Changes with time post-restoration in the relationships between soil seed bank and aboveground vegetation in a reclaimed open-pit coal mine

[ad_1]

  • Guo, P. Y., Sun, F. Q. & Han, X. Y. Study on comprehensive evaluation of environmental pollution treatment effect in coal mine subsidence area: taking Xinglongzhuang mining area of Yanzhou energy as an example. Environ. Sci. Pollut. Res. 30, 6132–6145. https://doi.org/10.1007/s11356-022-22532-9 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lei, K., Pan, H. Y. & Lin, C. Y. A landscape approach towards ecological restoration and sustainable development of mining areas. Ecol. Eng. 90, 320–325. https://doi.org/10.1016/j.ecoleng.2016.01.080. (2016).

  • Xu, W. J., Yao, W. L., Bai, Z. K., Yang, J. Z. & Li, L. Ecological risk evaluation and ecological restoration model of mining in the source area of the yellow river basin. Land 12, 933. https://doi.org/10.3390/land12040933 (2023).

    Article 

    Google Scholar
     

  • Li, T., Wu, M. H., Duan, C. Q., Li, S. Y. & Liu, C. E. The effect of different restoration approaches on vegetation development in metal mines. Sci. Total Environ. 806, 150626. https://doi.org/10.1016/j.scitotenv.2021.150626 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alday, J. G., Marrs, R. H. & Martínez-Ruiz, C. Soil and vegetation development during early succession on restored coal wastes: a six-year permanent plot study. Plant. Soil. 353, 305–320. https://doi.org/10.1007/s11104-011-1033-2 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z. X. et al. Ecological restoration in mining areas in the context of the belt and road initiative: capability and challenges. Environ. Impact Assess. Rev. 95, 106767. https://doi.org/10.1016/j.eiar.2022.106767 (2022).

    Article 

    Google Scholar
     

  • Levi, N. et al. Soil quality index for assessing phosphate mining restoration in a hyper-arid environment. Ecol. Ind. 125, 107571. https://doi.org/10.1016/j.ecolind.2021.107571 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X. J. et al. Global patterns of potential future plant diversity hidden in soil seed banks. Nat. Commun. 12, 27379. https://doi.org/10.1038/s41467-021-27379-1 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Iberl, K., Poschlod, P. & Reisch, C. A source of hidden diversity: soil seed bank and aboveground populations of a common herb contain similar levels of genetic variation. J. Plant. Biology. 25, 1035–1045. https://doi.org/10.1111/plb.13571 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zivec, P., Sheldon, F. & Capon, S. Regenerative capacity of old-fields on semi‐arid floodplains in the Northern Murray–Darling basin. Restor. Ecol., 31(2), e13781. (2023).

  • Ma, M. J., Walck, J. L., Ma, Z., Wang, L. P. & Du, G. Z. Grazing disturbance increases transient but decreases persistent soil seed bank. Ecol. Appl. 28, 1020–1031. https://doi.org/10.1002/eap.1706 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Shi, Y. F. et al. A global meta-analysis of grazing effects on soil seed banks. Land Degrad. Dev. 33, 1892–1900. https://doi.org/10.1002/ldr.4271 (2022).

    Article 

    Google Scholar
     

  • Gomaa, N. H. Soil seed bank in different habitats of the Eastern desert of Egypt. Saudi J. Biol. Sci. 19, 211–220. https://doi.org/10.1016/j.sjbs.2012.01.002 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, D. C., Baskin, C. C., Baskin, J. M., Yang, F. & Huang, Z. Y. Dormancy cycling and persistence of seeds in soil of a cold desert halophyte shrub. Ann. Botany. 113, 171–179. https://doi.org/10.1093/aob/mct256 (2014).

    Article 

    Google Scholar
     

  • Yan, R. R. et al. Effects of different grassland utilization methods on the germinable soil seed bank of the Hulunbuir meadow steppe. Front. Plant Sci. 14, 1230725. https://doi.org/10.3389/fpls.2023.1230725 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An, H., Baskin, C. C. & Ma, M. J. Nonlinear response of the soil seed bank and its role in plant community regeneration with increased grazing disturbance. J. Appl. Ecol. 59, 2593–2603. https://doi.org/10.1111/1365-2664.14259 (2022).

    Article 

    Google Scholar
     

  • Guo, N. et al. Long-term active restoration of degraded grasslands enhances vegetation resilience by altering the soil seed bank. Agron. Sustain. Dev. 43, 00862. https://doi.org/10.1007/s13593-022-00862-9 (2023).

    Article 

    Google Scholar
     

  • Larson, J. E. & Suding, K. N. Seed bank bias: differential tracking of functional traits in the seed bank and vegetation across a gradient. Ecology 103, 3651. https://doi.org/10.1002/ecy.3651 (2022).

