Climate change impacts on altitudinal movements of society large mammals in the Alborz


  • Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36(4), 308–320 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Florko, K. R. et al. Linking movement and dive data to prey distribution models: New insights in foraging behaviour and potential pitfalls of movement analyses. Mov. Ecol. 11(1), 17 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kays, R. et al. Multi-scale movement syndromes for comparative analyses of animal movement patterns. Mov. Ecol. 11(1), 61 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • English, H. M., Börger, L., Kane, A. & Ciuti, S. Advances in biologging can identify nuanced energetic costs and gains in predators. Mov. Ecol. 12(1), 7 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millon, A., Lambin, X., Devillard, S. & Schaub, M. Quantifying the contribution of immigration to population dynamics: A review of methods, evidence and perspectives in birds and mammals. Biol. Rev. 94(6), 2049–2067 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kelt, D. A. et al. Advances in population ecology and species interactions in mammals. J. Mammal. 100(3), 965–1007 (2019).

    Article 

    Google Scholar
     

  • Cantor, M. et al. The importance of individual-to-society feedbacks in animal ecology and evolution. J. Anim. Ecol. 90(1), 27–44 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Teitelbaum, C. S. & Mueller, T. Beyond migration: Causes and consequences of nomadic animal movements. Trends Ecol. Evol. 34(6), 569–581 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8(1), 12 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. 31(1), 1–11 (2020).

    Article 

    Google Scholar
     

  • Martin, J. et al. Common drivers of seasonal movements on the migration–residency behavior continuum in a large herbivore. Sci. Rep. 8(1), 7631 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, W. et al. Large herbivore migration plasticity along environmental gradients in Europe: Life-history traits modulate forage effects. Oikos 128(3), 416–429 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wen, Z. et al. Altitudinal dispersal process drives community assembly of montane small mammals. Ecography 2022(9), e06318 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Leclerc, M., Leblond, M., Le Corre, M., Dussault, C. & Côté, S. D. Determinants of migration trajectory and movement rate in a long-distance terrestrial mammal. J. Mammal. 102(5), 1342–1352 (2021).

    Article 

    Google Scholar
     

  • Van Beest, F. M., López-Blanco, E., Hansen, L. H. & Schmidt, N. M. Extreme shifts in habitat suitability under contemporary climate change for a high-Arctic herbivore. Clim. Change 176(4), 31 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Alagador, D. Dependence of Europe’s most threatened mammals on movement to adapt to climate change. Conserv. Biol. 39, e14315 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Årevall, J., Early, R., Estrada, A., Wennergren, U. & Eklöf, A. C. Conditions for successful range shifts under climate change: The role of species dispersal and landscape configuration. Divers. Distrib. 24(11), 1598–1611 (2018).

    Article 

    Google Scholar
     

  • Rivrud, I. M., Meisingset, E. L., Loe, L. E. & Mysterud, A. Future suitability of habitat in a migratory ungulate under climate change. Proc. R. Soc. B 286(1899), 20190442 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butt, N. et al. Importance of species translocations under rapid climate change. Conserv. Biol. 35(3), 775–783 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, J. J., Freeman, R., Spooner, F. & Newbold, T. Vertebrate population trends are influenced by interactions between land use, climatic position, habitat loss and climate change. Glob. Change Biol. 28(3), 797–815 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cooke, S. J. et al. Animal migration in the Anthropocene: Threats and mitigation options. Biol. Rev. 99(4), 1242–1260 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Ye, X. et al. Impacts of future climate and land cover changes on threatened mammals in the semi-arid Chinese Altai Mountains. Sci. Total Environ. 612, 775–787 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramalho, Q. et al. Evidence of stronger range shift response to ongoing climate change by ectotherms and high-latitude species. Biol. Cons. 279, 109911 (2023).

    Article 

    Google Scholar
     

  • Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359(6374), 466–469 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, X. et al. Historical records reveal the distinctive associations of human disturbance and extreme climate change with local extinction of mammals. Proc. Natl. Acad. Sci. 116(38), 19001–19008 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paniw, M. et al. Higher temperature extremes exacerbate negative disease effects in a social mammal. Nat. Clim. Chang. 12(3), 284–290 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Abrahms, B. et al. Climate change as a global amplifier of human–wildlife conflict. Nat. Clim. Chang. 13(3), 224–234 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Haight, J. D. et al. Urbanization, climate and species traits shape mammal communities from local to continental scales. Nat. Ecol. Evolut. 7(10), 1654–1666 (2023).

