Climate change risks on key open marine and coastal mediterranean ecosystems

[ad_1]

  • Balzan, M. V. et al. Ecosystems. In Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future, Plan Bleu, UNEP/MAP, Marseille, France, First Mediterranean Assessment Report (2020). https://doi.org/10.5281/zenodo.4768833

  • Coll, M., Piroddi, C. & Steenbeek, J. The biodiversity of the mediterranean sea: Estimates, patterns, and threats. PLoS ONE. 5, e11842. https://doi.org/10.1371/journal.pone.0011842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MedECC Climate and environmental change in the mediterranean Basin—Current situation and risks for the future. Union Mediterranean Plan. Bleu UNEP/MAP Marseille France. https://doi.org/10.5281/zenodo.4768833 (2020).

    Article 

    Google Scholar
     

  • Dos Santos, M. & Moncada, S. Development. In Climate and environmental change in the mediterranean Basin—Current situation and risks for the future. Union Mediterranean. 469–492. https://doi.org/10.5281/zenodo.7101111 (2020).

  • Hassoun, A. E. R., Bantelman, A. & Canu, D. Ocean acidification research in the mediterranean sea: Status, trends and next steps. Front. Mar. Sci. 9 (892670). https://doi.org/10.3389/fmars.2022.892670 (2022).

  • Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems, Nat. Commun. 8(1), 1 (2017). https://doi.org/10.1038/ncomms14682

  • I.P.C.C. et al., Summary for Policymakers. In Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (2019).

  • Merheb, M., Moussa, R. & Abdallah, C. Hydrological response characteristics of mediterranean catchments at different time scales: A meta-analysis. Hydrol. Sci. J. 61, 2520–2539. https://doi.org/10.1080/02626667.2016.1140174 (2016).

    Article 

    Google Scholar
     

  • Tanhua, T., Hainbucher, D. & Schroeder, K. The mediterranean sea system: A review and an introduction to the special issue. Ocean Sci. 9 (5), 789–803. https://doi.org/10.5194/os-9-789-2013 (2013).

    Article 

    Google Scholar
     

  • Cramer, W., Guiot, J. & Fader, M. Climate change and interconnected risks to sustainable development in the mediterranean. Nat. Clim. Chang. 8 (11), 972–980. https://doi.org/10.1038/s41558-018-0299-2 (2018).

    Article 

    Google Scholar
     

  • Chatzimentor, A., Doxa, A., Katsanevakis, S. & Mazaris, A. D. Are mediterranean marine threatened species at high risk by climate change? Glob. Chang. Biol. 29 (7), 1809–1821. https://doi.org/10.1111/gcb.16577 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Álvarez, M. et al. Chapter 11 – Mediterranean sea general biogeochemistry, in Oceanography of the Mediterranean Sea, (eds Schroeder, K. & Chiggiato, J.) Elsevier, 387–451. https://doi.org/10.1016/B978-0-12-823692-5.00004-2. (2023).

  • Rice, J. C. & Garcia, S. M. Fisheries, food security, climate change, and biodiversity: Characteristics of the sector and perspectives on emerging issues. ICES J. Mar. Sci. 68(6), 1343–1353 (2011). https://doi.org/10.1093/icesjms/fsr041

  • Barange, M. et al. Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation, and Mitigation Options. (2018).

  • Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022). https://doi.org/10.1017/9781009157964

  • Cherif, S., Doblas-Miranda, E. & Lionello, P. Drivers of change. In Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future, Union for the Mediterranean. Plan Bleu, UNEP/MAP, Marseille, France, pp. 59–180, (2020). https://doi.org/10.5281/zenodo.7100601

  • Cos, J., Doblas-Reyes, F. & Jury, M. The mediterranean climate change hotspot in the CMIP5 and CMIP6 projections. Earth Syst. Dyn. 13 (1), 321–340. https://doi.org/10.5194/esd-13-321-2022 (2022).

    Article 

    Google Scholar
     

  • Lionello, P. & Scarascia, L. The relation between climate change in the mediterranean region and global warming. Reg. Envriron. Chang. 18, 1481–1493. https://doi.org/10.1007/s10113-018-1290-1 (2018).

    Article 

    Google Scholar
     

  • Pastor, F., Valiente, J. A. & Khodayar, S. A warming mediterranean: 38 years of increasing sea surface temperature. Remote Sens. 12 (17). https://doi.org/10.3390/rs12172687 (2020).

  • Nabat, P., Somot, S. & Mallet, M. Direct and semi-direct aerosol radiative effect on the mediterranean climate variability using a coupled regional climate system model. Clim. Dyn. 44, 1127–1155. https://doi.org/10.1007/s00382-014-2205-6 (2015).

    Article 

    Google Scholar
     

  • Darmaraki, S., Somot, S. & Sevault, F. Future evolution of marine heatwaves in the mediterranean sea. Climat. Dyn., 53, pp. 1371–1392 (2019a).

