Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36(4), 308–320 (2021).
Florko, K. R. et al. Linking movement and dive data to prey distribution models: New insights in foraging behaviour and potential pitfalls of movement analyses. Mov. Ecol. 11(1), 17 (2023).
Kays, R. et al. Multi-scale movement syndromes for comparative analyses of animal movement patterns. Mov. Ecol. 11(1), 61 (2023).
English, H. M., Börger, L., Kane, A. & Ciuti, S. Advances in biologging can identify nuanced energetic costs and gains in predators. Mov. Ecol. 12(1), 7 (2024).
Millon, A., Lambin, X., Devillard, S. & Schaub, M. Quantifying the contribution of immigration to population dynamics: A review of methods, evidence and perspectives in birds and mammals. Biol. Rev. 94(6), 2049–2067 (2019).
Kelt, D. A. et al. Advances in population ecology and species interactions in mammals. J. Mammal. 100(3), 965–1007 (2019).
Cantor, M. et al. The importance of individual-to-society feedbacks in animal ecology and evolution. J. Anim. Ecol. 90(1), 27–44 (2021).
Teitelbaum, C. S. & Mueller, T. Beyond migration: Causes and consequences of nomadic animal movements. Trends Ecol. Evol. 34(6), 569–581 (2019).
Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8(1), 12 (2020).
Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. 31(1), 1–11 (2020).
Martin, J. et al. Common drivers of seasonal movements on the migration–residency behavior continuum in a large herbivore. Sci. Rep. 8(1), 7631 (2018).
Peters, W. et al. Large herbivore migration plasticity along environmental gradients in Europe: Life-history traits modulate forage effects. Oikos 128(3), 416–429 (2019).
Wen, Z. et al. Altitudinal dispersal process drives community assembly of montane small mammals. Ecography 2022(9), e06318 (2022).
Leclerc, M., Leblond, M., Le Corre, M., Dussault, C. & Côté, S. D. Determinants of migration trajectory and movement rate in a long-distance terrestrial mammal. J. Mammal. 102(5), 1342–1352 (2021).
Van Beest, F. M., López-Blanco, E., Hansen, L. H. & Schmidt, N. M. Extreme shifts in habitat suitability under contemporary climate change for a high-Arctic herbivore. Clim. Change 176(4), 31 (2023).
Alagador, D. Dependence of Europe’s most threatened mammals on movement to adapt to climate change. Conserv. Biol. 39, e14315 (2024).
Årevall, J., Early, R., Estrada, A., Wennergren, U. & Eklöf, A. C. Conditions for successful range shifts under climate change: The role of species dispersal and landscape configuration. Divers. Distrib. 24(11), 1598–1611 (2018).
Rivrud, I. M., Meisingset, E. L., Loe, L. E. & Mysterud, A. Future suitability of habitat in a migratory ungulate under climate change. Proc. R. Soc. B 286(1899), 20190442 (2019).
Butt, N. et al. Importance of species translocations under rapid climate change. Conserv. Biol. 35(3), 775–783 (2021).
Williams, J. J., Freeman, R., Spooner, F. & Newbold, T. Vertebrate population trends are influenced by interactions between land use, climatic position, habitat loss and climate change. Glob. Change Biol. 28(3), 797–815 (2022).
Cooke, S. J. et al. Animal migration in the Anthropocene: Threats and mitigation options. Biol. Rev. 99(4), 1242–1260 (2024).
Ye, X. et al. Impacts of future climate and land cover changes on threatened mammals in the semi-arid Chinese Altai Mountains. Sci. Total Environ. 612, 775–787 (2018).
Ramalho, Q. et al. Evidence of stronger range shift response to ongoing climate change by ectotherms and high-latitude species. Biol. Cons. 279, 109911 (2023).
Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359(6374), 466–469 (2018).
Wan, X. et al. Historical records reveal the distinctive associations of human disturbance and extreme climate change with local extinction of mammals. Proc. Natl. Acad. Sci. 116(38), 19001–19008 (2019).
Paniw, M. et al. Higher temperature extremes exacerbate negative disease effects in a social mammal. Nat. Clim. Chang. 12(3), 284–290 (2022).
Abrahms, B. et al. Climate change as a global amplifier of human–wildlife conflict. Nat. Clim. Chang. 13(3), 224–234 (2023).
Haight, J. D. et al. Urbanization, climate and species traits shape mammal communities from local to continental scales. Nat. Ecol. Evolut. 7(10), 1654–1666 (2023).
Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8(3), 224–228 (2018).
Cunningham, S. J., Gardner, J. L. & Martin, R. O. Opportunity costs and the response of birds and mammals to climate warming. Front. Ecol. Environ. 19(5), 300–307 (2021).
Suraci, J. P. et al. Disturbance type and species life history predict mammal responses to humans. Glob. Change Biol. 27(16), 3718–3731 (2021).
Munstermann, M. J. et al. A global ecological signal of extinction risk in terrestrial vertebrates. Conserv. Biol. 36(3), e13852 (2022).
Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evolut. 7(7), 1060–1071 (2023).
Cooke, S. J. et al. Animal migration in the Anthropocene: Threats and mitigation options. Biol. Rev. 99, 1242 (2024).
Davoli, M. & Svenning, J. C. Future changes in society and climate may strongly shape wild large-herbivore faunas across Europe. Philos. Trans. R. Soc. B 379(1902), 20230334 (2024).
Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27(8), 1518–1546 (2021).
Caro, T., Rowe, Z., Berger, J., Wholey, P. & Dobson, A. An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. Conserv. Lett. 15, e12868 (2022).
Habibullah, M. S., Din, B. H., Tan, S. H. & Zahid, H. Impact of climate change on biodiversity loss: Global evidence. Environ. Sci. Pollut. Res. 29(1), 1073–1086 (2022).
Ahmadzadeh, F. et al. The status and conservation of the Asiatic black bear in Nikshahr County, Baluchistan District of Iran. J. Nat. Hist. 42(35–36), 2379–2387 (2008).
Yousefi, M. et al. Climate change is a major problem for biodiversity conservation: A systematic review of recent studies in Iran. Contemp. Probl. Ecol. 12, 394–403 (2019).
Bayram, H. & Öztürk, A.B. Global climate change, desertification, and its consequences in Turkey and the Middle East. In Climate change and global public health, pp. 445–458 (2021).
Yusefi, G. H., Safi, K., Tarroso, P. & Brito, J. C. The impacts of extreme climate change on mammals differ among functional groups at regional scale: The case of Iranian terrestrial mammals. Divers. Distrib. 27(9), 1634–1647 (2021).
Zittis, G. et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 60(3), e2021RG000762 (2022).
Bowyer, R. T., Boyce, M. S., Goheen, J. R. & Rachlow, J. L. Conservation of the world’s mammals: Status, protected areas, community efforts, and hunting. J. Mammal. 100(3), 923–941 (2019).
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9(4), 323–329 (2019).
Deb, J. C., Phinn, S., Butt, N. & McAlpine, C. A. Adaptive management and planning for the conservation of four threatened large Asian mammals in a changing climate. Mitig. Adapt. Strat. Glob. Change 24(2), 259–280 (2019).
Ebrahimi, E., Sayahnia, R., Ranjbaran, Y., Vaissi, S. & Ahmadzadeh, F. Dynamics of threatened mammalian distribution in Iran’s protected areas under climate change. Mamm. Biol. 101(6), 759–774 (2021).
Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150 (2018).
Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88(3), 450–460 (2019).
Rice, C. G. Seasonal altitudinal movements of mountain goats. J. Wildl. Manag. 72(8), 1706–1716 (2008).
Zeng, Z. G., Skidmore, A. K., Song, Y. L., Wang, T. J. & Gong, H. S. Seasonal altitudinal movements of golden takin in the Qinling Mountains of China. J. Wildlife Manag. 72(3), 611–617 (2008).
Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 370(6517), 712–715 (2020).
Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375(6582), eabg1780 (2022).
Ascensão, F., Yogui, D., Alves, M., Medici, E. P. & Desbiez, A. Predicting spatiotemporal patterns of road mortality for medium-large mammals. J. Environ. Manage. 248, 109320 (2019).
Bluhm, H. et al. Widespread habitat for Europe’s largest herbivores, but poor connectivity limits recolonization. Divers. Distrib. 29(3), 423–437 (2023).
Tourani, M. et al. Maximum temperatures determine the habitat affiliations of North American mammals. Proc. Natl. Acad. Sci. 120(50), e2304411120 (2023).
Nezami, B. & Farhadinia, M. S. Litter sizes of Brown Bears in the Central Alborz Protected Area, Iran. (Bio one, 2011).
Karami M., Ghadirian T. & Faizolahi K., The Atlas of Mammals of Iran. p. 180 (2016).