    Article 

    Google Scholar
     

  • De Agostini, A. et al. Seed bank conservation and incipient seed development in orchids colonizing mining wastes: results of a field pilot experiment. Plants 11 (23). https://doi.org/10.3390/plants11233315 (2022).

  • Golos, P. J. & Dixon, K. W. Waterproofing topsoil stockpiles minimizes viability decline in the soil seed bank in an arid environment. Restor. Ecol. 22, 495–501. https://doi.org/10.1111/rec.12090 (2014).

    Article 

    Google Scholar
     

  • Huang, L., Zhang, P., Hu, Y. & Zhao, Y. Vegetation and soil restoration in refuse dumps from open pit coal mines. Ecol. Eng. 94, 638–646. https://doi.org/10.1016/j.ecoleng.2016.06.108 (2016).

    Article 

    Google Scholar
     

  • Qi, L., Zhou, P., Yang, L. & Gao, M. Effects of land reclamation on the physical, chemical, and microbial quantity and enzyme activity properties of degraded agricultural soils. J. Soils Sediments. 20 (2), 973–981. https://doi.org/10.1007/s11368-019-02432-1 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, R. K. Analytical Methods of Agricultural Chemistry in Soil (China Agricultural Scientech, 2000). (In Chinese).

  • Jackson, R. B., Anderson, L. J. & Pockman, W. T. Measuring water availability and uptake in ecosystem studies. In: (eds Sala, O. E., Jackson, R. B., Mooney, H. A. & Howarth, R. W.) Methods in Ecosystem Science. Springer, New York, 199–214. (2000).


    Google Scholar
     

  • Wang, J., Ren, H., Yang, L., Li, D. Y. & Guo, Q. F. Soil seed banks in four 22-year-old plantations in South china: implications for restoration. For. Ecol. Manag. 258, 2000–2006. https://doi.org/10.1016/j.foreco.2009.07.049 (2009).

    Article 

    Google Scholar
     

  • Zhao, Y. T. et al. Direct and indirect effects of soil salinization on soil seed banks in salinizing wetlands in the Songnen plain, China. Sci. Total Environ. 819, 152035. https://doi.org/10.1016/j.scitotenv.2021.152035 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Medeiros-Sarmento, P. S. D., Ferreira, L. V. & Gastauer, M. Natural regeneration triggers compositional and functional shifts in soil seed banks. Sci. Total Environ. 753, 141934. https://doi.org/10.1016/j.scitotenv.2020.141934 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D., Wang, H. L., An, S. S., Bhople, P. & Davlatbekov, F. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese loess plateau soils. Sci. Total Environ. 660, 1058–1069. https://doi.org/10.1016/j.scitotenv.2019.01.097 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, P. et al. Long-term Spartina alterniflora invasion simplified soil seed bank and regenerated community in a coastal marsh wetland. Ecol. Appl. e2754. https://doi.org/10.1002/eap.2754 (2022).

  • Miao, R. H. et al. Soil seed bank and plant community development in passive restoration of degraded sandy grasslands. Sustainability 8, 581. https://doi.org/10.3390/su8060581 (2016).

    Article 

    Google Scholar
     

  • Li, C., Xiao, B., Wang, Q. H., Zheng, R. L. & Wu, J. Y. Responses of soil seed bank and vegetation to the increasing intensity of human disturbance in a Semi-Arid region of Northern China. Sustainability 9, 1837. https://doi.org/10.3390/su9101837 (2017).

    Article 

    Google Scholar
     

  • Luo, C., Guo, X. P., Feng, C. D. & Xiao, C. Q. Soil seed bank responses to anthropogenic disturbances and its vegetation restoration potential in the arid mining area. Ecol. Ind. 154, 110549. https://doi.org/10.1016/j.ecolind.2023.110549 (2023).

    Article 

    Google Scholar
     

  • Gasperini, C. et al. Edge effects on the realised soil seed bank along microclimatic gradients in temperate European forests. Sci. Total Environ. 798, 149373. https://doi.org/10.1016/j.scitotenv.2021.149373 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benvenuti, S. & Mazzoncini, M. Active weed seed bank: soil texture and seed weight as key factors of Burial-Depth Inhibition. Agronomy 11, 210. https://doi.org/10.3390/agronomy11020210 (2021).

    Article 

    Google Scholar
     

  • Middleton, B. A. Soil seed banks and the potential restoration of forested wetlands after farming. J. Appl. Ecol. 40, 1025–1034. https://doi.org/10.1111/j.1365-2664.2003.00866.x (2003).

    Article 

    Google Scholar
     

  • Zhao, Y., Li, M., Deng, J. Y. & Wang, B. T. Afforestation affects soil seed banks by altering soil properties and understory plants on the Eastern loess plateau, China. Ecol. Ind. 126, 107670. https://doi.org/10.1016/j.ecolind.2021.107670 (2021).