  • Pisano, A., Marullo, S. & Artale, V. New evidence of mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 12 (1). https://doi.org/10.3390/rs12010132 (2020).

  • Fox-Kemper, B. et al. Ocean, cryosphere, and sea level change – Supplementary material, in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, (eds Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R. & Zhou, B.) Cambridge University Press, (2021).

  • Darmaraki, S., Somot, S. & Sevault, F. Past variability of mediterranean sea marine heatwaves. Geophys. Res. Lett. 46, 16, pp. 9813–9823 (2019b). https://doi.org/10.1029/2019GL082933

  • Vargas-Yáñez, M., Zunino, P. & Benali, A. How much is the Western mediterranean really warming and salting? J. Geophys. Res. Oceans. 115, C04001 https://doi.org/10.1029/2009JC005816 (2010).

  • Skliris, N., Marsh, R. & Josey, S. A. Salinity changes in the world ocean since 1950 in relation to changing surface freshwater fluxes. Clim. Dyn. 43, 709–736. https://doi.org/10.1007/s00382-014-2131-7 (2014).

    Article 

    Google Scholar
     

  • Schroeder, K., Chiggiato, J. & Bryden, H. L. Abrupt climate shift in the Western mediterranean sea. Sci. Rep. 6 (1). https://doi.org/10.1038/srep23009 (2016).

  • Soto-Navarro, J., Jordá, G. & Amores, Á. Evolution of mediterranean sea water properties under climate change scenarios in the Med-CORDEX ensemble. Clim. Dyn. 54, 2135–2165. https://doi.org/10.1007/s00382-019-05105-4 (2020).

    Article 

    Google Scholar
     

  • Garrabou, J., Gómez-Gras, D. & Medrano, A. Marine heatwaves drive recurrent mass mortalities in the mediterranean sea. Glob. Chang. Biol. 28, 5708–5725. https://doi.org/10.1111/gcb.16301 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Juza, M., Fernández-Mora, À. & Tintoré, J. Sub-regional marine heat waves in the mediterranean sea from observations: Long-term surface changes, sub-surface and coastal responses. Front. Mar. Sci. 9 (785771). https://doi.org/10.3389/fmars.2022.785771 (2022).

  • Pastor, F. & Khodayar, S. Marine heat waves: Characterizing a major climate impact in the mediterranean. Sci. Total Environ. 861, 160621. https://doi.org/10.1016/j.scitotenv.2022.160621 (2023).

  • Dayan, H., McAdam, R. & Juza, M. Marine heat waves in the mediterranean sea: An assessment from the surface to the subsurface to Meet National needs. Front. Mar. Sci. 10 (1045138). https://doi.org/10.3389/fmars.2023.1045138 (2023).

  • Tramblay, Y. & Somot, S. Future evolution of extreme precipitation in the mediterranean. Clim. Chang. 151, 289–302. https://doi.org/10.1007/s10584-018-2300-5 (2018).

    Article 

    Google Scholar
     

  • Lionello, P. & Scarascia, L. The relation of climate extremes with global warming in the mediterranean region and its North versus South contrast. Reg. Envriron. Chang. 20 (1). https://doi.org/10.1007/s10113-020-01610-z (2020).

  • Powley, H. R., Krom, M. D. & Cappellen, P. Circulation and oxygen cycling in the mediterranean sea: Sensitivity to future climate change. J. Geophys. Res. Oceans. 121 (11), 8230–8247. https://doi.org/10.1002/2016JC012224 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ferreira, J. G., Andersen, J. H. & Borja, A. Overview of eutrophication indicators to assess environmental status within the European marine strategy framework directive. Estuar. Coast. Shelf Sci. 93 (2), 117–131. https://doi.org/10.1016/j.ecss.2011.03.014 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Santinelli, C., Hansell, D. A. & d’Alcalà, M. R. Influence of stratification on marine dissolved organic carbon (DOC) dynamics: The mediterranean sea case. Prog. Oceanogr. 119, 68–77. https://doi.org/10.1016/j.pocean.2013.06.001 (2013).

    Article 

    Google Scholar
     

  • Ngatia et al. Nitrogen and phosphorus eutrophication in marine ecosystems. Monit. Mar. Pollut.. 1–17. https://doi.org/10.5772/intechopen.81869 (2019).

  • Goyet, C., Hassoun, A. E. R. & Gemayel, E. Thermodynamic forecasts of the mediterranean sea acidification. Mediterr. Mar. Sci. 17 (2), 508–518. https://doi.org/10.12681/mms.1487 (2016).