Shokri, S., Jafari, A., Rabei, K., Hadipour, E., Alinejad, H., Zeppenfeld, T., Soufi, M., Qashqaei, A., Ahmadpour, M., Zehzad, B. & Kiabi, B. H. Conserving populations at the edge of their geographic range: The endangered Caspian red deer (Cervus elaphus maral) across protected areas of Iran. Biodiversity and Conservation (2021).
Ashrafzadeh, M. R. et al. Modeling climate change impacts on the distribution of an endangered brown bear population in its critical habitat in Iran. Sci. Total Environ. 837, 155753 (2022).
Faghihi, H. et al. The effect of environmental factors on the selection of suitable breeding areas of red deer Cervus elaphus maral in Mazandaran Province. Exp. Anim. Biol. 10(3), 53–61 (2022).
Nezami, B., Rahmani, M., Faghihi, H. & Shams-Esfandabad, B. Habitat Selection and Identification of potential breeding habitats of red deer Cervus elaphus maral in Mazandaran Province. Environ. Interdisciplin. Dev. 8(82), 108–121 (2024).
Mazandaran Bureau of the Department of Environment. (Unpublished data). Annual census report 2023, Nowshahr, Iran.
Noroozi, J. et al. Hotspots of vascular plant endemism in a global biodiversity hotspot in Southwest Asia suffer from significant conservation gaps. Biol. Cons. 237, 299–307 (2019).
Mansouri Daneshvar, M. R., Ebrahimi, M. & Nejadsoleymani, H. An overview of climate change in Iran: Facts and statistics. Environ. Syst. Res. 8(1), 1–10 (2019).
Darvishsefat, A. Atlas of protected areas of Iran. Department of Environment, Tehran (2008).
Noroozi, J. Plant biogeography and vegetation of high mountains of Central and South-West Asia (2020).
Noroozi, J., Talebi, A. & Doostmohammadi, M. The Alborz Mountain Range. In Plant biogeography and vegetation of high mountains of central and south-west Asia, pp. 117–149 (2020).
Farhadinia, M. S. & Valizadegan, N. A preliminary baseline status of the Syrian Brown Bear Ursus arctos syriacus (Mammalia: Carnivora: Ursidae) in Golestanak, northern Iran. J. Threatened Taxa 7(1), 6796–6799 (2015).
Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J. Mammal. 100(1), 55–71 (2019).
Ghoddousi, A. & Khorozyan, I. Panthera pardus ssp. tulliana. IUCN Red List Threatened Species 2023, e.T15961A50660903 (2023).
Soofi, M. et al. Livestock grazing in protected areas and its effects on large mammals in the Hyrcanian forest, Iran. Biol. Conserv. 217, 377–382 (2018).
Salmanpour, F., Shakoori, Z., Kia, M. & Ghomi, S. Investigating the factors affecting leopard (Panthera pardus tulliana) conflict with domestic livestock compared to other large carnivores in Nowshahr Hyrcanian forests. J. Anim. Environ. 13(2), 1–8 (2021).
Yusefi, G. H., Brito, J. C., Soofi, M. & Safi, K. Hunting and persecution drive mammal declines in Iran. Sci. Rep. 12(1), 17743 (2022).
Madadi, M., Nezami, B., Kaboli, M., Rezaei, H. R. & Mohammadi, A. Human–brown bear conflicts in the North of Iran: Implication for conflict management. Ursus 2023(34e2), 1–10 (2023).
Shakoori, Z. & Salmanpour, F. Nutritional position of managed honey bees during pollination of native plants by the melissopalynology method. Sci. Rep. 14(1), 21563 (2024).
Salmanpour, F., Shakoori, Z., Keshtkar, M., Kia, M. & Sayahnia, R. Impact of climate warming on vegetation cover: Positive effects of native artiodactyla versus grazing pressure in Alborz Protected Area. Front. Conserv. Sci. 6, 1534034 (2025).
Tollefson, T. N., Matt, C., Meehan, J. & Robbins, C. T. Quantifying spatiotemporal overlap of Alaskan brown bears and people. J. Wildlife Manag. 69, 810–817 (2005).
Ziaei, H. A field guide to Mammals of Iran. Department of Environment, Tehran, pp. 424 (2008) (In Persian).
Hefley, T. J. et al. Effects of deer density and land use on mass of white-tailed deer. J. Fish Wildl. Manag. 4(1), 20–32 (2013).
Merkle, J. A. et al. Spatial memory shapes migration and its benefits: evidence from a large herbivore. Ecol. Lett. 22(11), 1797–1805 (2019).
