Chronic disturbance alters seed dispersal traits and frugivores resources in a dry tropical forest


  • Vitousek, P. Beyond global warming: ecology and global change. Ecology 75, 1861–1876 (1994).

    MATH 

    Google Scholar
     

  • Ribeiro, E. M. S. et al. Functional diversity and composition of Caatinga Woody flora are negatively impacted by chronic anthropogenic disturbance. J. Ecol. 107, 2291–2302 (2019).

    MATH 

    Google Scholar
     

  • Olden, J. D., Poff, N. L., Douglas, M. R., Douglas, M. E. & Fausch, K. D. Ecological and evolutionary consequences of biotic homogenization. 19, 18–24 (2004).

  • Lôbo, D., Leão, T., Melo, F. P. L., Santos, A. M. M. & Tabarelli, M. Forest fragmentation drives Atlantic forest of Northeastern Brazil to biotic homogenization. Divers. Distrib. 17, 287–296 (2011).


    Google Scholar
     

  • Martínez-Blancas, A., Paz, H., Salazar, G. A. & Martorell, C. Related plant species respond similarly to chronic anthropogenic disturbance: implications for conservation decision-making. J. Appl. Ecol. 55, 1860–1870 (2018).


    Google Scholar
     

  • Smart, S. M. et al. Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc. R. Soc. B 273, 2659–2665 (2006).

  • Tabarelli, M., Peres, C. A. & Melo, F. P. L. The ‘few winners and many losers’ paradigm revisited: emerging prospects for tropical forest biodiversity. Biol. Conserv. 155, 136–140 (2012).

    MATH 

    Google Scholar
     

  • Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    MATH 

    Google Scholar
     

  • Olden, J. D., Poff, N. L. & McKinney, M. L. Forecasting faunal and floral homogenization associated with human population geography in North America. Biol. Conserv. 127, 261–271 (2006).


    Google Scholar
     

  • Pessoa, M. S. et al. Deforestation drives functional diversity and fruit quality changes in a tropical tree assemblage. Perspect. Plant. Ecol. Evol. Syst. 28, 78–86 (2017).

    MATH 

    Google Scholar
     

  • Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed 
    MATH 

    Google Scholar
     

  • Osnas, J. L. D., Lichstein, J. W., Reich, P. B. & Pacala, S. W. Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340, 741–744 (2013).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nunes-Nesi, A. et al. Natural genetic variation for morphological and molecular determinants of plant growth and yield. J. Exp. Bot. 67, 2989–3001 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sfair, J. C., De Bello, F., De Frana, T. Q., Baldauf, C. & Tabarelli, M. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest. Environ. Res. Lett. 13 (2018).

  • Pessoa, M. S. et al. Fruit biomass availability along a forest cover gradient. Biotropica 49, 45–55 (2016).

    MATH 

    Google Scholar
     

  • Tabarelli, M., Aguiar, A. V., Girão, L. C., Peres, C. A. & Lopes, A. V. Effects of pioneer tree species hyperabundance on forest fragments in Northeastern Brazil. Conserv. Biol. 24, 1654–1663 (2010).

    PubMed 

    Google Scholar
     

  • Magnago, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102, 475–485 (2014).

    MATH 

    Google Scholar
     

  • Muñoz, M. C., Schaefer, H. M., Böhning-Gaese, K. & Schleuning, M. Importance of animal and plant traits for fruit removal and seedling recruitment in a tropical forest. Oikos 126, 823–832 (2017).

    ADS 
    MATH 

    Google Scholar
     

  • Galetti, M., Pizo, M. A. & Morellato, L. P. C. Diversity of functional traits of fleshy fruits in a species-rich Atlantic rain forest. Biota. Neotrop. 11, 181–193 (2011).


    Google Scholar
     

  • Albuquerque, U. P. et al. Humans as niche constructors: revisiting the concept of chronic anthropogenic disturbances in ecology. Perspect. Ecol. Conserv. 16, 1–11 (2018).

    MATH 

    Google Scholar
     

  • Zambrano, J. et al. The effects of habitat loss and fragmentation on plant functional traits and functional diversity: what do we know so far? Oecologia 191, 505–518 (2019).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Laliberté, E. et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13, 76–86 (2010).

    PubMed 
    MATH 

    Google Scholar
     

  • Singh, S. P. Chronic disturbance, a principal cause of environmental degradation in developing countries. Envir Conserv. 25, 1–2 (1998).