    Article 

    Google Scholar
     

  • Reale, M., Cossarini, G. & Lazzari, P. Acidification, deoxygenation, and nutrient and biomass declines in a warming mediterranean sea. Biogeosciences 19, 4035–4065. https://doi.org/10.5194/bg-19-4035-2022 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Solidoro, C., Cossarini, G. & Lazzari, P. Modeling carbon budgets and acidification in the mediterranean sea ecosystem under contemporary and future climate. Front. Mar. Sci. 8 (781522). https://doi.org/10.3389/fmars.2021.781522 (2022).

  • Kwiatkowski, L. et al. Jul., Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences 17(13), 3439–3470, (2020). https://doi.org/10.5194/bg-17-3439-2020

  • Hassoun, A. E. R., Gemayel, E. & Krasakopoulou, E. Acidification of the Mediterranean Sea from anthropogenic carbon penetration, Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 1–15 (2015). https://doi.org/10.1016/j.dsr.2015.04.005

  • McFadden, L., Spencer, T. & Nicholls, R. J. Broad-scale modelling of coastal wetlands: What is required? Hydrobiologia 577, 5–15. https://doi.org/10.1007/s10750-006-0413-8 (2007).

    Article 

    Google Scholar
     

  • Satta, A., Puddu, M. & Venturini, S. Assessment of coastal risks to climate change related impacts at the regional scale: The case of the mediterranean region. Int. J. Disaster Risk Reduct. 24, 284–296. https://doi.org/10.1016/j.ijdrr.2017.06.018 (2017).

    Article 

    Google Scholar
     

  • Ali, E., Cramer, W. & Carnicer, J. Cross-chapter paper 4: mediterranean region, in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Pörtner, R. H.-O., T. D.C., and M., Eds., Cambridge, UK and New York, NY, USA: Cambridge University Press, 2233–2272. https://doi.org/10.1017/9781009325844.021. (2022).

    Chapter 

    Google Scholar
     

  • Zerbini, S., Raicich, F. & Prati, C. M. Sea-level change in the Northern mediterranean sea from long-period tide gauge time series. Earth Sci. Rev. 167, 72–87. https://doi.org/10.1016/j.earscirev.2017.02.009 (2017).

    Article 

    Google Scholar
     

  • Wöppelmann, G. & Marcos, M. Coastal sea level rise in Southern Europe and the nonclimate contribution of vertical land motion. J. Geophys. Res. Oceans. 117, C01007 https://doi.org/10.1029/2011JC007469 (2012).

  • Marcos, M., Wöppelmann, G. & Calafat, F. M. Mediterranean Sea level, in Oceanography of the Mediterranean Sea, K. Schroeder and J. Chiggiato, Eds., pp. 125–159. (2023). https://doi.org/10.1016/B978-0-12-823692-5.00012-1

  • Slangen, A. B. A., Adloff, F. & Jevrejeva, S. A review of recent updates of sea-level projections at global and regional scales, in Integrative Study of the Mean Sea Level and its Components, (eds Cazenave, A., Champollion, N. & Paul, F.) (Springer, 2017). https://doi.org/10.1007/978-3-319-56490-6_17

    Chapter 

    Google Scholar
     

  • Liquete, C., Piroddi, C. & Macías, D. Ecosystem services sustainability in the mediterranean sea: Assessment of status and trends using multiple modelling approaches. Sci. Rep. 6 (1). https://doi.org/10.1038/srep34162 (2016).

  • Martín-López, B., Oteros-Rozas, E. & Cohen-Shacham, E. Ecosystem services supplied by Mediterranean Basin ecosystems. In Routledge Handbook of Ecosystem Services, M. Potschin, R. Haines-Young, and R. Fish, Eds., pp. 405–414. [Online]. (2016). https://www.taylorfrancis.com/chapters/edit/10.4324/9781315775302-35/ecosystem-services-supplied-mediterranean-basin-ecosystems-berta-mart%C3%ADn-l%C3%B3pez-elisa-oteros-rozas-emmanuelle-cohen-shacham-fernando-santos-mart%C3%ADn-marta-nieto-romero-claudia-carvalho-santos-jos%C3%A9-gonz%C3%A1lez-marina-garc%C3%ADa-llorente-keren-klass-ilse-geijzendorffer-carlos-montes-wolfgang-cramer

  • Vafeidis, A., Neumann, B., Zimmerman, J. & MR9. : Analysis of land area and population in the low-elevation coastal zone (LECZ. London, GB, 2011. http://eprints.soton.ac.uk/id/eprint/207617

  • Mastrandrea, M. D., Field, C. B. & Stocker, T. F. Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties. 2010. https://www.ipcc.ch/site/assets/uploads/2018/05/uncertainty-guidance-note.pdf

  • Lazzari, P., Mattia, G. & Solidoro, C. The impacts of climate change and environmental management policies on the trophic regimes in the mediterranean sea: Scenario analyses. J. Mar. Syst. 135, 137–149. https://doi.org/10.1016/j.jmarsys.2013.06.005 (2014).

