–330 (Elsevier, 2020).

  • Basset, Y. et al. Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. Ecol. Indic. 150, 110243 (2023).

    Article 

    Google Scholar
     

  • Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl Acad. Sci. USA 118, e2002556117 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Diversity 13, 103–114 (2020).

    Article 

    Google Scholar
     

  • Corlett, R. T. & Primack, R. B. Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 21, 104–110 (2006).

    Article 

    Google Scholar
     

  • Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Langner, A. & Siegert, F. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob. Change Biol. 15, 48–62 (2009).

    Article 

    Google Scholar
     

  • Silveira, M. V. F., Silva-Junior, C. H. L., Anderson, L. O. & Aragão, L. E. O. C. Amazon fires in the 21st century: the year of 2020 in evidence. Glob. Ecol. Biogeogr. 31, 2026–2040 (2022).

    Article 

    Google Scholar
     

  • Carvalho, R. L. et al. Pervasive gaps in Amazonian ecological research. Curr. Biol. 33, 3495–3504.e3494 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dornelas, M. et al. Quantifying temporal change in biodiversity: challenges and opportunities. Proc. R. Soc. B 280, 20121931 (2013).

    Article 

    Google Scholar
     

  • Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Env. 16, 222–230 (2018).

    Article 

    Google Scholar
     

  • Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass has fluctuated over 50 years in Britain but lacks a clear trend. Nat. Ecol. Evol. 3, 1645–1649 (2019).

    Article 

    Google Scholar
     

  • Chechina, M. & Hamann, A. Climatic drivers of dipterocarp mass-flowering in south-east Asia. J. Trop. Ecol. 35, 108–117 (2019).

    Article 

    Google Scholar
     

  • Hosaka, T. et al. Abundance of insect seed predators and intensity of seed predation on Shorea (Dipterocarpaceae) in two consecutive masting events in peninsular Malaysia. J. Trop. Ecol. 27, 651–655 (2011).

    Article 

    Google Scholar
     

  • Kishimoto-Yamada, K. et al. Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual environmental changes in a Bornean rainforest. Bull. Entomol. Res. 99, 217–227 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Adamescu, G. S. et al. Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica 50, 418–430 (2018).

    Article 

    Google Scholar
     

  • Stork, N. E., Boyle, M. J., Wardhaugh, C. & Beaver, R. What can an analysis of Australian tropical rainforest bark beetles suggest about the missing millions of Earth’s insect species? Insect Conserv. Diversity 17, 1156–1166 (2024).

    Article 

    Google Scholar
     

  • Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Brydegaard, M. et al. Towards global insect biomonitoring with frugal methods. Phil. Trans. R. Soc. B 379, 20230103 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bierman, A. & Lloyd, M. in Routledge Handbook of Insect Conservation (eds Pryke, J. S. et al.) 487–500 (Routledge, 2024).

  • Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).

    Article 

    Google Scholar
     

  • Boyle, M. J. W. et al. Tropical beetles more sensitive to impacts are less likely to be known to science. Curr. Biol. 34, R770–R771 (2024).

    Article 
    CAS 

    Google Scholar
     

  • França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Phil. Trans. R. Soc. B 375, 20190116 (2020).

    Article 

    Google Scholar
     

  • Ismaeel, A. et al. Patterns of tropical forest understory temperatures. Nat. Commun. 15, 549 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).

    Article 

    Google Scholar
     

  • Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).

    Article 

    Google Scholar
     

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, C., Jones, T. H. & Hartley, S. E. ‘‘Insectageddon”: a call for more robust data and rigorous analyses. Glob. Change Biol. 25, 1891–1892 (2019).

    Article 

    Google Scholar
     

  • Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. Bioscience 70, 80–89 (2019).

    Article 

    Google Scholar
     

  • Dudgeon, D., Ng, L. C. Y. & Tsang, T. P. N. Shifts in aquatic insect composition in a tropical forest stream after three decades of climatic warming. Glob. Change Biol. 26, 6399–6412 (2020).

    Article 

    Google Scholar
     

  • Lamarre, G. P. A. et al. More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. Biol. Lett. 18, 20210519 (2022).

    Article 

    Google Scholar
     

  • Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Sundar, S., Silva, D. P., de Oliveira Roque, F., Simião-Ferreira, J. & Heino, J. Predicting climate effects on aquatic true bugs in a tropical biodiversity hotspot. J. Insect Conserv. 25, 229–241 (2021).

    Article 

    Google Scholar
     

  • Abarca, M. & Spahn, R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Curr. Opin. Insect Sci. 47, 67–74 (2021).

    Article 

    Google Scholar
     

  • Ma, G., Ma, C.-S., Lann, C. L. & van Baaren, J. in Effects of Climate Change on Insects: Physiological, Evolutionary, and Ecological Responses (eds González-Tokman, D. & Dáttilo, W.) Ch. 6 (Oxford Univ. Press, 2024).

  • Cornelissen, T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop. Entomol. 40, 155–163 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).

    Article 

    Google Scholar
     

  • Boyle, M. J. et al. Localised climate change defines ant communities in human‐modified tropical landscapes. Funct. Ecol. 35, 1094–1108 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mirtl, M. et al. Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci. Total. Env. 626, 1439–1462 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes. Glob. Change Biol. 24, 5243–5258 (2018).

    Article 

    Google Scholar
     

  • Xing, S. et al. Ecological patterns and processes in the vertical dimension of terrestrial ecosystems. J. Anim. Ecol. 92, 538–551 (2023).

    Article 

    Google Scholar
     

  • Bujan, J. & Yanoviak, S. P. Behavioral response to heat stress of twig-nesting canopy ants. Oecologia 198, 947–955 (2022).

    Article 

    Google Scholar
     

  • Ewers, R. M. et al. Thresholds for adding degraded tropical forest to the conservation estate. Nature 631, 808–813 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Intergovernmental Panel on Climate Change (IPCC). AR6 Synthesis Report: Climate Change 2023. Contribution of Working Group I to the Six Assessment Report of the Intergovernmental Panel on Climate Change. IPCC https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (2023).

  • Harvey, J. A., Heinen, R., Gols, R. & Thakur, M. P. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob. Change Biol. 26, 6685–6701 (2020).

    Article 

    Google Scholar
     

  • Newell, F. L., Ausprey, I. J. & Robinson, S. K. Wet and dry extremes reduce arthropod biomass independently of leaf phenology in the wet tropics. Glob. Change Biol. 29, 308–323 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tng, D. Y. P. et al. Drought reduces the growth and health of tropical rainforest understory plants. For. Ecol. Manage 511, 120128 (2022).