    Article 

    Google Scholar
     

  • Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8(3), 224–228 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Cunningham, S. J., Gardner, J. L. & Martin, R. O. Opportunity costs and the response of birds and mammals to climate warming. Front. Ecol. Environ. 19(5), 300–307 (2021).

    Article 

    Google Scholar
     

  • Suraci, J. P. et al. Disturbance type and species life history predict mammal responses to humans. Glob. Change Biol. 27(16), 3718–3731 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Munstermann, M. J. et al. A global ecological signal of extinction risk in terrestrial vertebrates. Conserv. Biol. 36(3), e13852 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evolut. 7(7), 1060–1071 (2023).

    Article 

    Google Scholar
     

  • Cooke, S. J. et al. Animal migration in the Anthropocene: Threats and mitigation options. Biol. Rev. 99, 1242 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Davoli, M. & Svenning, J. C. Future changes in society and climate may strongly shape wild large-herbivore faunas across Europe. Philos. Trans. R. Soc. B 379(1902), 20230334 (2024).

    Article 

    Google Scholar
     

  • Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27(8), 1518–1546 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Caro, T., Rowe, Z., Berger, J., Wholey, P. & Dobson, A. An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. Conserv. Lett. 15, e12868 (2022).

    Article 

    Google Scholar
     

  • Habibullah, M. S., Din, B. H., Tan, S. H. & Zahid, H. Impact of climate change on biodiversity loss: Global evidence. Environ. Sci. Pollut. Res. 29(1), 1073–1086 (2022).

    Article 

    Google Scholar
     

  • Ahmadzadeh, F. et al. The status and conservation of the Asiatic black bear in Nikshahr County, Baluchistan District of Iran. J. Nat. Hist. 42(35–36), 2379–2387 (2008).

    Article 

    Google Scholar
     

  • Yousefi, M. et al. Climate change is a major problem for biodiversity conservation: A systematic review of recent studies in Iran. Contemp. Probl. Ecol. 12, 394–403 (2019).

    Article 

    Google Scholar
     

  • Bayram, H. & Öztürk, A.B. Global climate change, desertification, and its consequences in Turkey and the Middle East. In Climate change and global public health, pp. 445–458 (2021).

  • Yusefi, G. H., Safi, K., Tarroso, P. & Brito, J. C. The impacts of extreme climate change on mammals differ among functional groups at regional scale: The case of Iranian terrestrial mammals. Divers. Distrib. 27(9), 1634–1647 (2021).

    Article 

    Google Scholar
     

  • Zittis, G. et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 60(3), e2021RG000762 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bowyer, R. T., Boyce, M. S., Goheen, J. R. & Rachlow, J. L. Conservation of the world’s mammals: Status, protected areas, community efforts, and hunting. J. Mammal. 100(3), 923–941 (2019).

    Article 

    Google Scholar
     

  • Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9(4), 323–329 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Deb, J. C., Phinn, S., Butt, N. & McAlpine, C. A. Adaptive management and planning for the conservation of four threatened large Asian mammals in a changing climate. Mitig. Adapt. Strat. Glob. Change 24(2), 259–280 (2019).

    Article 

    Google Scholar
     

  • Ebrahimi, E., Sayahnia, R., Ranjbaran, Y., Vaissi, S. & Ahmadzadeh, F. Dynamics of threatened mammalian distribution in Iran’s protected areas under climate change. Mamm. Biol. 101(6), 759–774 (2021).

    Article 

    Google Scholar
     

  • Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150 (2018).

    Article 

    Google Scholar
     

  • Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88(3), 450–460 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rice, C. G. Seasonal altitudinal movements of mountain goats. J. Wildl. Manag. 72(8), 1706–1716 (2008).

    Article 

    Google Scholar
     

  • Zeng, Z. G., Skidmore, A. K., Song, Y. L., Wang, T. J. & Gong, H. S. Seasonal altitudinal movements of golden takin in the Qinling Mountains of China. J. Wildlife Manag. 72(3), 611–617 (2008).