    Article 

    Google Scholar
     

  • Maugendre, L., Gattuso, J. P. & Louis, J. Effect of ocean warming and acidification on a plankton community in the NW mediterranean sea. ICES J. Mar. Sci. 72 (6), 1744–1755. https://doi.org/10.1093/icesjms/fsu161 (2015).

    Article 

    Google Scholar
     

  • Pulina, S., Brutemark, A. & Suikkanen, S. Effects of warming on a mediterranean phytoplankton community. Web Ecol. 16 (1), 89–92. https://doi.org/10.5194/we-16-89-2016 (2016).

    Article 

    Google Scholar
     

  • Gazeau et al. Limited impact of ocean acidification on phytoplankton community structure and carbon export in an oligotrophic environment: results from two short-term mesocosm studies in the mediterranean sea. Estuar. Coast. Shelf Sci. https://doi.org/10.1016/j.ecss.2016.11.016 (2017).

    Article 

    Google Scholar
     

  • Benedetti, F., Guilhaumon, F. & Adloff, F. Investigating uncertainties in zooplankton composition shifts under climate change scenarios in the mediterranean sea. Ecography 41 (2), 345–360. https://doi.org/10.1111/ecog.02434 (2018).

    Article 

    Google Scholar
     

  • Moltó, V., Palmer, M. & Ospina-Álvarez, A. Projected effects of ocean warming on an iconic pelagic fish and its fishery. Sci. Rep. 11 (1). https://doi.org/10.1038/s41598-021-88171-1 (2021).

  • Maugendre, L., Gattuso, J. P. & Poulton, A. J. No detectable effect of ocean acidification on plankton metabolism in the NW oligotrophic mediterranean sea: Results from two mesocosm studies. Estuar. Coast. Shelf Sci. 186, 89–99. https://doi.org/10.1016/j.ecss.2015.03.009 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Herrmann, M., Estournel, C. & Adloff, F. Impact of climate change on the Northwestern mediterranean sea pelagic planktonic ecosystem and associated carbon cycle. J. Geophys. Res. Oceans. 119 (9), 5815–5836. https://doi.org/10.1002/2014JC010016 (2014).

    Article 

    Google Scholar
     

  • Macias, D. M., Garcia-Gorriz, E. & Stips, A. Productivity changes in the mediterranean sea for the twenty-first century in response to changes in the regional atmospheric forcing. Front. Mar. Sci. 2 (79). https://doi.org/10.3389/fmars.2015.00079 (2015).

  • Stefanidou, N., Genitsaris, S. & Lopez-Bautista, J. Effects of heat shock and salinity changes on coastal mediterranean phytoplankton in a mesocosm experiment. Mar. Biol. 165, 1–14. https://doi.org/10.1007/s00227-018-3415-y (2018).

    Article 
    CAS 

    Google Scholar
     

  • Moullec, F., Barrier, N. & Drira, S. An end-to-end model reveals losers and winners in a warming mediterranean sea. Front. Mar. Sci. 6 (345). https://doi.org/10.3389/fmars.2019.00345 (2019).

  • Pagès, R. et al. Projected effects of climate-induced changes in hydrodynamics on the biogeochemistry of the mediterranean sea under the RCP 8.5 regional climate scenario. Front. Mar. Sci. 7, 563615. https://doi.org/10.3389/fmars.2020.563615 (2020).

  • Leeuwen, S. M. & Beecham, J. A. The mediterranean Rhodes gyre: Modelled impacts of climate change, acidification and fishing. Mar. Ecol. Prog. Ser. 690, 31–50. https://doi.org/10.3354/meps14016 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Accoroni, S., Romagnoli, T. & Penna, A. Ostreopsis Fattorussoi sp. Nov. (Dinophyceae), a new benthic toxic Ostreopsis species from the Eastern mediterranean sea. J. Phycol. 52 (6), 1064–1084. https://doi.org/10.1111/jpy.12464 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vila, M., Abós-Herràndiz, R. & Isern-Fontanet, J. Establishing the link between Ostreopsis cf. ovata blooms and human health impacts using ecology and epidemiology. Sci. Mar. 80, 107–115. https://doi.org/10.3989/scimar.04395.08A (2016).

    Article 
    CAS 

    Google Scholar
     

  • Abboud-Abi Saab, M. & Hassoun, A. E. R. Effects of organic pollution on environmental conditions and the phytoplankton community in the central Lebanese coastal waters with special attention to toxic algae. Reg. Stud. Mar. Sci. 10, 38–51. https://doi.org/10.1016/j.rsma.2017.01.003 (2017).