    Article 

    Google Scholar
     

  • McCluney, K. E. Implications of animal water balance for terrestrial food webs. Curr. Opin. Insect Sci. 23, 13–21 (2017).

    Article 

    Google Scholar
     

  • Chaves, L. F., Morrison, A. C., Kitron, U. D. & Scott, T. W. Nonlinear impacts of climatic variability on the density-dependent regulation of an insect vector of disease. Glob. Change Biol. 18, 457–468 (2012).

    Article 

    Google Scholar
     

  • Van Bael, S. A. et al. General herbivore outbreak following an El Niño-related drought in a lowland Panamanian forest. J. Trop. Ecol. 20, 625–633 (2004).

    Article 

    Google Scholar
     

  • Céréghino, R. et al. Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a neotropical ecosystem. Ecol. Indic. 119, 106839 (2020).

    Article 

    Google Scholar
     

  • Shivoga, W. A. The influence of hydrology on the structure of invertebrate communities in two streams flowing into Lake Nakuru, Kenya. Hydrobiologia 458, 121–130 (2001).

    Article 

    Google Scholar
     

  • Walsh, R. P. Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J. Trop. Ecol. 12, 385–407 (1996).

    Article 

    Google Scholar
     

  • Walsh, R. & Newbery, D. The ecoclimatology of Danum, Sabah, in the context of the world’s rainforest regions, with particular reference to dry periods and their impact. Phil. Trans. R. Soc. Lond. B 354, 1869–1883 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sakai, S. General flowering in lowland mixed dipterocarp forests of south-east Asia. Biol. J. Linn. Soc. 75, 233–247 (2002).

    Article 

    Google Scholar
     

  • Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article 

    Google Scholar
     

  • Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nat. Clim. Change 7, 568–572 (2017).

    Article 

    Google Scholar
     

  • Peng, Q., Xie, S.-P. & Deser, C. Collapsed upwelling projected to weaken ENSO under sustained warming beyond the twenty-first century. Nat. Clim. Change 14, 815–822 (2024).

    Article 

    Google Scholar
     

  • Didham, R. K., Ghazoul, J., Stork, N. E. & Davis, A. J. Insects in fragmented forests: a functional approach. Trends Ecol. Evol. 11, 255–260 (1996).

    Article 
    CAS 

    Google Scholar
     

  • França, F. M. et al. Selective logging intensity and time since logging drive tropical bird and dung beetle diversity: a case study from Amazonia. Env. Conserv. 51, 112–121 (2024).

    Article 

    Google Scholar
     

  • Stork, N. E. et al. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa. Conserv. Biol. 31, 924–933 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hamer, K. et al. Ecology of butterflies in natural and selectively logged forests of northern Borneo: the importance of habitat heterogeneity. J. Appl. Ecol. 40, 150–162 (2003).

    Article 

    Google Scholar
     

  • Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).

    Article 

    Google Scholar
     

  • Lewis, O. T. & Basset, Y. in Insect Conservation Biology (eds Stewart, A. J. A. et al.) 34–56 (Royal Entomological Society of London, 2007).

  • Solar, R. Rd. C. et al. How pervasive is biotic homogenization in human‐modified tropical forest landscapes? Ecol. Lett. 18, 1108–1118 (2015).

    Article 

    Google Scholar
     

  • Faria, A. P. J., Paiva, C. K. S., Calvão, L. B., Cruz, G. M. & Juen, L. Response of aquatic insects to an environmental gradient in Amazonian streams. Env. Monit. Assess. 193, 763 (2021).

    Article 

    Google Scholar
     

  • Brasil, L. S., de Lima, E. L., Spigoloni, Z. A., Ribeiro-Brasil, D. R. G. & Juen, L. The habitat integrity index and aquatic insect communities in tropical streams: a meta-analysis. Ecol. Indic. 116, 106495 (2020).

    Article 

    Google Scholar
     

  • Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).

    Article 

    Google Scholar
     

  • Amaral, P. H. M. D., Silveira, L. S. D., Rosa, B. F. J. V., Oliveira, V. C. D. & Alves, R. D. G. Influence of habitat and land use on the assemblages of Ephemeroptera, Plecoptera, and Trichoptera in neotropical streams. J. Insect Sci. 15, 60 (2015).

    Article 

    Google Scholar
     

  • de Paiva, C. K. S., de Faria, A. P. J., Calvao, L. B. & Juen, L. Effect of oil palm on the Plecoptera and Trichoptera (Insecta) assemblages in streams of eastern Amazon. Env. Monit. Assess. 189, 393 (2017).

    Article 

    Google Scholar
     

  • Oliveira-Junior, J. & Juen, L. The Zygoptera/Anisoptera ratio (Insecta: Odonata): a new tool for habitat alterations assessment in Amazonian streams. Neotrop. Entomol. 48, 552–560 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dias-Silva, K., Brasil, L. S., Veloso, G. K. O., Cabette, H. S. R. & Juen, L. Land use change causes environmental homogeneity and low beta-diversity in Heteroptera of streams. Int. J. Limnol. 56, 9 (2020).

    Article 

    Google Scholar
     

  • Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pimm, S. L. & Raven, P. Extinction by numbers. Nature 403, 843–845 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 23, 538–545 (2008).

    Article 

    Google Scholar
     

  • Wilker, I. et al. Land-use change in the Amazon decreases ant diversity but increases ant-mediated predation. Insect Conserv. Diversity 16, 379–392 (2023).

    Article 

    Google Scholar
     

  • Perry, J. et al. How natural forest conversion affects insect biodiversity in the Peruvian Amazon: can agroforestry help? Forests 7, 82 (2016).

    Article 

    Google Scholar
     

  • Novotny, V. et al. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–695 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. & Laurance, W. F. Remaining natural vegetation in the global biodiversity hotspots. Biol. Conserv. 177, 12–24 (2014).

    Article 

    Google Scholar
     

  • Stoll, E., Roopsind, A., Maharaj, G., Velazco, S. & Caughlin, T. T. Detecting gold mining impacts on insect biodiversity in a tropical mining frontier with SmallSat imagery. Remote. Sens. Ecol. Conserv. 8, 379–390 (2022).

    Article 

    Google Scholar
     

  • Kyerematen, R., Adu-Acheampong, S., Acquah-Lamptey, D. & Anderson, R. S. Using Orthoptera and Hymenoptera indicator groups as evidence of degradation in a mining concession (Tarkwa gold mine) in Ghana. Int. J. Trop. Insect Sci. 40, 221–224 (2020).