    Article 

    Google Scholar
     

  • Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 370(6517), 712–715 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375(6582), eabg1780 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ascensão, F., Yogui, D., Alves, M., Medici, E. P. & Desbiez, A. Predicting spatiotemporal patterns of road mortality for medium-large mammals. J. Environ. Manage. 248, 109320 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bluhm, H. et al. Widespread habitat for Europe’s largest herbivores, but poor connectivity limits recolonization. Divers. Distrib. 29(3), 423–437 (2023).

    Article 

    Google Scholar
     

  • Tourani, M. et al. Maximum temperatures determine the habitat affiliations of North American mammals. Proc. Natl. Acad. Sci. 120(50), e2304411120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nezami, B. & Farhadinia, M. S. Litter sizes of Brown Bears in the Central Alborz Protected Area, Iran. (Bio one, 2011).

  • Karami M., Ghadirian T. & Faizolahi K., The Atlas of Mammals of Iran. p. 180 (2016).

  • Shokri, S., Jafari, A., Rabei, K., Hadipour, E., Alinejad, H., Zeppenfeld, T., Soufi, M., Qashqaei, A., Ahmadpour, M., Zehzad, B. & Kiabi, B. H. Conserving populations at the edge of their geographic range: The endangered Caspian red deer (Cervus elaphus maral) across protected areas of Iran. Biodiversity and Conservation (2021).

  • Ashrafzadeh, M. R. et al. Modeling climate change impacts on the distribution of an endangered brown bear population in its critical habitat in Iran. Sci. Total Environ. 837, 155753 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faghihi, H. et al. The effect of environmental factors on the selection of suitable breeding areas of red deer Cervus elaphus maral in Mazandaran Province. Exp. Anim. Biol. 10(3), 53–61 (2022).


    Google Scholar
     

  • Nezami, B., Rahmani, M., Faghihi, H. & Shams-Esfandabad, B. Habitat Selection and Identification of potential breeding habitats of red deer Cervus elaphus maral in Mazandaran Province. Environ. Interdisciplin. Dev. 8(82), 108–121 (2024).


    Google Scholar
     

  • Mazandaran Bureau of the Department of Environment. (Unpublished data). Annual census report 2023, Nowshahr, Iran.

  • Noroozi, J. et al. Hotspots of vascular plant endemism in a global biodiversity hotspot in Southwest Asia suffer from significant conservation gaps. Biol. Cons. 237, 299–307 (2019).

    Article 

    Google Scholar
     

  • Mansouri Daneshvar, M. R., Ebrahimi, M. & Nejadsoleymani, H. An overview of climate change in Iran: Facts and statistics. Environ. Syst. Res. 8(1), 1–10 (2019).

    Article 

    Google Scholar
     

  • Darvishsefat, A. Atlas of protected areas of Iran. Department of Environment, Tehran (2008).

  • Noroozi, J. Plant biogeography and vegetation of high mountains of Central and South-West Asia (2020).

  • Noroozi, J., Talebi, A. & Doostmohammadi, M. The Alborz Mountain Range. In Plant biogeography and vegetation of high mountains of central and south-west Asia, pp. 117–149 (2020).

  • Farhadinia, M. S. & Valizadegan, N. A preliminary baseline status of the Syrian Brown Bear Ursus arctos syriacus (Mammalia: Carnivora: Ursidae) in Golestanak, northern Iran. J. Threatened Taxa 7(1), 6796–6799 (2015).

    Article 

    Google Scholar
     

  • Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J. Mammal. 100(1), 55–71 (2019).

    Article 

    Google Scholar
     

  • Ghoddousi, A. & Khorozyan, I. Panthera pardus ssp. tulliana. IUCN Red List Threatened Species 2023, e.T15961A50660903 (2023).


    Google Scholar
     

  • Soofi, M. et al. Livestock grazing in protected areas and its effects on large mammals in the Hyrcanian forest, Iran. Biol. Conserv. 217, 377–382 (2018).

    Article 

    Google Scholar
     

  • Salmanpour, F., Shakoori, Z., Kia, M. & Ghomi, S. Investigating the factors affecting leopard (Panthera pardus tulliana) conflict with domestic livestock compared to other large carnivores in Nowshahr Hyrcanian forests. J. Anim. Environ. 13(2), 1–8 (2021).


    Google Scholar
     

  • Yusefi, G. H., Brito, J. C., Soofi, M. & Safi, K. Hunting and persecution drive mammal declines in Iran. Sci. Rep. 12(1), 17743 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madadi, M., Nezami, B., Kaboli, M., Rezaei, H. R. & Mohammadi, A. Human–brown bear conflicts in the North of Iran: Implication for conflict management. Ursus 2023(34e2), 1–10 (2023).