Herrero, J., García-Serrano, A., Prada, C. & García-González, R. Demographic characteristics of an expanding iberian wild goat population in southern Pyrenees, Spain (2024).
Lemel, J., Truvé, J. & Söderberg, B. Variation in ranging and activity behaviour of European wild boar Sus scrofa in Sweden. Wildl. Biol. 9, 29–36 (2003).
Regan, H. M., Colyvan, M. & Burgman, M. A. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl. 12(2), 618–628 (2002).
Krebs, C. J. The experimental analysis of distribution and abundance 1–14 (Harper and Row, 1972).
Krebs, C.J. Ecological methodology (1989).
Sutherland, W.J. ed., Ecological census techniques: A handbook. (Cham: Cambridge university press, 2006)
Aublet, J. F., Festa-Bianchet, M., Bergero, D. & Bassano, B. Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. Oecologia 159, 237–247 (2009).
Rivrud, I. M., Loe, L. E. & Mysterud, A. How does local weather predict red deer home range size at different temporal scales?. J. Anim. Ecol. 79(6), 1280–1295 (2010).
Pigeon, K. E., Stenhouse, G. & Côté, S. D. Drivers of hibernation: Linking food and weather to denning behaviour of grizzly bears. Behav. Ecol. Sociobiol. 70, 1745–1754 (2016).
Sarmento, W., Biel, M. & Berger, J. Seeking snow and breathing hard–Behavioral tactics in high elevation mammals to combat warming temperatures. PLoS ONE 14(12), e0225456 (2019).
Boelman, N. T. et al. Integrating snow science and wildlife ecology in Arctic-boreal North America. Environ. Res. Lett. 14(1), 010401 (2019).
Hsiung, A. C., Boyle, W. A., Cooper, R. J. & Chandler, R. B. Altitudinal migration: Ecological drivers, knowledge gaps, and conservation implications. Biol. Rev. 93(4), 2049–2070 (2018).
Quinn, G. P. & Keough, M. J. Experimental design and data analysis for biologists (Cambridge University Press, 2002).
Salmanpour, F. et al. The effect of ranger patrols on the sighting of large mammals by local herders in Northern Iran. Heliyon 11(1), e41452 (2025).
Kervellec, M. et al. Integrating opportunistic and structured non-invasive surveys with spatial capture-recapture models to map connectivity of the Pyrenean brown bear population. Biol. Cons. 278, 109875 (2023).
Burton, A. C. et al. Density and distribution of a brown bear (Ursus arctos) population within the Caucasus biodiversity hotspot. J. Mammal. 99(5), 1249–1260 (2018).
Georgii, B. Home range patterns of female red deer (Cervus elaphus L.) in the Alps. Oecologia 47(2), 278–285 (1980).
Gundogdu, E. & Ogurlu, I. The distribution of Wild Goat Capra aegagrus Erxleben 1877 and population characteristics in Isparta, Turkey. J. Anim. Vet. Adv. 8(11), 2318–2324 (2009).
Seryodkin, I. V., Paczkowski, J., Borisov, M. Y. & Petrunenko, Y. K. Home ranges of brown bears on the Kamchatka peninsula and Sakhalin Island. Contemp. Probl. Ecol. 10, 599–611 (2017).
Cavazza, S., Brogi, R. & Apollonio, M. Sex-specific seasonal variations of wild boar distance traveled and home range size. Curr. Zool. 70(3), 284–290 (2024).
Salmanpour, F. et al. Mineral lick use by a community of large herbivores in northern Iran. Ecol. Evol. 13(1), e9731 (2023).
Salmanpour, F., Ahmadzadeh, F., Sayyahnia, R. & Hasanzade Kiabi, B. The effect of climate change on the distribution of Caspian red deer (Cervus elaphus maral) in Central Alborz Protected Area. Environ. Sci. 20(4), 229–242 (2022).
Pinheiro, J. & Bates, D. Mixed-effects models in S and S-PLUS (Springer Science & Business Media, 2000).
Gałecki, A., Burzykowski, T., Gałecki, A. & Burzykowski, T. Linear mixed-effects model 245–273 (Springer, 2013).
Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11(9), 1141–1152 (2020).
Weisberg, S. Applied linear regression Vol. 528 (John Wiley & Sons, 2005).
Seber, G. A. & Lee, A. J. Linear regression analysis (John Wiley & Sons, 2012).
James, G., Witten, D., Hastie, T., Tibshirani, R. & Taylor, J. Linear regression. In An introduction to statistical learning: With applications in python, pp. 69–134. (Cham: Springer international publishing, 2023).