    Article 

    Google Scholar
     

  • Monge-Salazar, M. J. The effect of artisanal gold mining on aquatic insect communities: a case study in Costa Rica. Aquat. Insects 42, 160–178 (2021).

    Article 

    Google Scholar
     

  • Enríquez Espinosa, A. C. et al. Effects of mining and reduced turnover of Ephemeroptera (Insecta) in streams of the Eastern Brazilian Amazon. J. Insect Conserv. 24, 1061–1072 (2020).

    Article 

    Google Scholar
     

  • Rivera-Pérez, J. M. et al. Effect of mining on the EPT (Ephemeroptera, Plecoptera and Trichoptera) assemblage of Amazonian streams based on their environmental specificity. Hydrobiologia 850, 645–664 (2023).

    Article 

    Google Scholar
     

  • Dedieu, N., Rhone, M., Vigouroux, R. & Céréghino, R. Assessing the impact of gold mining in headwater streams of eastern Amazonia using Ephemeroptera assemblages and biological traits. Ecol. Indic. 52, 332–340 (2015).

    Article 

    Google Scholar
     

  • Sarkar, S., Gil, J. D. B., Keeley, J. & Jansen, K. The use of pesticides in developing countries and their impact on health and the right to food. European Union https://op.europa.eu/en/publication-detail/-/publication/652ce244-6b53-11eb-aeb5-01aa75ed71a1/language-en (2021).

  • Weiss, F. T., Ruepert, C., Echeverría-Sáenz, S., Eggen, R. I. L. & Stamm, C. Agricultural pesticides pose a continuous ecotoxicological risk to aquatic organisms in a tropical horticulture catchment. Environ. Adv. 11, 100339 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pelinson, R. M., Valente, B. R. S., Shimabukuro, E. M. & Schiesari, L. Impacts of agrochemical intensification and spatial isolation on the assembly and reassembly of temporary pond metacommunities. J. Appl. Ecol. 60, 2235–2250 (2023).

    Article 

    Google Scholar
     

  • Rodríguez-Rodríguez, C. E. et al. Environmental monitoring and risk assessment in a tropical Costa Rican catchment under the influence of melon and watermelon crop pesticides. Env. Pollut. 284, 117498 (2021).

    Article 

    Google Scholar
     

  • Cabrera, M. et al. Effects of intensive agriculture and urbanization on water quality and pesticide risks in freshwater ecosystems of the Ecuadorian Amazon. Chemosphere 337, 139286 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Rico, A. et al. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere 291, 132821 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ali, U. et al. Organochlorine pesticides (OCPs) in South Asian region: a review. Sci. Total. Env. 476–477, 705–717 (2014).

    Article 

    Google Scholar
     

  • Wong, F. et al. Organochlorine pesticides in soils and air of southern Mexico: chemical profiles and potential for soil emissions. Atmos. Env. 42, 7737–7745 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Dalla Villa, R., de Carvalho Dores, E. F. G., Carbo, L. & Cunha, M. L. F. Dissipation of DDT in a heavily contaminated soil in Mato Grosso, Brazil. Chemosphere 64, 549–554 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty, P., Zhang, G., Li, J., Sivakumar, A. & Jones, K. C. Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air–soil exchange. Env. Pollut. 204, 74–80 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lalah, J., Kaigwara, P., Getenga, Z., Mghenyi, J. & Wandiga, S. The major environmental factors that influence rapid disappearance of pesticides from tropical soils in Kenya. Toxicol. Environ. Chem. 81, 161–197 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Rosendahl, I., Laabs, V., Atcha-Ahowé, C., James, B. & Amelung, W. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa. J. Env. Monit. 11, 1157–1164 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Vryzas, Z. Pesticide fate in soil–sediment–water environment in relation to contamination preventing actions. Curr. Opin. Environ. Sci. Health 4, 5–9 (2018).

    Article 

    Google Scholar
     

  • Schulz, R., Bub, S., Petschick, L. L., Stehle, S. & Wolfram, J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372, 81–84 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392 (2021).

    Article 
    CAS 

    Google Scholar
     

  • de Carvalho Dores, E. F. G. & Naria De-Lamonica-Freire, E. Contaminação do ambiente aquático por pesticidas: vias de contaminação e dinâmica dos pesticidas no ambiente aquático. Pesticidas Rev. Ecotoxicol. E https://doi.org/10.5380/pes.v9i0.39598 (1999).

  • Hamada, N. et al. Insetos aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia (Editora do INPA, 2014).

  • Corbi, J. J., Froehlich, C. G., Strixino, S. T. & dos Santos, A. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Química Nova 33, 644–648 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Heye, K., Lotz, T., Wick, A. & Oehlmann, J. Interactive effects of biotic and abiotic environmental stressors on carbamazepine toxicity in the non-biting midge Chironomus riparius. Water Res. 156, 92–101 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Couceiro, S. R., Forsberg, B. R., Hamada, N. & Ferreira, R. Effects of an oil spill and discharge of domestic sewage on the insect fauna of Cururu stream, Manaus, AM, Brazil. Braz. J. Biol. 66, 35–44 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Martins, R. T., Couceiro, S. R., Melo, A. S., Moreira, M. P. & Hamada, N. Effects of urbanization on stream benthic invertebrate communities in Central Amazon. Ecol. Indic. 73, 480–491 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Monchanin, C., Devaud, J.-M., Barron, A. B. & Lihoreau, M. Current permissible levels of metal pollutants harm terrestrial invertebrates. Sci. Total. Env. 779, 146398 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Archer, C. et al. State of the Tropics 2020 report. James Cook University https://www.jcu.edu.au/state-of-the-tropics/publications/state-of-the-tropics-2020-report (2020).

  • Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bonebrake, T. C. et al. Tropical cities as windows into the ecosystems of our present and future. Biotropica 57, e13369 (2025).

    Article 

    Google Scholar
     

  • New, T. R. Promoting and developing insect conservation in Australia’s urban environments. Austral Entomol. 57, 182–193 (2018).

    Article 

    Google Scholar
     

  • Md Meftaul, I., Venkateswarlu, K., Dharmarajan, R., Annamalai, P. & Megharaj, M. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total. Environ. 711, 134612 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gaona, F. P., Iñiguez-Armijos, C., Brehm, G., Fiedler, K. & Espinosa, C. I. Drastic loss ofinsects (Lepidoptera: Geometridae) in urban landscapes in a tropical biodiversity hotspot. J. Insect Conserv. 25, 395–405 (2021).