    Article 

    Google Scholar
     

  • Shakoori, Z. & Salmanpour, F. Nutritional position of managed honey bees during pollination of native plants by the melissopalynology method. Sci. Rep. 14(1), 21563 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salmanpour, F., Shakoori, Z., Keshtkar, M., Kia, M. & Sayahnia, R. Impact of climate warming on vegetation cover: Positive effects of native artiodactyla versus grazing pressure in Alborz Protected Area. Front. Conserv. Sci. 6, 1534034 (2025).

    Article 

    Google Scholar
     

  • Tollefson, T. N., Matt, C., Meehan, J. & Robbins, C. T. Quantifying spatiotemporal overlap of Alaskan brown bears and people. J. Wildlife Manag. 69, 810–817 (2005).

    Article 

    Google Scholar
     

  • Ziaei, H. A field guide to Mammals of Iran. Department of Environment, Tehran, pp. 424 (2008) (In Persian).

  • Hefley, T. J. et al. Effects of deer density and land use on mass of white-tailed deer. J. Fish Wildl. Manag. 4(1), 20–32 (2013).

    Article 

    Google Scholar
     

  • Merkle, J. A. et al. Spatial memory shapes migration and its benefits: evidence from a large herbivore. Ecol. Lett. 22(11), 1797–1805 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Herrero, J., García-Serrano, A., Prada, C. & García-González, R. Demographic characteristics of an expanding iberian wild goat population in southern Pyrenees, Spain (2024).

  • Lemel, J., Truvé, J. & Söderberg, B. Variation in ranging and activity behaviour of European wild boar Sus scrofa in Sweden. Wildl. Biol. 9, 29–36 (2003).

    Article 

    Google Scholar
     

  • Regan, H. M., Colyvan, M. & Burgman, M. A. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl. 12(2), 618–628 (2002).

    Article 

    Google Scholar
     

  • Krebs, C. J. The experimental analysis of distribution and abundance 1–14 (Harper and Row, 1972).


    Google Scholar
     

  • Krebs, C.J. Ecological methodology (1989).

  • Sutherland, W.J. ed., Ecological census techniques: A handbook. (Cham: Cambridge university press, 2006)

  • Aublet, J. F., Festa-Bianchet, M., Bergero, D. & Bassano, B. Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. Oecologia 159, 237–247 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rivrud, I. M., Loe, L. E. & Mysterud, A. How does local weather predict red deer home range size at different temporal scales?. J. Anim. Ecol. 79(6), 1280–1295 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Pigeon, K. E., Stenhouse, G. & Côté, S. D. Drivers of hibernation: Linking food and weather to denning behaviour of grizzly bears. Behav. Ecol. Sociobiol. 70, 1745–1754 (2016).

    Article 

    Google Scholar
     

  • Sarmento, W., Biel, M. & Berger, J. Seeking snow and breathing hard–Behavioral tactics in high elevation mammals to combat warming temperatures. PLoS ONE 14(12), e0225456 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boelman, N. T. et al. Integrating snow science and wildlife ecology in Arctic-boreal North America. Environ. Res. Lett. 14(1), 010401 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hsiung, A. C., Boyle, W. A., Cooper, R. J. & Chandler, R. B. Altitudinal migration: Ecological drivers, knowledge gaps, and conservation implications. Biol. Rev. 93(4), 2049–2070 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Quinn, G. P. & Keough, M. J. Experimental design and data analysis for biologists (Cambridge University Press, 2002).

    Book 

    Google Scholar
     

  • Salmanpour, F. et al. The effect of ranger patrols on the sighting of large mammals by local herders in Northern Iran. Heliyon 11(1), e41452 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Kervellec, M. et al. Integrating opportunistic and structured non-invasive surveys with spatial capture-recapture models to map connectivity of the Pyrenean brown bear population. Biol. Cons. 278, 109875 (2023).

    Article 

    Google Scholar
     

  • Burton, A. C. et al. Density and distribution of a brown bear (Ursus arctos) population within the Caucasus biodiversity hotspot. J. Mammal. 99(5), 1249–1260 (2018).