    Article 

    Google Scholar
     

  • Hassoun, A. E. R., Ujević, I. & Mahfouz, C. Occurrence of Domoic acid and Cyclic Imines in marine biota from Lebanon-Eastern mediterranean sea. Sci. Total Environ. 755, 142542. https://doi.org/10.1016/j.scitotenv.2020.142542 (2021).

  • Soulié, T., Vidussi, F. & Mas, S. Functional and structural responses of plankton communities toward consecutive experimental heatwaves in mediterranean coastal waters. Sci. Rep. 13 (1). https://doi.org/10.1038/s41598-023-35311-4 (2023).

  • Howes, E. L., Joos, F. & Eakin, C. M. An updated synthesis of the observed and projected impacts of climate change on the chemical, physical and biological processes in the oceans. Front. Mar. Sci. 2 (36). https://doi.org/10.3389/fmars.2015.00036 (2015).

  • Temino-Boes, R., García-Bartual, R. & Romero, I. Future trends of dissolved inorganic nitrogen concentrations in Northwestern mediterranean coastal waters under climate change. J. Environ. Manag. 282 (111739). https://doi.org/10.1016/j.jenvman.2020.111739 (2021).

  • Totti, C., Romagnoli, T. & Accoroni, S. Phytoplankton communities in the Northwestern Adriatic sea: Interdecadal variability over a 30-years period (1988–2016) and relationships with meteoclimatic drivers. J. Mar. Syst. 193, 137–153. https://doi.org/10.1016/j.jmarsys.2019.01.007 (2019).

    Article 

    Google Scholar
     

  • Volpe, G., Nardelli, B. B. & Cipollini, P. V. A., G. B., and P., Seasonal to interannual phytoplankton response to physical processes in the Mediterranean Sea from satellite observations. Remote Sens. Environ. Remote Sensing Urban Environ. 117(4), 223–235 (2012). https://doi.org/10.1016/j.rse.2011.09.020Waterkeyn

  • Macias, D., Garcia-Gorriz, E. & Stips, A. Deep winter convection and phytoplankton dynamics in the NW mediterranean sea under present climate and future (horizon 2030) scenarios. Sci. Rep. 8 (1). https://doi.org/10.1038/s41598-018-24965-0 (2018).

  • Meier, K. J. S., Beaufort, L. & Heussner, S. The role of ocean acidification in emiliania huxleyi coccolith thinning in the mediterranean sea. Biogeosciences 11 (10), 2857–2869. https://doi.org/10.5194/bg-11-2857-2014 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mallo, M., Ziveri, P. & Mortyn, P. G. Low planktic foraminiferal diversity and abundance observed in a spring 2013 west–east mediterranean sea plankton Tow transect. Biogeosciences 14, 2245–2266. https://doi.org/10.5194/bg-14-2245-201Mancino (2017).

    Article 
    CAS 

    Google Scholar
     

  • D’Amario, B., Pérez, C. & Grelaud, M. Coccolithophore community response to ocean acidification and warming in the Eastern mediterranean sea: Results from a mesocosm experiment. Sci. Rep. 10 (1). https://doi.org/10.1038/s41598-020-69519-5 (2020).

  • Schickele, A., Goberville, E. & Leroy, B. European small pelagic fish distribution under global change scenarios. Fish Fish. 22 (1), 212–225. https://doi.org/10.1111/faf.12515 (2020).

    Article 

    Google Scholar
     

  • Coll, M. et al. The mediterranean sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21 (4), 465–480. https://doi.org/10.1111/j.1466-8238.2011.00697.x (2012).

    Article 

    Google Scholar
     

  • Tsikliras, A. C., Dinouli, A., Tsiros, V. Z. & Tsalkou, E. The mediterranean and black sea fisheries at risk from overexploitation. PLoS ONE. 10 (3), e0121188. https://doi.org/10.1371/journal.pone.0121188 (Mar. 2015).

  • Richon, C., Dutay, J. C. & Bopp, L. Biogeochemical response of the mediterranean sea to the transient SRES-A2 climate change scenario. Biogeosciences 16 (1), 135–165. https://doi.org/10.5194/bg-16-135-2019 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hall-Spencer, J. M., Rodolfo-Metalpa, R. & Martin, S. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99. https://doi.org/10.1038/nature07051 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, S. & Gattuso, J. P. Response of mediterranean coralline algae to ocean acidification and elevated temperature. Glob. Chang. Biol. 15 (8), 2089–2100. https://doi.org/10.1111/j.1365-2486.2009.01874.x (2009).

    Article 

    Google Scholar
     

  • Movilla, J., Calvo, E. & Pelejero, C. Calcification reduction and recovery in native and non-native mediterranean corals in response to ocean acidification. J. Exp. Mar. Biol. Ecol. 438, 144–153. https://doi.org/10.1016/j.jembe.2012.09.014Movilla (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bramanti, L., Movilla, J. & Guron, M. Detrimental effects of ocean acidification on the economically important mediterranean red coral (Corallium rubrum. Glob. Chang. Biol. 19 (6), 1897–1908. https://doi.org/10.1111/gcb.12171 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Movilla Orejas, J. & Calvo, C. Differential response of two mediterranean cold-water coral species to ocean acidification. Coral Reefs. 33, 675–686. https://doi.org/10.1007/s00338-014-1159-9 (2014).