    Article 

    Google Scholar
     

  • Zakardjian, M., Geslin, B., Mitran, V., Franquet, E. & Jourdan, H. Effects of urbanization on plant–pollinator interactions in the tropics: an experimental approach using exotic plants. Insects 11, 773 (2020).

    Article 

    Google Scholar
     

  • Wenzel, A., Grass, I., Nölke, N., Pannure, A. & Tscharntke, T. Wild bees benefit from low urbanization levels and suffer from pesticides in a tropical megacity. Agricult. Ecosyst. Environ. 336, 108019 (2022).

    Article 

    Google Scholar
     

  • Sing, K.-W. et al. Diversity and human perceptions of bees (Hymenoptera: Apoidea) in southeast Asian megacities. Genome 59, 827–839 (2016).

    Article 

    Google Scholar
     

  • Antonini, Y., Martins, R. P., Aguiar, L. M. & Loyola, R. D. Richness, composition and trophic niche of stingless bee assemblages in urban forest remnants. Urban. Ecosyst. 16, 527–541 (2013).

    Article 

    Google Scholar
     

  • Wiederkehr, F. et al. Urbanisation affects ecosystem functioning more than structure in tropical streams. Biol. Conserv. 249, 108634 (2020).

    Article 

    Google Scholar
     

  • Ensaldo-Cárdenas, A. S., Rocha-Ortega, M., Schneider, D., Robertson, B. A. & Córdoba-Aguilar, A. Ultraviolet polarized light and individual condition drive habitat selection in tropical damselflies and dragonflies. Anim. Behav. 180, 229–238 (2021).

    Article 

    Google Scholar
     

  • Shivanna, K. R. Impact of light pollution on nocturnal pollinators and their pollination services. Proc. Indian Natl Sci. Acad. 88, 626–633 (2022).

    Article 

    Google Scholar
     

  • Desouhant, E., Gomes, E., Mondy, N. & Amat, I. Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomol. Exp. Appl. 167, 37–58 (2019).

    Article 

    Google Scholar
     

  • Freitas, J. R. D., Bennie, J., Mantovani, W. & Gaston, K. J. Exposure of tropical ecosystems to artificial light at night: Brazil as a case study. PLoS ONE 12, e0171655 (2017).

    Article 

    Google Scholar
     

  • Andrade-Núñez, M. J. & Aide, T. M. Using nighttime lights to assess infrastructure expansion within and around protected areas in South America. Environ. Res. Commun. 2, 021002 (2020).

    Article 

    Google Scholar
     

  • Camacho, L. F., Barragán, G. & Espinosa, S. Local ecological knowledge reveals combined landscape effects of light pollution, habitat loss, and fragmentation on insect populations. Biol. Conserv. 262, 109311 (2021).

    Article 

    Google Scholar
     

  • Pan, H., Liang, G. & Lu, Y. Response of different insect groups to various wavelengths of light under field conditions. Insects 12, 427 (2021).

    Article 

    Google Scholar
     

  • Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. O. Street lighting has detrimental impacts on local insect populations. Sci. Adv. 7, eabi8322 (2021).

    Article 

    Google Scholar
     

  • Deichmann, J. L. et al. Reducing the blue spectrum of artificial light at night minimises insect attraction in a tropical lowland forest. Insect Conserv. Divers. 14, 247–259 (2021).

    Article 

    Google Scholar
     

  • Coleman, J. L., Lum, D. W. H. & Yao, X. From sodium-vapour to LEDs: how an outdoor lighting retrofit affects insects in Singapore. J. Urban. Ecol. 9, juad009 (2023).

    Article 

    Google Scholar
     

  • Wilson, A. A. et al. Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Glob. Change Biol. 27, 3987–4004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kalinkat, G. et al. Assessing long-term effects of artificial light at night on insects: what is missing and how to get there. Insect Conserv. Divers. 14, 260–270 (2021).

    Article 

    Google Scholar
     

  • Kfir, R. Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 90, 619–624 (1997).

    Article 

    Google Scholar
     

  • Overholt, W. A. In Encyclopedia of Entomology (ed. Capinera, J. L.) 1640–1641 (Springer Netherlands, 2008).

  • Fortuna, T. M., Le Gall, P., Mezdour, S. & Calatayud, P.-A. Impact of invasive insects on native insect communities. Curr. Opin. Insect Sci. 51, 100904 (2022).

    Article 

    Google Scholar
     

  • Lach, L., Tillberg, C. V. & Suarez, A. V. Contrasting effects of an invasive ant on a native and an invasive plant. Biol. Invasions 12, 3123–3133 (2010).

    Article 

    Google Scholar
     

  • Berggren, Å., Jansson, A. & Low, M. Approaching ecological sustainability in the emerging insects-as-food industry. Trends Ecol. Evol. 34, 132–138 (2019).

    Article 

    Google Scholar
     

  • Tallamy, D. W., Narango, D. L. & Mitchell, A. B. Do non-native plants contribute to insect declines? Ecol. Entomol. 46, 729–742 (2021).

    Article 

    Google Scholar
     

  • Stroud, J. T. & Feeley, K. J. A downside of diversity? A response to Gallagher et al. Trends Ecol. Evol. 30, 296–297 (2015).

    Article 

    Google Scholar
     

  • Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).

    Article 

    Google Scholar
     

  • Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Phil. Trans. R. Soc. B 372, 20160345 (2017).

    Article 

    Google Scholar
     

  • Law, S. J. et al. Darker ants dominate the canopy: testing macroecological hypotheses for patterns in colour along a microclimatic gradient. J. Anim. Ecol. 89, 347–359 (2020).

    Article 

    Google Scholar
     

  • Jucker, T. et al. A research agenda for microclimate ecology in human-modified tropical forests. Front. For. Glob. Change 2, 92 (2020).

    Article 

    Google Scholar
     

  • Williamson, J. et al. Local‐scale temperature gradients driven by human disturbance shape the physiological and morphological traits of dung beetle communities in a Bornean oil palm–forest mosaic. Funct. Ecol. 36, 1655–1667 (2022).

    Article 

    Google Scholar
     

  • Moore, M. P., Nalley, S. E. & Hamadah, D. An evolutionary innovation for mating facilitates ecological niche expansion and buffers species against climate change. Proc. Natl Acad. Sci. USA 121, e2313371121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Parrett, J. M., Mann, D. J., Chung, A. Y., Slade, E. M. & Knell, R. J. Sexual selection predicts the persistence of populations within altered environments. Ecol. Lett. 22, 1629–1637 (2019).