    CAS 
    MATH 

    Google Scholar
     

  • Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ribeiro-Neto, J. D., Arnan, X., Tabarelli, M. & Leal, I. R. Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodivers. Conserv. 25, 943–956 (2016).


    Google Scholar
     

  • Arnan, X., Arcoverde, G. B., Pie, M. R., Ribeiro-Neto, J. D. & Leal, I. R. Increased anthropogenic disturbance and aridity reduce phylogenetic and functional diversity of ant communities in Caatinga dry forest. Sci. Total Environ. 631–632, 429–438 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Jara-Guerrero, A., González-Sánchez, D., Escudero, A. & Espinosa, C. I. Chronic disturbance in a tropical dry forest: disentangling direct and indirect pathways behind the loss of plant richness. Front. Forests Global Change. 4, 723985 (2021).


    Google Scholar
     

  • Jara-Guerrero, A., Maldonado-Riofrío, D., Espinosa, C. & Duncan, D. Beyond the blame game: a restoration pathway reconciles ecologists’ and local leaders’ divergent models of seasonally dry tropical forest degradation. Ecol. Soc. 24 (2019).

  • Khurana, E. & Singh, J. S. Ecology of tree seed and seedlings: implications for tropical forest conservation and restoration. Curr. Sci. 80, 748–757 (2001).

    CAS 
    MATH 

    Google Scholar
     

  • Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L. & Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 27, 477–489 (2011).


    Google Scholar
     

  • Maza-Villalobos, S., García-Ramírez, P., Endress, B. A. & Lopez-Toledo, L. Plant functional traits under cattle grazing and fallow age scenarios in a tropical dry forest of Northwestern Mexico. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2022.06.006 (2022).

    Article 

    Google Scholar
     

  • Silva, J. L. S. et al. Divergent responses of plant reproductive strategies to chronic anthropogenic disturbance and aridity in the Caatinga dry forest. Sci. Total Environ. 704, 135240 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Balvanera, P., Quijas, S. & Pérez-Jiménez, A. Distribution patterns of tropical dry forest trees along a mesoscale water availability gradient. Biotropica 43, 414–422 (2011).


    Google Scholar
     

  • Espinosa, C. I., Cabrera, O., Luzuriaga, A. & Escudero, A. What factors affect diversity and species composition of endangered Tumbesian dry forests in Southern Ecuador? Biotropica 43, 15–22 (2011).


    Google Scholar
     

  • Cueva Ortiz, J. et al. Influence of anthropogenic factors on the diversity and structure of a dry forest in the central part of the Tumbesian region (Ecuador-Perú). Forests 10, 1–22 (2019).


    Google Scholar
     

  • Ribeiro, E. M. S., Arroyo-Rodríguez, V., Santos, B. A., Tabarelli, M. & Leal, I. R. Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. J. Appl. Ecol. 52, 611–620 (2015).


    Google Scholar
     

  • Schaefer, H. M., Levey, D. J., Schaefer, V. & Avery, M. L. The role of chromatic and achromatic signals for fruit detection by birds. Behav. Ecol. 17, 784–789 (2006).

    MATH 

    Google Scholar
     

  • Niinemets, Ü. Plant growth-form alters the relationship between foliar morphology and species shade-tolerance ranking in temperate Woody taxa. Vegetatio 124, 145–153 (1996).


    Google Scholar
     

  • Oliveira, F. M. P., Ribeiro-Neto, J. D., Andersen, A. N. & Leal, I. R. Chronic anthropogenic disturbance as a secondary driver of ant community structure: interactions with soil type in Brazilian Caatinga. Envir Conserv. 44, 115–123 (2017).


    Google Scholar
     

  • Weng, C. Y., Hsieh, C. & Su, M. H. Recruitment dynamics mediated by ungulate herbivory can affect species coexistence for tree seedling assemblages. TAIWANIA 62, 283–293 (2017).


    Google Scholar
     

  • Balvanera, P., Lott, E., Segura, G., Siebe, C. & Islas, A. Patterns of β-diversity in a Mexican tropical dry forest. J. Veg. Sci. 13, 145–158 (2002).


    Google Scholar
     

  • Lönnberg, K. & Eriksson, O. Rules of the seed size game: contests between large-seeded and small-seeded species. Oikos 122, 1080–1084 (2013).

    ADS 
    MATH 

    Google Scholar
     

  • Ramírez, N. & Briceño, H. Allometry and the distribution of fruit and seed traits across tropical plant species. Austral Ecol. 49, e13589 (2024).