    Article 

    Google Scholar
     

  • Fine, M., Tsadok, R. & Meron, D. Environmental sensitivity of Neogoniolithon brassica-florida associated with vermetid reefs in the mediterranean sea. ICES J. Mar. Sci. 74 (4), 1074–1082. https://doi.org/10.1093/icesjms/fsw167 (2017).

    Article 

    Google Scholar
     

  • Prada, F., Caroselli, E. & Mengoli, S. Ocean warming and acidification synergistically increase coral mortality. Sci. Rep. 7 (1). https://doi.org/10.1038/srep40842 (2017).

  • Marchini, C., Tortorelli, G. & Guidi, E. Reproduction of the azooxanthellate coral Caryophyllia inornata is not affected by temperature along an 850 Km gradient on the Western Italian Coast. Front. Mar. Sci. 6 (785). https://doi.org/10.3389/fmars.2019.00785 (2020).

  • Vitelletti, M. L., Manea, E. & Bongiorni, L. Modelling distribution and fate of coralligenous habitat in the Northern Adriatic sea under a severe climate change scenario. Front. Mar. Sci. 10 (1050293). https://doi.org/10.3389/fmars.2023.1050293 (2023).

  • Gómez-Gras, D., Linares, C. & Caralt, S. Response diversity in mediterranean coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment. Ecol. Evol. 9 (7), 4168–4180. https://doi.org/10.1002/ece3.5045 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carbonne et al. Early life stages of a mediterranean coral are vulnerable to ocean warming and acidification. Biogeosciences 19, 4767–4777. https://doi.org/10.5194/bg-19-4767-2022 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zunino, S., Canu, D. M., Bandelj, V. & Solidoro, C. Effects of ocean acidification on benthic organisms in the mediterranean sea under realistic Climatic scenarios: A meta-analysis. Reg. Stud. Mar. Sci. 10, 86–96. https://doi.org/10.1016/j.rsma.2016.12.011 (Feb. 2017).

  • Zunino, S., Canu, D. M., Zupo, V. & Solidoro, C. Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems. Global Ecol. Conserv. 18, e00625. https://doi.org/10.1016/j.gecco.2019.e00625 (Apr. 2019).

  • Zunino, S., Libralato, S., Melaku Canu, D., Prato, G. & Solidoro, C. Impact of ocean acidification on ecosystem functioning and services in habitat-forming species and marine ecosystems. Ecosystems 24(7), 1561–1575 (2021). https://doi.org/10.1007/s10021-021-00601-3

  • Martin, S., Cohu, S. & Vignot, C. One-year experiment on the physiological response of the mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol. Evol. 3 (3), 676–693. https://doi.org/10.1002/ece3.475 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nash, M. C., Martin, S. & Gattuso, J. P. Mineralogical response of the mediterranean crustose coralline Alga Lithophyllum Cabiochae to near-future ocean acidification and warming. Biogeosciences 13 (21), 5937–5945. https://doi.org/10.5194/bg-13-5937-2016 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kamenos, N. A., Perna, G. & Gambi, M. C. Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size, Proc. R. Soc. B Biol. Sci. 283(1840) (2016). https://doi.org/10.1098/rspb.2016.1159

  • Nannini, M., Marchi, L. & Lombardi, C. Effects of thermal stress on the growth of an intertidal population of Ellisolandia elongata (Rhodophyta) from N–W mediterranean sea. 2015. https://doi.org/10.1016/j.marenvres.2015.05.005

  • Gamliel, I., Buba, Y. & Guy-Haim, T. Incorporating physiology into species distribution models moderates the projected impact of warming on selected mediterranean marine species. Ecography 43 (7), 1090–1106. https://doi.org/10.1111/ecog.04423 (2020).

    Article 

    Google Scholar
     

  • Marchini, A., Ragazzola, F. & Vasapollo, C. Intertidal mediterranean coralline algae habitat is expecting a shift toward a reduced growth and a simplified associated fauna under climate change. Front. Mar. Sci. 6 https://doi.org/10.3389/fmars.2019.00106 (2019).