    Article 

    Google Scholar
     

  • Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Årevall, J., Early, R., Estrada, A., Wennergren, U. & Eklöf, A. C. Conditions for successful range shifts under climate change: the role of species dispersal and landscape configuration. Divers. Distrib. 24, 1598–1611 (2018).

    Article 

    Google Scholar
     

  • Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schebeck, M. et al. Seasonality of forest insects: why diapause matters. Trends Ecol. Evol. 39, 757–770 (2024).

    Article 

    Google Scholar
     

  • Hoffmann, A. A. & Bridle, J. Plasticity and the costs of incorrect responses. Trends Ecol. Evol. 38, 219–220 (2023).

    Article 

    Google Scholar
     

  • da Silva, C. R., Beaman, J. E., Youngblood, J. P., Kellermann, V. & Diamond, S. E. Vulnerability to climate change increases with trophic level in terrestrial organisms. Sci. Total. Environ. 865, 161049 (2023).

    Article 

    Google Scholar
     

  • Wenda, C. et al. Heat tolerance variation reveals vulnerability of tropical herbivore–parasitoid interactions to climate change. Ecol. Lett. 26, 278–290 (2023).

    Article 

    Google Scholar
     

  • Parr, C. L. & Bishop, T. R. The response of ants to climate change. Glob. Change Biol. 28, 3188–3205 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Novotny, V. et al. Why are there so many species of herbivorous insects in tropical rainforests? Science 313, 1115–1118 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Coley, P. D. & Barone, J. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).

    Article 

    Google Scholar
     

  • Agrawal, A. A. & Maron, J. L. Long‐term impacts of insect herbivores on plant populations and communities. J. Ecol. 110, 2800–2811 (2022).

    Article 

    Google Scholar
     

  • Szefer, P., Molem, K., Sau, A. & Novotny, V. Impact of pathogenic fungi, herbivores and predators on secondary succession of tropical rainforest vegetation. J. Ecol. 108, 1978–1988 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ruiz‐Guerra, B., Guevara, R., Mariano, N. A. & Dirzo, R. Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119, 317–325 (2010).

    Article 

    Google Scholar
     

  • Lewis, O. T. & Gripenberg, S. Insect seed predators and environmental change. J. Appl. Ecol. 45, 1593–1599 (2008).

    Article 

    Google Scholar
     

  • Novotny, V. et al. Guild‐specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J. Anim. Ecol. 79, 1193–1203 (2010).

    Article 

    Google Scholar
     

  • Ingala, M. R. et al. Molecular diet analysis of neotropical bats based on fecal DNA metabarcoding. Ecol. Evol. 11, 7474–7491 (2021).

    Article 

    Google Scholar
     

  • Hemprich‐Bennett, D. R. et al. Altered structure of bat–prey interaction networks in logged tropical forests revealed by metabarcoding. Mol. Ecol. 30, 5844–5857 (2021).

    Article 

    Google Scholar
     

  • Hawkins, B. A., Cornell, H. V. & Hochberg, M. E. Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78, 2145–2152 (1997).

    Article 

    Google Scholar
     

  • Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc. R. Soc. B 283, 20161634 (2016).

    Article 

    Google Scholar
     

  • Ashton, L. A. et al. Termites mitigate the ecosystem-wide effects of drought in tropical rainforest. Science 363, 174–177 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Griffiths, H. M., Ashton, L. A., Parr, C. L. & Eggleton, P. The impact of invertebrate decomposers on plants and soil. N. Phytol. 231, 2142–2149 (2021).

    Article 

    Google Scholar
     

  • Barton, P. S. & Evans, M. J. Insect biodiversity meets ecosystem function: differential effects of habitat and insects on carrion decomposition. Ecol. Entomol. 42, 364–374 (2017).

    Article 

    Google Scholar
     

  • Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, X. et al. Global contribution of invertebrates to forest litter decomposition. Ecol. Lett. 27, e14423 (2024).

    Article 

    Google Scholar
     

  • Medina Madariaga, G. et al. Multiple-stressor effects on leaf litter decomposition in freshwater ecosystems: a meta-analysis. Funct. Ecol. 38, 1523–1536 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lemes da Silva, A. L., Lemes, W. P., Andriotti, J., Petrucio, M. M. & Feio, M. J. Recent land-use changes affect stream ecosystem processes in a subtropical island in Brazil. Austral Ecol. 45, 644–658 (2020).

    Article 

    Google Scholar
     

  • Pérez, J. et al. Agricultural impacts on lowland tropical streams detected through leaf litter decomposition. Ecol. Indic. 154, 110819 (2023).

    Article 

    Google Scholar
     

  • Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C. & Davies, R. G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers. Conserv. 23, 2817–2832 (2014).

    Article 

    Google Scholar
     

  • Nooten, S. S., Chan, K. H., Schultheiss, P., Bogar, T. A. & Guénard, B. Ant body size mediates functional performance and species interactions in carrion decomposer communities. Funct. Ecol. 36, 1279–1291 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nichols, E. et al. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol. Conserv. 137, 1–19 (2007).

    Article 

    Google Scholar
     

  • Gregory, N., Gómez, A., Oliveira, T. M. Fd. S. & Nichols, E. Big dung beetles dig deeper: trait-based consequences for faecal parasite transmission. Int. J. Parasitol. 45, 101–105 (2015).

    Article 

    Google Scholar
     

  • Alvarado-Montero, S., Boesing, A. L., Metzger, J. P. & Jaffé, R. Higher forest cover and less contrasting matrices improve carrion removal service by scavenger insects in tropical landscapes. J. Appl. Ecol. 58, 2637–2649 (2021).

    Article 

    Google Scholar
     

  • Ferreira, P. A. et al. Forest and connectivity loss simplify tropical pollination networks. Oecologia 192, 577–590 (2020).

    Article 

    Google Scholar
     

  • Millard, J. et al. Key tropical crops at risk from pollinator loss due to climate change and land use. Sci. Adv. 9, eadh0756 (2023).

    Article 

    Google Scholar
     

  • Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351, 388–391 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Saunders, M. E. et al. Climate mediates roles of pollinator species in plant–pollinator networks. Glob. Ecol. Biogeogr. 32, 511–518 (2023).

    Article 

    Google Scholar
     

  • Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).

    Article 

    Google Scholar
     

  • Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl Acad. Sci. USA 113, 146–151 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, K., Tscharntke, T., Saintes, B., Buchori, D. & Grass, I. Critical factors limiting pollination success in oil palm: a systematic review. Agric. Ecosyst. Environ. 280, 152–160 (2019).