    Article 

    Google Scholar
     

  • Georgii, B. Home range patterns of female red deer (Cervus elaphus L.) in the Alps. Oecologia 47(2), 278–285 (1980).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gundogdu, E. & Ogurlu, I. The distribution of Wild Goat Capra aegagrus Erxleben 1877 and population characteristics in Isparta, Turkey. J. Anim. Vet. Adv. 8(11), 2318–2324 (2009).


    Google Scholar
     

  • Seryodkin, I. V., Paczkowski, J., Borisov, M. Y. & Petrunenko, Y. K. Home ranges of brown bears on the Kamchatka peninsula and Sakhalin Island. Contemp. Probl. Ecol. 10, 599–611 (2017).

    Article 

    Google Scholar
     

  • Cavazza, S., Brogi, R. & Apollonio, M. Sex-specific seasonal variations of wild boar distance traveled and home range size. Curr. Zool. 70(3), 284–290 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Salmanpour, F. et al. Mineral lick use by a community of large herbivores in northern Iran. Ecol. Evol. 13(1), e9731 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salmanpour, F., Ahmadzadeh, F., Sayyahnia, R. & Hasanzade Kiabi, B. The effect of climate change on the distribution of Caspian red deer (Cervus elaphus maral) in Central Alborz Protected Area. Environ. Sci. 20(4), 229–242 (2022).


    Google Scholar
     

  • Pinheiro, J. & Bates, D. Mixed-effects models in S and S-PLUS (Springer Science & Business Media, 2000).

    Book 

    Google Scholar
     

  • Gałecki, A., Burzykowski, T., Gałecki, A. & Burzykowski, T. Linear mixed-effects model 245–273 (Springer, 2013).


    Google Scholar
     

  • Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11(9), 1141–1152 (2020).

    Article 

    Google Scholar
     

  • Weisberg, S. Applied linear regression Vol. 528 (John Wiley & Sons, 2005).

    Book 

    Google Scholar
     

  • Seber, G. A. & Lee, A. J. Linear regression analysis (John Wiley & Sons, 2012).


    Google Scholar
     

  • James, G., Witten, D., Hastie, T., Tibshirani, R. & Taylor, J. Linear regression. In An introduction to statistical learning: With applications in python, pp. 69–134. (Cham: Springer international publishing, 2023).

  • Teng, T. P. & Chen, W. J. Using Pearson correlation coefficient as a performance indicator in the compensation algorithm of asynchronous temperature-humidity sensor pair. Case Stud. Thermal Eng. 53, 103924 (2024).

    Article 

    Google Scholar
     

  • Kerby, J. & Post, E. Reproductive phenology of large mammals. In Phenology: An integrative environmental science, pp. 467-479 (Dordrecht: Springer Netherlands, 2013).

  • Bonnet, T. et al. The role of selection and evolution in changing parturition date in a red deer population. PLoS Biol. 17(11), e3000493 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Froy, H. et al. Consistent within-individual plasticity is sufficient to explain temperature responses in red deer reproductive traits. J. Evol. Biol. 32(11), 1194–1206 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Pérez-Barbería, F. J. et al. Heat stress reduces growth rate of red deer calf: Climate warming implications. PLoS ONE 15(6), e0233809 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, F. et al. Musk deer (Moschus spp.) face redistribution to higher elevations and latitudes under climate change in China. Sci. Total Environ. 704, 135335 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovari, S. et al. Climatic changes and the fate of mountain herbivores. Clim. Change 162(4), 2319–2337 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Brinkman, T. J., Deperno, C. S., Jenks, J. A., Haroldson, B. S. & Osborn, R. G. Movement of female white-tailed deer: Effects of climate and intensive row-crop agriculture. J. Wildl. Manag. 69(3), 1099–1111 (2005).

    Article 

    Google Scholar
     

  • Lendrum, P. E., Anderson, C. R. Jr., Monteith, K. L., Jenks, J. A. & Bowyer, R. T. Migrating mule deer: Effects of anthropogenically altered landscapes. PLoS ONE 8(5), e64548 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamsal, P., Kumar, L., Aryal, A. & Atreya, K. Future climate and habitat distribution of Himalayan musk deer (Moschus chrysogaster). Eco. Inform. 44, 101–108 (2018).

    Article 

    Google Scholar
     

  • Alston, J. M., Joyce, M. J., Merkle, J. A. & Moen, R. A. Temperature shapes movement and habitat selection by a heat-sensitive ungulate. Landscape Ecol. 35, 1961–1973 (2020).