    MATH 

    Google Scholar
     

  • Melo, D. H. A., Freitas, A. V. L., Tabarelli, M., Filgueiras, B. K. C. & Leal, I. R. Aridity and chronic anthropogenic disturbance as organizing forces of fruit-feeding butterfly assemblages in a Caatinga dry forest. Biotropica 55, 173–184 (2023).


    Google Scholar
     

  • Shahabuddin, G. & Kumar, R. Influence of anthropogenic disturbance on bird communities in a tropical dry forest: role of vegetation structure. Anim. Conserv. 9, 404–413 (2006).

    MATH 

    Google Scholar
     

  • Cevallos-Solorzano, G. et al. Chronic Degradation of Seasonally Dry Tropical Forests Increases the Incidence of Genotoxicity in Birds. GeoHealth 7, e2022GH000774 (2023).

  • Hilje, B., Calvo-Alvarado, J., Jiménez-Rodríguez, C. & Sánchez-Azofeifa, A. Tree species composition, breeding systems, and pollination and dispersal syndromes in three forest successional stages in a tropical dry forest in Mesoamerica. Trop. Conserv. Sci. 8, 76–94 (2015).


    Google Scholar
     

  • Espinosa, C. I., Reyes, C. & Jara-Guerrero, A. Las Cabras Como dispersores de semillas: aportes y limitaciones Para La Regeneración Del Bosque tropical Estacionalmente Seco de Ecuador. Rev. Biol. Trop. 69, 557–572 (2021).


    Google Scholar
     

  • Jara-Guerrero, A., De la Cruz, M. & Méndez, M. Seed dispersal spectrum of Woody species in South Ecuadorian dry forests: environmental correlates and the effect of considering species abundance. Biotropica 43, 722–730 (2011).


    Google Scholar
     

  • Jara-Guerrero, A., Espinosa, C. I., Méndez, M., De la Cruz, M. & Escudero, A. Dispersal syndrome influences the match between seed rain and soil seed bank of Woody species in a Neotropical dry forest. J. Veg. Sci. 31, 995–1005 (2020).


    Google Scholar
     

  • Lomáscolo, S. B. & Schaefer, H. M. Signal convergence in fruits: A result of selection by frugivores? J. Evol. Biol. 23, 614–624 (2010).

    PubMed 
    MATH 

    Google Scholar
     

  • Wheelwright, N. T. & Janson, C. H. Colors of fruit displays of bird-dispersed plants. Am. Nat. 126, 777–799 (1985).


    Google Scholar
     

  • Willson, M. F. & Whelan, C. J. The evolution of fruit color in Fleshy-Fruited plants. Am. Nat. 136, 790–809 (1990).

    MATH 

    Google Scholar
     

  • Manchego, C. E. et al. Climate change versus deforestation: implications for tree species distribution in the dry forests of Southern Ecuador. PLoS ONE. 12, 1–19 (2017).


    Google Scholar
     

  • Morante-Filho, J. C., Arroyo-Rodríguez, V., Pessoa, M. S., Cazetta, E. & Faria, D. Direct and cascading effects of landscape structure on tropical forest and non-forest frugivorous birds. Ecol. Appl. 28, 2024–2032 (2018).

    PubMed 

    Google Scholar
     

  • Valle, D., Griffith, D. M., Jara-Guerrero, A., Armijos-Ojeda, D. & Espinosa, C. I. A multifaceted approach to Understanding Bat community response to disturbance in a seasonally dry tropical forest. Sci. Rep. 11, 5667 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almazán-Núñez, R. C., Arizmendi, M. D. C., Eguiarte, L. E. & Corcuera, P. Distribution of the community of frugivorous birds along a successional gradient in a tropical dry forest in south-western Mexico. J. Trop. Ecol. 31, 57–68 (2015).


    Google Scholar
     

  • Jara-Guerrero, A., Escribano-Avila, G., Espinosa, C. I., De la Cruz, M. & Méndez, M. White-tailed deer as the last megafauna dispersing seeds in Neotropical dry forests: the role of fruit and seed traits. Biotropica 50, 169–177 (2018).


    Google Scholar
     

  • Hautier, Y. et al. Local loss and Spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2017).

    PubMed 
    MATH 

    Google Scholar
     

  • Escribano-Avila, G. et al. Biodiversity patterns and ecological processes in Neotropical dry forest: the need to connect research and management for long-term conservation. Neotropical Biodivers. 3, 107–116 (2017).