    Article 

    Google Scholar
     

  • Chai, S. K. & Wong, S. Y. Five pollination guilds of aroids (Araceae) at Mulu National Park (Sarawak, Malaysian Borneo). Webbia 74, 353–371 (2019).

    Article 

    Google Scholar
     

  • Sakai, S., Momose, K., Yumoto, T., Kato, M. & Inoue, T. Beetle pollination of Shorea parvifolia (section Mutica, Dipterocarpaceae) in a general flowering period in Sarawak, Malaysia. Am. J. Bot. 86, 62–69 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Wardhaugh, C. W. How many species of arthropods visit flowers? Arthropod–Plant Interact. 9, 547–565 (2015).

    Article 

    Google Scholar
     

  • Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant–pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628 (2015).

    Article 

    Google Scholar
     

  • Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Soares, R. G. S., Ferreira, P. A. & Lopes, L. E. Can plant–pollinator network metrics indicate environmental quality? Ecol. Indic. 78, 361–370 (2017).

    Article 

    Google Scholar
     

  • Zoller, L., Bennett, J. & Knight, T. M. Plant–pollinator network change across a century in the subarctic. Nat. Ecol. Evol. 7, 102–112 (2023).

    Article 

    Google Scholar
     

  • Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Saunders, M. Ecosystem services in agriculture: understanding the multifunctional role of invertebrates. Agric. For. Entomol. 20, 298–300 (2018).

    Article 

    Google Scholar
     

  • Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).

    Article 

    Google Scholar
     

  • Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015).

    Article 

    Google Scholar
     

  • Blonder, B. et al. Extreme and highly heterogeneous microclimates in selectively logged tropical forests. Front. For. Glob. Change 1, 5 (2018).

    Article 

    Google Scholar
     

  • van Klink, R. Delivering on a promise: futureproofing automated insect monitoring methods. Phil. Trans. R. Soc. B 379, 20230105 (2024).

    Article 

    Google Scholar
     

  • Buchner, D. et al. Upscaling biodiversity monitoring: metabarcoding estimates 31,846 insect species from Malaise traps across Germany. Mol. Ecol. Resour. 25, e14023 (2024).

    Article 

    Google Scholar
     

  • Alvarado-Robledo, E. J. et al. Metabarcoding: opportunities for accelerating monitoring and understanding insect tropical biodiversity. J. Insect Conserv. 28, 589–604 (2024).

    Article 

    Google Scholar
     

  • Strutzenberger, P. et al. DNA metabarcoding of light trap samples vs. morphological species identification. Ecol. Entomol. 49, 245–256 (2024).

    Article 

    Google Scholar
     

  • Sire, L. et al. Persisting roadblocks in arthropod monitoring using non-destructive metabarcoding from collection media of passive traps. PeerJ 11, e16022 (2023).

    Article 

    Google Scholar
     

  • Souto-Vilarós, D. et al. Illuminating arthropod diversity in a tropical forest: assessing biodiversity by automatic light trapping and DNA metabarcoding. Environ. DNA 6, e540 (2024).

    Article 

    Google Scholar
     

  • Creedy, T. J., Ng, W. S. & Vogler, A. P. Toward accurate species‐level metabarcoding of arthropod communities from the tropical forest canopy. Ecol. Evol. 9, 3105–3116 (2019).

    Article 

    Google Scholar
     

  • Iwaszkiewicz-Eggebrecht, E. et al. FAVIS: fast and versatile protocol for non-destructive metabarcoding of bulk insect samples. PLoS ONE 18, e0286272 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Macher, T.-H., Schütz, R., Hörren, T., Beermann, A. J. & Leese, F. It’s raining species: rainwash eDNA metabarcoding as a minimally invasive method to assess tree canopy invertebrate diversity. Environ. DNA 5, 3–11 (2023).

    Article 

    Google Scholar
     

  • Arribas, P. et al. Toward global integration of biodiversity big data: a harmonized metabarcode data generation module for terrestrial arthropods. GigaScience 11, giac065 (2022).

    Article 

    Google Scholar
     

  • Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117 (2021).

    Article 

    Google Scholar
     

  • Chua, P. Y. S. et al. Future of DNA-based insect monitoring. Trends Genet. 39, 531–544 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Meier, R., Hartop, E., Pylatiuk, C. & Srivathsan, A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Phil. Trans. R. Soc. B 379, 20230120 (2024).

    Article 

    Google Scholar
     

  • Geiger, M. F. et al. Testing the global Malaise trap program — how well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).

    Article 

    Google Scholar
     

  • Do Nascimento, L. A., Pérez-Granados, C., Alencar, J. B. R. & Beard, K. H. Time and habitat structure shape insect acoustic activity in the Amazon. Phil. Trans. R. Soc. B 379, 20230112 (2024).

    Article 

    Google Scholar
     

  • Sethi, S. S. et al. Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set. Proc. Natl Acad. Sci. USA 117, 17049–17055 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sethi, S. S., Ewers, R. M., Jones, N. S., Orme, C. D. L. & Picinali, L. Robust, real‐time and autonomous monitoring of ecosystems with an open, low‐cost, networked device. Methods Ecol. Evol. 9, 2383–2387 (2018).

    Article 

    Google Scholar
     

  • Haest, B. et al. Continental-scale patterns in diel flight timing of high-altitude migratory insects. Phil. Trans. R. Soc. B 379, 20230116 (2024).

    Article 

    Google Scholar
     

  • Bauer, S., Tielens, E. K. & Haest, B. Monitoring aerial insect biodiversity: a radar perspective. Phil. Trans. R. Soc. B 379, 20230113 (2024).

    Article 

    Google Scholar
     

  • Liu, D. et al. Radar monitoring unveils migration dynamics of the yellow-spined bamboo locust (Orthoptera: Arcypteridae). Comput. Electron. Agric. 187, 106306 (2021).

    Article 

    Google Scholar
     

  • Anjita, N. A. et al. Doppler weather radars as a game changer in desert locust swarm tracking. Sci. Rep. 14, 31715 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Lidar as a potential tool for monitoring migratory insects. iScience 27, 109588 (2024).

    Article 

    Google Scholar
     

  • Wang, Y., Zhao, C., Dong, D. & Wang, K. Real-time monitoring of insects based on laser remote sensing. Ecol. Indic. 151, 110302 (2023).

    Article 

    Google Scholar
     

  • Rydhmer, K. et al. Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 12, 2603 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Møller, A. P. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9, 6581–6587 (2019).