    Article 

    Google Scholar
     

  • Xu, Q., Xu, H. L., Wei, Y. & Aili, A. Restoration effects of supplementary planting measures on the abandoned mining areas in the Altay mountain, Northwest China. Sustainability 15, 14974. https://doi.org/10.3390/su152014974 (2023).

    Article 

    Google Scholar
     

  • Yan, D. M., Zhao, F. Y. & Sun, O. J. Assessment of vegetation establishment on tailings dam at an Iron ore mining site of suburban beijing, china, 7 years after reclamation with contrasting site treatment methods. Environ. Manage. 52, 748–757. https://doi.org/10.1007/s00267-013-0092-y (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fisher, J. L., Loneragan, W. A., Dixon, K. & Veneklaas, E. J. Soil seed bank compositional change constrains biodiversity in an invaded species-rich woodland. Biol. Conserv. 142, 256–269. https://doi.org/10.1016/j.biocon.2008.10.019 (2009).

    Article 

    Google Scholar
     

  • Zylberberg, T., Rotem, G. & Ziv, Y. Evaluating soil seed banks of phosphate mining restoration in the hyper-arid Negev desert. Restor. Ecol. 13938. https://doi.org/10.1111/rec.13938 (2023).

  • Zhao, Y. T. et al. Seed limitation and saline-alkaline stress restrict wetland restoration potential in the Songnen plain, Northeastern China. Ecol. Ind. 129, 107998. https://doi.org/10.1016/j.ecolind.2021.107998 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Facelli, J. M., Chesson, P. & Barnes, N. Differences in seed biology of annual plants in arid lands: A key ingredient of the storage effect. Ecology 86, 2998–3006. https://doi.org/10.1890/05-0304 (2005).

    Article 

    Google Scholar
     

  • Guan, B. et al. Soil seed bank and vegetation differences following channel diversion in the yellow river Delta. Sci. Total Environ. 693, 133600. https://doi.org/10.1016/j.scitotenv.2019.133600 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arroyo, A. I., Pueyo, Y., Reiné, R., Giner, M. L. & Alados, C. L. Effects of the allelopathic plant Artemisia herba-alba Asso on the soil seed bank of a semi-arid plant community. J. Plant. Ecol. 10, 927–936. https://doi.org/10.1093/jpe/rtw120 (2017).

    Article 

    Google Scholar
     

  • De Villiers, A. J., Van Rooyen, M. W. & Theron, G. K. Similarity between the soil seed bank and the standing vegetation in the strandveld succulent karoo, South Africa. Land Degrad. Dev. 14, 527–540. https://doi.org/10.1002/ldr.582 (2003).

    Article 

    Google Scholar
     

  • Schellenberger, J. et al. Soil seed banks of continental grasslands with different water Regimes-A comparative study from the aspect of recovery potential. Agronomy 12, 2830. https://doi.org/10.3390/agronomy12112830 (2022).

    Article 

    Google Scholar
     

  • DeMalach, N., Kigel, J. & Sternberg, M. The soil seed bank can buffer long-term compositional changes in annual plant communities. J. Ecol. 109, 1275–1283. https://doi.org/10.1111/1365-2745.13555 (2021).

    Article 
    CAS 

    Google Scholar
     

  • López-Mariño, A., Luis-Calabuig, E., Fillat, F. & Bermúdez, F. F. Floristic composition of established vegetation and the soil seed bank in pasture communities under different traditional management regimes. Agric. Ecosyst. Environ. 78, 273–282. https://doi.org/10.1016/S0167-8809(99)00137-1 (2000).

    Article 

    Google Scholar
     

  • Huang, Y. et al. Relationships between vegetation and soil seed banks along a center-to-edge gradient on a tropical coral Island. Ecol. Ind. 117, 106689. https://doi.org/10.1016/j.ecolind.2020.106689 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, T. et al. Diversity of soil seed bank and influencing factors in the nascent wetland of the yellow river Delta. Front. Plant Sci. 14, 1249139. https://doi.org/10.3389/fpls.2023.1249139 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi, J. X. et al. Vegetation patterns on a landslide after five years of natural restoration in the loess plateau mining area in China. Ecol. Eng. 136, 46–54. https://doi.org/10.1016/j.ecoleng.2019.05.022 (2019).

    Article 

    Google Scholar
     

  • Lennon, J. T., den Hollander, F., Wilke-Berenguer, M. & Blath, J. Principles of seed banks and the emergence of complexity from dormancy. Nat. Commun. 12, 4807. https://doi.org/10.1038/s41467-021-24733-1 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes
    spot_imgspot_img