Teng, T. P. & Chen, W. J. Using Pearson correlation coefficient as a performance indicator in the compensation algorithm of asynchronous temperature-humidity sensor pair. Case Stud. Thermal Eng. 53, 103924 (2024).
Kerby, J. & Post, E. Reproductive phenology of large mammals. In Phenology: An integrative environmental science, pp. 467-479 (Dordrecht: Springer Netherlands, 2013).
Bonnet, T. et al. The role of selection and evolution in changing parturition date in a red deer population. PLoS Biol. 17(11), e3000493 (2019).
Froy, H. et al. Consistent within-individual plasticity is sufficient to explain temperature responses in red deer reproductive traits. J. Evol. Biol. 32(11), 1194–1206 (2019).
Pérez-Barbería, F. J. et al. Heat stress reduces growth rate of red deer calf: Climate warming implications. PLoS ONE 15(6), e0233809 (2020).
Jiang, F. et al. Musk deer (Moschus spp.) face redistribution to higher elevations and latitudes under climate change in China. Sci. Total Environ. 704, 135335 (2020).
Lovari, S. et al. Climatic changes and the fate of mountain herbivores. Clim. Change 162(4), 2319–2337 (2020).
Brinkman, T. J., Deperno, C. S., Jenks, J. A., Haroldson, B. S. & Osborn, R. G. Movement of female white-tailed deer: Effects of climate and intensive row-crop agriculture. J. Wildl. Manag. 69(3), 1099–1111 (2005).
Lendrum, P. E., Anderson, C. R. Jr., Monteith, K. L., Jenks, J. A. & Bowyer, R. T. Migrating mule deer: Effects of anthropogenically altered landscapes. PLoS ONE 8(5), e64548 (2013).
Lamsal, P., Kumar, L., Aryal, A. & Atreya, K. Future climate and habitat distribution of Himalayan musk deer (Moschus chrysogaster). Eco. Inform. 44, 101–108 (2018).
Alston, J. M., Joyce, M. J., Merkle, J. A. & Moen, R. A. Temperature shapes movement and habitat selection by a heat-sensitive ungulate. Landscape Ecol. 35, 1961–1973 (2020).
Eom, T. K., Lee, J. K., Lee, D. H., Ko, H. & Rhim, S. J. Adaptive response of Siberian roe deer Capreolus pygargus to climate and altitude in the temperate forests of South Korea. Wildl. Biol. 2023(6), e01138 (2023).
Bright Ross, J. G. et al. Climate change and anthropogenic food manipulation interact in shifting the distribution of a large herbivore at its altitudinal range limit. Sci. Rep. 11(1), 7600 (2021).
Apollonio, M. & Chirichella, R. Deer and climate change: Impacts and perspectives. Anim. Product. Sci. 63(16), 1573–1582 (2023).
LaSharr, T. N. et al. Behavior, nutrition, and environment drive survival of a large herbivore in the face of extreme winter conditions. Ecosphere 14(7), e4601 (2023).
Ghoddousi, A. et al. The decline of ungulate populations in Iranian protected areas calls for urgent action against poaching. Oryx 53(1), 151–158 (2019).
Soofi, M. et al. Assessing the relationship between illegal hunting of ungulates, wild prey occurrence and livestock depredation rate by large carnivores. J. Appl. Ecol. 56(2), 365–374 (2019).
Dai, Y. et al. Climate and land use changes shift the distribution and dispersal of two umbrella species in the Hindu Kush Himalayan region. Sci. Total Environ. 777, 146207 (2021).
Ara, S. R. et al. Climate change and its impact on brown bear distribution in Iran. J. Zool. Res. 4(1), 1–11 (2022).
Acarer, A. & Mert, A. 21st century climate change threatens on the brown bear. Cerne 30, e-103305 (2024).
Pérez-Girón, J. C., Álvarez-Álvarez, P., Ballesteros, F. & López-Bao, J. V. Potential impacts of climate change on wild cherry distribution and associated consequences on brown bears. Biol. Cons. 289, 110390 (2024).
Ogurtsov, S. S. The diet of the brown bear (Ursus arctos) in the Central Forest Nature Reserve (West-European Russia), based on scat analysis data. Biol. Bull. 45(9), 1039–1054 (2018).