    Article 

    Google Scholar
     

  • Møller, A. P. et al. Citizen science for quantification of insect abundance on windshields of cars across two continents. Front. Ecol. Evol. 9, 657178 (2021).

    Article 

    Google Scholar
     

  • Slade, E. M. & Ong, X. R. The future of tropical insect diversity: strategies to fill data and knowledge gaps. Curr. Opin. Insect Sci. 58, 101063 (2023).

    Article 

    Google Scholar
     

  • Sánchez Herrera, M. et al. Systematic challenges and opportunities in insect monitoring: a Global South perspective. Phil. Trans. R. Soc. B 379, 20230102 (2024).

    Article 

    Google Scholar
     

  • Grinder, R. M. & Wiens, J. J. Niche width predicts extinction from climate change and vulnerability of tropical species. Glob. Change Biol. 29, 618–630 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ollerton, J. Biogeography: are tropical species less specialised? Curr. Biol. 22, R914–R915 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Doré, M. et al. Mutualistic interactions shape global spatial congruence and climatic niche evolution in neotropical mimetic butterflies. Ecol. Lett. 26, 843–857 (2023).

    Article 

    Google Scholar
     

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Gibb, H. et al. Habitat disturbance selects against both small and large species across varying climates. Ecography 41, 1184–1193 (2018).

    Article 

    Google Scholar
     

  • Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).

    Article 

    Google Scholar
     

  • Boyle, M. J. The Resilience of Tropical Forest Invertebrates to Microclimate Change. PhD thesis (Imperial College London, 2020).

  • Overgaard, J., Kristensen, T. N., Mitchell, K. A. & Hoffmann, A. A. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Am. Nat. 178, S80–S96 (2011).

    Article 

    Google Scholar
     

  • Shah, A. A., Funk, W. C. & Ghalambor, C. K. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 57, 977–987 (2017).

    Article 

    Google Scholar
     

  • Scheffers, B. R., Evans, T. A., Williams, S. E. & Edwards, D. P. Microhabitats in the tropics buffer temperature in a globally coherent manner. Biol. Lett. 10, 20140819 (2014).

    Article 

    Google Scholar
     

  • Kang, C. et al. Climate predicts both visible and near-infrared reflectance in butterflies. Ecol. Lett. 24, 1869–1879 (2021).

    Article 

    Google Scholar
     

  • Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471–12476 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Henle, K., Sarre, S. & Wiegand, K. The role of density regulation in extinction processes and population viability analysis. Biodivers. Conserv. 13, 9–52 (2004).

    Article 

    Google Scholar
     

  • Porter, E. E. & Hawkins, B. A. Latitudinal gradients in colony size for social insects: termites and ants show different patterns. Am. Nat. 157, 97–106 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Kaspari, M. & Vargo, E. L. Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am. Nat. 145, 610–632 (1995).

    Article 

    Google Scholar
     

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Muñoz Sabater, J. ERA5 — Land monthly averaged data from 1981 to present. Copernicus Climate Change Service Climate Data Store https://essd.copernicus.org/articles/13/4349/2021/essd-13-4349-2021-assets.html (2019).

  • Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote. Sens. 13, 922 (2021).

    Article 

    Google Scholar
     

  • Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).

    Article 

    Google Scholar
     

  • Chuvieco, E. et al. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Pixel product, version 5.1. Centre for Environmental Data Analysis https://cir.nii.ac.jp/crid/1880583643079782016 (2018).

  • Maggi, F., Tang, F., La Cecilia, D. & McBratney, A. Global pesticide grids (PEST-CHEMGRIDS), version 1.01. NASA Socioeconomic Data and Applications Center (SEDAC) https://www.earthdata.nasa.gov/data/catalog/sedac-ciesin-sedac-fermanv1-pestg-v1.01-1.01 (2020)

  • Fernández-Palacios, J. M. et al. Scientists’ warning — the outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021).


    Google Scholar
     

  • Sharp, A. C., Barclay, M. V., Chung, A. Y. & Ewers, R. M. Tropical logging and deforestation impacts multiple scales of weevil beta-diversity. Biol. Conserv. 234, 172–179 (2019).

    Article 

    Google Scholar
     

  • Tawatao, N. et al. Biodiversity of leaf-litter ants in fragmented tropical rainforests of Borneo: the value of publically and privately managed forest fragments. Biodivers. Conserv. 23, 3113–3126 (2014).

    Article 

    Google Scholar
     

  • Scriven, S. A. et al. Assessing the effectiveness of protected areas for conserving range‐restricted rain forest butterflies in Sabah, Borneo. Biotropica 52, 380–391 (2020).

    Article 

    Google Scholar
     

  • Hanski, I., Koivulehto, H., Cameron, A. & Rahagalala, P. Deforestation and apparent extinctions of endemic forest beetles in Madagascar. Biol. Lett. 3, 344–347 (2007).

    Article 

    Google Scholar
     

  • Fonseca, C. R. The silent mass extinction of insect herbivores in biodiversity hotspots. Conserv. Biol. 23, 1507–1515 (2009).

    Article 

    Google Scholar
     

  • Ranarilalatiana, T. et al. Remaining forests on the central highlands of Madagascar — endemic and endangered aquatic beetle fauna uncovered. Ecol. Evol. 12, e9580 (2022).

    Article 

    Google Scholar
     

  • Steibl, S., Franke, J. & Laforsch, C. Tourism and urban development as drivers for invertebrate diversity loss on tropical islands. R. Soc. Open. Sci. 8, 210411 (2021).

    Article 

    Google Scholar
     

  • Wagner, D. L. & Van Driesche, R. G. Threats posed to rare or endangered insects by invasions of non-native species. Annu. Rev. Entomol. 55, 547–568 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Corlett, R. T. Invasive aliens on tropical East Asian islands. Biodivers. Conserv. 19, 411–423 (2010).

    Article 

    Google Scholar
     

  • Roy, H. et al. Summary for policymakers of the thematic assessment report on invasive alien species and their control. IPBES https://www.ipbes.net/ias (2023).

  • Gray, A. et al. The status of the invertebrate fauna on the South Atlantic island of St Helena: problems, analysis, and recommendations. Biodivers. Conserv. 28, 275–296 (2019).

    Article 

    Google Scholar
     

  • Tercel, M. P., Cuff, J. P., Symondson, W. O. & Vaughan, I. P. Non‐native ants drive dramatic declines in animal community diversity: a meta‐analysis. Insect Conserv. Divers. 16, 733–744 (2023).

    Article 

    Google Scholar
     

  • Sharp, A. & Tawatao, N. Colonization and coexistence of non‐native ants on a model Atlantic island. Divers. Distrib. 29, 1278–1288 (2023).