    Google Scholar
     

  • Tirira, D. G., Burneo, S. F., Boada, C. E. & Lobos, S. E. Mammalia, Chiroptera, phyllostomidae, lonchophylla hesperia G. M. Allen, 1908: second record of the Western nectar Bat in Ecuador after 70 years. Check List. 7, 315 (2011).


    Google Scholar
     

  • Boada, C. & Roman, H. Evaluación ecológica rápida de la mastofauna en dos localidades de bosque seco en el occidente de la provincia de Loja. in Biodiversidad en los bosques secos de la zona de Cerro Negro-Cazaderos, occidente de la provincia de Loja: un reporte de las evaluaciones ecológicas y socioeconómicas rápidas (eds. Vázquez, M. A., Freire, J. F. & Suárez, L.) 73–90 (EcoCiencia, MAE y Proyecto Bosque Seco, Quito, 2005).

  • Ordóñez-Delgado, L. et al. New contributions to the knowledge of birds in Tumbesian region; conservation implications of the Dry Forest Biosphere Reserve, Zapotillo, Ecuador. Ecosistemas 25 (2016).

  • Gomes, V. G. N., Meiado, M. V., Quirino, Z. G. M. & Machado, I. C. Seed removal by lizards and effect of gut passage on germination in a columnar cactus of the Caatinga, a tropical dry forest in Brazil. J. Arid Environ. 135, 85–89 (2016).

    ADS 

    Google Scholar
     

  • Van Der Pijl, L. Principles of Dispersal in Higher Plants (Springer-Verlag Berlin Heidelberg, 1969).

  • Martorell, C. & Peters, E. M. The measurement of chronic disturbance and its effects on the threatened cactus mammillaria pectinifera. Biol. Conserv. 124, 199–207 (2005).

    MATH 

    Google Scholar
     

  • Méndez-Toribio, M., Meave, J. A., Zermeño-Hernández, I. & Ibarra-Manríquez, G. Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest. J. Veg. Sci. 27, 1094–1103 (2016).


    Google Scholar
     

  • Oksanen, J. et al. vegan: community ecology package (2018).

  • Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 
    MATH 

    Google Scholar
     

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 
    MATH 

    Google Scholar
     

  • Mason, N. W. H. & De Bello, F. Functional diversity: A tool for answering challenging ecological questions. J. Veg. Sci. 24, 777–780 (2013).

    MATH 

    Google Scholar
     

  • Pavoine, S., Blondel, J., Dufour, A. B., Gasc, A. & Bonsall, M. B. A new technique for analysing interacting factors affecting biodiversity patterns: crossed-DPCoA. PloS One. 8, e54530–e54530 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swenson, N. G. Functional and Phylogenetic Ecology in R (Springer, 2014).

  • Kembel, S. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gotelli, N. J. & McCabe, D. J. Species co-occurrence: A Meta-analysis of J.M. Diamomd´s assembly rules model. Ecology 83, 2091–2096 (2002).

    MATH 

    Google Scholar
     

  • Franklin, J. et al. Changing ecological communities along an elevation gradient in seasonally dry tropical forest on Hispaniola (Sierra Martín García, Dominican Republic). Biotropica 51, 802–816 (2019).


    Google Scholar
     

  • Gallardo-Cruz, J. A., Pérez-García, E. A. & Meave, J. A. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecol. 24, 473–482 (2009).


    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).



  • Source link

    More From Forest Beat

    The global determinants of climate niche breadth in birds

    We begin our analyses by leveraging the highest quality breeding range maps available for birds, inferred with state-of-the-art species distribution models and powered...
    Biodiversity
    18
    minutes

    Allowing forests to regrow and regenerate is a great way to...

    Queensland is widely known as the land clearing capital of Australia. But what’s not so well known is many...
    Biodiversity
    4
    minutes

    ‘De-extinction’ of dire wolves promotes false hope: technology can’t undo extinction

    Over the past week, the media have been inundated with news of the “de-extinction” of the dire wolf (Aenocyon...
    Biodiversity
    3
    minutes

    NDVI and vegetation volume as predictors of urban bird diversity

    UNHSP. World Cities Report 2022. (2022). https://unhabitat.org/wcr/.Lai, H., Flies, E. J., Weinstein, P. & Woodward, A. The impact of green space and biodiversity...
    Biodiversity
    10
    minutes
    spot_imgspot_img