    Article 

    Google Scholar
     

  • Eom, T. K., Lee, J. K., Lee, D. H., Ko, H. & Rhim, S. J. Adaptive response of Siberian roe deer Capreolus pygargus to climate and altitude in the temperate forests of South Korea. Wildl. Biol. 2023(6), e01138 (2023).

    Article 

    Google Scholar
     

  • Bright Ross, J. G. et al. Climate change and anthropogenic food manipulation interact in shifting the distribution of a large herbivore at its altitudinal range limit. Sci. Rep. 11(1), 7600 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Apollonio, M. & Chirichella, R. Deer and climate change: Impacts and perspectives. Anim. Product. Sci. 63(16), 1573–1582 (2023).

    Article 

    Google Scholar
     

  • LaSharr, T. N. et al. Behavior, nutrition, and environment drive survival of a large herbivore in the face of extreme winter conditions. Ecosphere 14(7), e4601 (2023).

    Article 

    Google Scholar
     

  • Ghoddousi, A. et al. The decline of ungulate populations in Iranian protected areas calls for urgent action against poaching. Oryx 53(1), 151–158 (2019).

    Article 

    Google Scholar
     

  • Soofi, M. et al. Assessing the relationship between illegal hunting of ungulates, wild prey occurrence and livestock depredation rate by large carnivores. J. Appl. Ecol. 56(2), 365–374 (2019).

    Article 

    Google Scholar
     

  • Dai, Y. et al. Climate and land use changes shift the distribution and dispersal of two umbrella species in the Hindu Kush Himalayan region. Sci. Total Environ. 777, 146207 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ara, S. R. et al. Climate change and its impact on brown bear distribution in Iran. J. Zool. Res. 4(1), 1–11 (2022).

    Article 

    Google Scholar
     

  • Acarer, A. & Mert, A. 21st century climate change threatens on the brown bear. Cerne 30, e-103305 (2024).

    Article 

    Google Scholar
     

  • Pérez-Girón, J. C., Álvarez-Álvarez, P., Ballesteros, F. & López-Bao, J. V. Potential impacts of climate change on wild cherry distribution and associated consequences on brown bears. Biol. Cons. 289, 110390 (2024).

    Article 

    Google Scholar
     

  • Ogurtsov, S. S. The diet of the brown bear (Ursus arctos) in the Central Forest Nature Reserve (West-European Russia), based on scat analysis data. Biol. Bull. 45(9), 1039–1054 (2018).

    Article 

    Google Scholar
     

  • Penteriani, V., Zarzo-Arias, A., Novo-Fernández, A., Bombieri, G. & López-Sánchez, C. A. Responses of an endangered brown bear population to climate change based on predictable food resource and shelter alterations. Glob. Change Biol. 25(3), 1133–1151 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ogurtsov, S. S. et al. Brown bear food-probability models in west-European Russia: On the way to the real resource selection function. Forests 13(8), 1247 (2022).

    Article 

    Google Scholar
     

  • Kossen, C. Can bears bear climatic change? (Master’s thesis, University of South-Eastern Norway, 2023).

  • Nezami Balouchi, B. Seasonal food habits of brown bear (Ursus arctos syriacus Linnaeus, 1758) in Cenral Alborz Protected Area. Taxonomy Biosystematics 6(19), 27–36 (2014).


    Google Scholar
     

  • Nezami, B. et al. Key source area to conserve brown bear Ursus arctos Linnaeus, 1758 in Alborz Mountain. Exp. Anim. Biol. 6(3), 127–141 (2018).


    Google Scholar
     

  • Carter, N. H. & Linnell, J. D. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31(8), 575–578 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, H. E. et al. Human development and climate affect hibernation in a large carnivore with implications for human–carnivore conflicts. J. Appl. Ecol. 55(2), 663–672 (2018).

    Article 

    Google Scholar
     

  • Su, J. et al. Decreasing brown bear (Ursus arctos) habitat due to climate change in Central Asia and the Asian Highlands. Ecol. Evol. 8(23), 11887–11899 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, Y. et al. Identifying climate refugia and its potential impact on Tibetan brown bear (Ursus arctos pruinosus) in Sanjiangyuan National Park, China. Ecol. Evolut. 9(23), 13278–13293 (2019).