  • Cox, T. E., Nash, M. & Gazeau, F. Effects of in situ CO2 enrichment on Posidonia oceanica epiphytic community composition and mineralogy. Mar. Biol. 164, 1–16. https://doi.org/10.1007/s00227-017-3136-7 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Porzio, L., Buia, M. C. & Hall-Spencer, J. M. Effects of ocean acidification on macroalgal communities. J. Exp. Mar. Biol. Ecol. 400, 1–2. https://doi.org/10.1016/j.jembe.2011.02.011 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Porzio, L., Garrard, S. L. & Buia, M. C. The effect of ocean acidification on early algal colonization stages at natural CO2 vents. Mar. Biol. 160, 2247–2259. https://doi.org/10.1007/s00227-013-2251-3 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chefaoui, R. M., Duarte, C. M. & Serrão, E. A. Dramatic loss of seagrass habitat under projected climate change in the mediterranean sea. Glob. Chang. Biol. 24 (10), 4919–4928. https://doi.org/10.1111/gcb.14401 (2018).

    Article 

    Google Scholar
     

  • Litsi-Mizan, V., Efthymiadis, P. T. & Gerakaris, V. Decline of seagrass (Posidonia oceanica) production over two decades in the face of warming of the Eastern mediterranean sea. New Phytol. 239 (6), 2126–2137. https://doi.org/10.1111/nph.19084 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Jordà, G., Marbà, N. & Duarte, C. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Chang. 2 (11), 821–824. https://doi.org/10.1038/nclimate1533 (2012).

    Article 

    Google Scholar
     

  • Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16 (8), 2366–2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x (2010).

    Article 

    Google Scholar
     

  • Llabrés, E., Blanco-Magadán, A. & Sales, M. Effect of global warming on Western mediterranean seagrasses: A preliminary agent-based modelling approach. Mar. Ecol. Prog. Ser. 710, 43–56. https://doi.org/10.3354/meps14298 (2023).

    Article 

    Google Scholar
     

  • Ontoria, Y., Gonzalez-Guedes, E. & Sanmartí, N. Interactive effects of global warming and eutrophication on a fast-growing mediterranean seagrass. Mar. Environ. Res. 145, 27–38. https://doi.org/10.1016/j.marenvres.2019.02.002 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stipcich, P., Apostolaki, E. T. & Chartosia, N. Assessment of Posidonia oceanica traits along a temperature gradient in the mediterranean sea shows impacts of marine warming and heat waves. Front. Mar. Sci. 9 (895354). https://doi.org/10.3389/fmars.2022.895354 (2022).

  • Martínez-Abraín, A., Castejón-Silvo, I. & Roiloa, S. Foreseeing the future of Posidonia oceanica meadows by accounting for the past evolution of the mediterranean sea. ICES J. Mar. Sci. 79 (10), 2597–2599. https://doi.org/10.1093/icesjms/fsac212 (2022).

    Article 

    Google Scholar
     

  • Hendriks, I. E., Olsen, Y. S. & Duarte, C. M. Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica. Aquat. Bot. 139, 32–36. https://doi.org/10.1016/j.aquabot.2017.02.004 (2017).

    Article 

    Google Scholar
     

  • Beca-Carretero, P., Teichberg, M. & Winters, G. Projected rapid habitat expansion of tropical seagrass species in the mediterranean sea as climate change progresses. Front. Plant Sci. 11 (555376). https://doi.org/10.3389/fpls.2020.555376 (2020).

  • D’Amen, M. & Azzurro, E. Lessepsian fish invasion in mediterranean marine protected areas: A risk assessment under climate change scenarios. ICES J. Mar. Sci. 77 (1), 388–397. https://doi.org/10.1093/icesjms/fsz207 (2020).

    Article 

    Google Scholar
     

  • Stavrakidis-Zachou, O., Lika, K. & Anastasiadis, P. Projecting climate change impacts on mediterranean finfish production: A case study in Greece. Clim. Chang. 165 (3). https://doi.org/10.1007/s10584-021-03096-y (2021).

  • Ben Lamine, E., Schickele, A. & Goberville, E. Expected contraction in the distribution ranges of demersal fish of high economic value in the mediterranean and European seas. Sci. Rep. 12 (1). https://doi.org/10.1038/s41598-022-14151-8 (2022).

  • Lima, A. R., Baltazar-Soares, M. & Garrido, S. Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate change. Sci. Total Environ. 804 (150167). https://doi.org/10.1016/j.scitotenv.2021.150167 (2022).

  • Tsagarakis, K., Libralato, S. & Giannoulaki, M. Drivers of the North Aegean sea ecosystem (Eastern Mediterranean) through time: Insights from multidecadal retrospective analysis and future simulations. Front. Mar. Sci. 9 (919793). https://doi.org/10.3389/fmars.2022.919793 (2022).

  • van Leeuwen, S. M., Beecham, J. A., García-García, L. & Thorpe, R. The Mediterranean Rhodes Gyre: modelled impacts of climate change, acidification and fishing. Mar. Ecol. Progr. Ser. https://doi.org/10.3354/meps14016

  • Loya-Cancino, K. F., Ángeles-González, L. E. & Yañez-Arenas, C. Predictions of current and potential global invasion risk in populations of Lionfish (Pterois volitans and Pterois miles) under climate change scenarios. Mar. Biol. 170 (3). https://doi.org/10.1007/s00227-023-04174-8 (2023).