    Article 

    Google Scholar
     

  • Roura‐Pascual, N., Sanders, N. J. & Hui, C. The distribution and diversity of insular ants: do exotic species play by different rules? Glob. Ecol. Biogeogr. 25, 642–654 (2016).

    Article 

    Google Scholar
     

  • Aulus-Giacosa, L., Ollier, S. & Bertelsmeier, C. Non-native ants are breaking down biogeographic boundaries and homogenizing community assemblages. Nat. Commun. 15, 2266 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wetterer, J. K. Worldwide spread of the African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Myrmecol. N. 17, 51–62 (2012).


    Google Scholar
     

  • Nakamura, A. et al. The role of human disturbance in island biogeography of arthropods and plants: an information theoretic approach. J. Biogeogr. 42, 1406–1417 (2015).

    Article 

    Google Scholar
     

  • Wetterer, J. K. Biology and impacts of Pacific Island invasive species. 3. The African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Pacif. Sci. 61, 437–456 (2007).

    Article 

    Google Scholar
     

  • Wetterer, J. K. & Espadaler, X. Ants (Hymenoptera: Formicidae) of the Cabo Verde Islands. Trans. Am. Entomol. Soc. 147, 485–502 (2021).

    Article 

    Google Scholar
     

  • St Clair, J. J. The impacts of invasive rodents on island invertebrates. Biol. Conserv. 144, 68–81 (2011).

    Article 

    Google Scholar
     

  • Harper, G. A. & Bunbury, N. Invasive rats on tropical islands: their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).


    Google Scholar
     

  • Ashmole, P. & Ashmole, M. St Helena and Ascension Island: a Natural History (Anthony Nelson, 2000).

  • Priddel, D., Carlile, N., Humphrey, M., Fellenberg, S. & Hiscox, D. Rediscovery of the ‘extinct’ Lord Howe Island stick-insect (Dryococelus australis (Montrouzier)) (Phasmatodea) and recommendations for its conservation. Biodivers. Conserv. 12, 1391–1403 (2003).

    Article 

    Google Scholar
     

  • Kwak, M. L. Australia’s vanishing fleas (Insecta: Siphonaptera): a case study in methods for the assessment and conservation of threatened flea species. J. Insect Conserv. 22, 545–550 (2018).

    Article 

    Google Scholar
     

  • Pickering, J. & Norris, C. A. New evidence concerning the extinction of the endemic murid Rattus macleari from Christmas Island, Indian Ocean. Aust. Mammal. 19, 19–25 (1996).

    Article 

    Google Scholar
     

  • Russell, J. C. & Holmes, N. D. Tropical island conservation: rat eradication for species recovery. Biol. Conserv. 185, 1–7 (2015).

    Article 

    Google Scholar
     

  • Gaigher, R., Samways, M., Jolliffe, K. & Jolliffe, S. Precision control of an invasive ant on an ecologically sensitive tropical island: a principle with wide applicability. Ecol. Appl. 22, 1405–1412 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fukagawa, N. K. & Ziska, L. H. Rice: importance for global nutrition. J. Nutr. Sci. Vitaminol. 65, S2–S3 (2019).

    Article 

    Google Scholar
     

  • Heong. K. L., Song, Y. H., Pimsamarn, S., Zhang, R. & Bae, S. D. in Climate Change and Rice (eds Peng, S. et al.) 326–335 (Springer, 1995).

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article 

    Google Scholar
     

  • Malcolm, S. B. Anthropogenic impacts on mortality and population viability of the monarch butterfly. Annu. Rev. Entomol. 63, 277–302 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kenna, D. et al. Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol. Evol. 9, 5637–5650 (2019).

    Article 

    Google Scholar
     

  • Farnan, H., Yeeles, P. & Lach, L. Sublethal doses of insecticide reduce thermal tolerance of a stingless bee and are not avoided in a resource choice test. R. Soc. Open. Sci. 10, 230949 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gintoron, C. S. et al. Factors affecting pollination and pollinators in oil palm plantations: a review with an emphasis on the Elaeidobius kamerunicus weevil (Coleoptera: Curculionidae). Insects 14, 454 (2023).

    Article 

    Google Scholar
     

  • Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).

    Article 

    Google Scholar
     

  • Williamson, J. et al. Riparian buffers act as a microclimatic refugia in oil palm landscapes. J. Appl. Ecol. 58, 431–442 (2021).

    Article 

    Google Scholar
     

  • Mohd-Azlan, J., Conway, S., Travers, T. & Lawes, M. The filtering effect of oil palm plantations on potential insect pollinator assemblages from remnant forest patches. Land 12, 1256 (2023).

    Article 

    Google Scholar
     

  • Vector-borne diseases. World Health Organization https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (2024).

  • Paixão, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob. Health 3, e000530 (2018).

    Article 

    Google Scholar
     

  • Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    Article 

    Google Scholar
     

  • Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in southeast Asia. Nat. Commun. 10, 4299 (2019).

    Article 

    Google Scholar
     

  • KM, F. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208 (2016).

    Article 

    Google Scholar
     

  • Brady, O. J. & Hay, S. I. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 65, 191–208 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).

    Article 

    Google Scholar
     

  • Chaves, L. F., Cohen, J. M., Pascual, M. & Wilson, M. L. Social exclusion modifies climate and deforestation impacts on a vector-borne disease. PLoS Negl. Trop. Dis. 2, e176 (2008).

    Article 

    Google Scholar
     

  • Narladkar, B. W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet. World 11, 151–160 (2018).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Allowing forests to regrow and regenerate is a great way to...

    Queensland is widely known as the land clearing capital of Australia. But what’s not so well known is many...
    Biodiversity
    4
    minutes

    ‘De-extinction’ of dire wolves promotes false hope: technology can’t undo extinction

    Over the past week, the media have been inundated with news of the “de-extinction” of the dire wolf (Aenocyon...
    Biodiversity
    3
    minutes

    NDVI and vegetation volume as predictors of urban bird diversity

    UNHSP. World Cities Report 2022. (2022). https://unhabitat.org/wcr/.Lai, H., Flies, E. J., Weinstein, P. & Woodward, A. The impact of green space and biodiversity...
    Biodiversity
    10
    minutes

    Why ‘de-extinct’ dire wolves are a Trojan horse to hide humanity’s...

    With wildlife populations globally 73% smaller on average than in 1970 and large mammals missing from much of the...
    Biodiversity
    5
    minutes
    spot_imgspot_img