    Article 

    Google Scholar
     

  • Lamb, C. T. et al. The ecology of human–carnivore coexistence. Proc. Natl. Acad. Sci. 117(30), 17876–17883 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee, T. et al. Adaptive spatial planning of protected area network for conserving the Himalayan brown bear. Sci. Total Environ. 754, 142416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dar, S. A. et al. Future land use and climate change escalate connectivity loss for Himalayan brown bears. Anim. Conserv. 26(2), 199–215 (2023).

    Article 

    Google Scholar
     

  • Thurfjell, H., Spong, G. & Ericsson, G. Effects of weather, season, and daylight on female wild boar movement. Acta Theriol. 59, 467–472 (2014).

    Article 

    Google Scholar
     

  • Morelle, K. & Lejeune, P. Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: A species distribution modelling approach. Eur. J. Wildl. Res. 61, 45–56 (2015).

    Article 

    Google Scholar
     

  • Morelle, K., Fattebert, J., Mengal, C. & Lejeune, P. Invading or recolonizing? Patterns and drivers of wild boar population expansion into Belgian agroecosystems. Agr. Ecosyst. Environ. 222, 267–275 (2016).

    Article 

    Google Scholar
     

  • Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 1–15 (2017).

    Article 

    Google Scholar
     

  • Markov, N. et al. The wild boar Sus scrofa in northern Eurasia: A review of range expansion history, current distribution, factors affecting the northern distributional limit, and management strategies. Mammal Rev. 52(4), 519–537 (2022).

    Article 

    Google Scholar
     

  • Acevedo, P. & Real, R. Biogeographical differences between the two Capra pyrenaica subspecies, C. p. victoriae and C. p. hispanica, inhabiting the Iberian Peninsula: Implications for conservation. Ecol. Modell. 222(3), 814–823 (2011).

    Article 

    Google Scholar
     

  • Malakoutikhah, S., Fakheran, S., Hemami, M. R., Tarkesh, M. & Senn, J. Assessing future distribution, suitability of corridors and efficiency of protected areas to conserve vulnerable ungulates under climate change. Divers. Distrib. 26(10), 1383–1396 (2020).

    Article 

    Google Scholar
     

  • Ali, H. et al. Expanding or shrinking? Range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan. PLoS ONE 16(12), e0260031 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semenzato, P. et al. Behavioural heat-stress compensation in a cold-adapted ungulate: Forage-mediated responses to warming Alpine summers. Ecol. Lett. 24(8), 1556–1568 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serrano, E. et al. The effects of winter severity and population density on body stores in the Iberian wild goat (Capra pyrenaica) in a highly seasonal mountain environment. Eur. J. Wildl. Res. 57, 45–55 (2011).

    Article 

    Google Scholar
     

  • Faghih-sabzevari, N. & Farashi, A. Identification of climate sanctuaries of wild goat (Capra aegagrus, Erxleben, 1777) in the future climate of Iran for conservation. J. Anim. Res. (Iran. J. Biol.) 35(3), 202–216 (2022).


    Google Scholar
     

  • Harris, R. B. et al. Survival of adult mountain goats in Washington: Effects of season, translocation, snow, and precipitation. J. Wildl. Manag. 88(1), e22495 (2024).

    Article 

    Google Scholar
     

  • Ebrahimi, A. et al. Climate change effects on species of Bovidae family in Iran. Environ. Earth Sci. 78, 1–12 (2019).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Allowing forests to regrow and regenerate is a great way to...

    Queensland is widely known as the land clearing capital of Australia. But what’s not so well known is many...
    Biodiversity
    4
    minutes

    ‘De-extinction’ of dire wolves promotes false hope: technology can’t undo extinction

    Over the past week, the media have been inundated with news of the “de-extinction” of the dire wolf (Aenocyon...
    Biodiversity
    3
    minutes

    NDVI and vegetation volume as predictors of urban bird diversity

    UNHSP. World Cities Report 2022. (2022). https://unhabitat.org/wcr/.Lai, H., Flies, E. J., Weinstein, P. & Woodward, A. The impact of green space and biodiversity...
    Biodiversity
    10
    minutes

    Why ‘de-extinct’ dire wolves are a Trojan horse to hide humanity’s...

    With wildlife populations globally 73% smaller on average than in 1970 and large mammals missing from much of the...
    Biodiversity
    5
    minutes
    spot_imgspot_img