Penteriani, V., Zarzo-Arias, A., Novo-Fernández, A., Bombieri, G. & López-Sánchez, C. A. Responses of an endangered brown bear population to climate change based on predictable food resource and shelter alterations. Glob. Change Biol. 25(3), 1133–1151 (2019).
Ogurtsov, S. S. et al. Brown bear food-probability models in west-European Russia: On the way to the real resource selection function. Forests 13(8), 1247 (2022).
Kossen, C. Can bears bear climatic change? (Master’s thesis, University of South-Eastern Norway, 2023).
Nezami Balouchi, B. Seasonal food habits of brown bear (Ursus arctos syriacus Linnaeus, 1758) in Cenral Alborz Protected Area. Taxonomy Biosystematics 6(19), 27–36 (2014).
Nezami, B. et al. Key source area to conserve brown bear Ursus arctos Linnaeus, 1758 in Alborz Mountain. Exp. Anim. Biol. 6(3), 127–141 (2018).
Carter, N. H. & Linnell, J. D. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31(8), 575–578 (2016).
Johnson, H. E. et al. Human development and climate affect hibernation in a large carnivore with implications for human–carnivore conflicts. J. Appl. Ecol. 55(2), 663–672 (2018).
Su, J. et al. Decreasing brown bear (Ursus arctos) habitat due to climate change in Central Asia and the Asian Highlands. Ecol. Evol. 8(23), 11887–11899 (2018).
Dai, Y. et al. Identifying climate refugia and its potential impact on Tibetan brown bear (Ursus arctos pruinosus) in Sanjiangyuan National Park, China. Ecol. Evolut. 9(23), 13278–13293 (2019).
Lamb, C. T. et al. The ecology of human–carnivore coexistence. Proc. Natl. Acad. Sci. 117(30), 17876–17883 (2020).
Mukherjee, T. et al. Adaptive spatial planning of protected area network for conserving the Himalayan brown bear. Sci. Total Environ. 754, 142416 (2021).
Dar, S. A. et al. Future land use and climate change escalate connectivity loss for Himalayan brown bears. Anim. Conserv. 26(2), 199–215 (2023).
Thurfjell, H., Spong, G. & Ericsson, G. Effects of weather, season, and daylight on female wild boar movement. Acta Theriol. 59, 467–472 (2014).
Morelle, K. & Lejeune, P. Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: A species distribution modelling approach. Eur. J. Wildl. Res. 61, 45–56 (2015).
Morelle, K., Fattebert, J., Mengal, C. & Lejeune, P. Invading or recolonizing? Patterns and drivers of wild boar population expansion into Belgian agroecosystems. Agr. Ecosyst. Environ. 222, 267–275 (2016).
Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 1–15 (2017).
Markov, N. et al. The wild boar Sus scrofa in northern Eurasia: A review of range expansion history, current distribution, factors affecting the northern distributional limit, and management strategies. Mammal Rev. 52(4), 519–537 (2022).
Acevedo, P. & Real, R. Biogeographical differences between the two Capra pyrenaica subspecies, C. p. victoriae and C. p. hispanica, inhabiting the Iberian Peninsula: Implications for conservation. Ecol. Modell. 222(3), 814–823 (2011).
Malakoutikhah, S., Fakheran, S., Hemami, M. R., Tarkesh, M. & Senn, J. Assessing future distribution, suitability of corridors and efficiency of protected areas to conserve vulnerable ungulates under climate change. Divers. Distrib. 26(10), 1383–1396 (2020).
Ali, H. et al. Expanding or shrinking? Range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan. PLoS ONE 16(12), e0260031 (2021).
Semenzato, P. et al. Behavioural heat-stress compensation in a cold-adapted ungulate: Forage-mediated responses to warming Alpine summers. Ecol. Lett. 24(8), 1556–1568 (2021).
Serrano, E. et al. The effects of winter severity and population density on body stores in the Iberian wild goat (Capra pyrenaica) in a highly seasonal mountain environment. Eur. J. Wildl. Res. 57, 45–55 (2011).
Faghih-sabzevari, N. & Farashi, A. Identification of climate sanctuaries of wild goat (Capra aegagrus, Erxleben, 1777) in the future climate of Iran for conservation. J. Anim. Res. (Iran. J. Biol.) 35(3), 202–216 (2022).
Harris, R. B. et al. Survival of adult mountain goats in Washington: Effects of season, translocation, snow, and precipitation. J. Wildl. Manag. 88(1), e22495 (2024).
Ebrahimi, A. et al. Climate change effects on species of Bovidae family in Iran. Environ. Earth Sci. 78, 1–12 (2019).