  • Dimitriadis, C., Galanidi, M. & Zenetos, A. Updating the occurrences of Pterois miles in the mediterranean sea, with considerations on thermal boundaries and future range expansion. Mediterr. Mar. Sci. 21 (1), 62–69. https://doi.org/10.12681/mms.21845 (2020).

    Article 

    Google Scholar
     

  • Colloca, F., Scarcella, G. & Libralato, S. Recent trends and impacts of fisheries exploitation on mediterranean stocks and ecosystems. Front. Mar. Sci. 4 https://doi.org/10.3389/fmars.2017.00244 (Aug. 2017).

  • Albouy, C., Guilhaumon, F. & Leprieur, F. Projected climate change and the changing biogeography of coastal mediterranean fishes. J. Biogeogr. 40 (3), 534–547. https://doi.org/10.1111/jbi.12013 (2013).

    Article 

    Google Scholar
     

  • Maynou, F., Sabatés, A. & Ramírez-Romero, E. Future distribution of early life stages of small pelagic fishes in the Northwestern mediterranean. Clim. Chang. 161 (4), 567–589. https://doi.org/10.1007/s10584-020-02723-4 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Samperio-Ramos, G., Olsen, Y. S. & Tomas, F. Ecophysiological responses of three mediterranean invasive seaweeds (Acrothamnion preissii, Lophocladia lallemandii and Caulerpa cylindracea) to experimental warming. Mar. Pollut. Bull. 96, 1–2. https://doi.org/10.1016/j.marpolbul.2015.05.024 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Buonomo, R., Chefaoui, R. M. & Lacida, R. B. Predicted extinction of unique genetic diversity in marine forests of Cystoseira spp. Mar. Environ. Res. 138, 119–128. https://doi.org/10.1016/j.marenvres.2018.04.013 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thrush, S. F., Chiantore, M. & Asnaghi, V. Habitat–diversity relationships in Rocky shore algal turf infaunal communities. Mar. Ecol. Prog Ser. 424, 119–132. https://doi.org/10.3354/meps08960 (2011).

    Article 

    Google Scholar
     

  • Araújo, R. M., Assis, J. & Aguillar, R. Status, trends and drivers of Kelp forests in Europe: An expert assessment. Biodivers. Conserv. 25, 1319–1348. https://doi.org/10.1007/s10531-016-1141-7 (2016).

    Article 

    Google Scholar
     

  • Coma, R., Ribes, M. & Serrano, E. Global warming-enhanced stratification and mass mortality events in the Mediterranean, Proc. Natl. Acad. Sci 106, 6176–6181 (2009). https://doi.org/10.1073/pnas.0805801106

  • Bennett, S., Vaquer-Sunyer, R. & Jordá, G. Thermal performance of seaweeds and seagrasses across a regional climate gradient. Front. Mar. Sci. 9, 733315. https://doi.org/10.3389/fmars.2022.733315 (2022).

  • Almpanidou, V., Markantonatou, V. & Mazaris, A. D. Thermal heterogeneity along the migration corridors of sea turtles: Implications for climate change ecology. J. Exp. Mar. Biol. Ecol. 520, 151223. https://doi.org/10.1016/j.jembe.2019.151223 (2019).

  • Chatzimentor, A., Almpanidou, V. & Doxa, A. Projected redistribution of sea turtle foraging areas reveals important sites for conservation. Clim. Chang. Ecol. 2 (100038). https://doi.org/10.1016/j.ecochg.2021.100038 (2021).

  • Albouy, C., Delattre, V. & Donati, G. Global vulnerability of marine mammals to global warming. Sci. Rep. 10 (1). https://doi.org/10.1038/s41598-019-57280-3 (2020).

  • van Weelden, C., Towers, J. R. & Bosker, T. Impacts of climate change on cetacean distribution, habitat and migration. Clim. Chang. Ecol. 1 (100009). https://doi.org/10.1016/j.ecochg.2021.100009 (2021).

  • Mancino, C., Canestrelli, D. & Maiorano, L. Going west: Range expansion for loggerhead sea turtles in the Mediterranean Sea under climate change. Glob. Ecol. Conserv. 38, e02264 (2022). https://doi.org/10.1016/j.gecco.2022.e02264

  • Santostasi, N. L., Bonizzoni, S. & Gimenez, O. Common dolphins in the Gulf of corinth are critically endangered. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 101–109. https://doi.org/10.1002/aqc.2963 (2021).

    Article 

    Google Scholar
     

  • Frantzis, A., Alexiadou, P. & Paximadis, G. Current knowledge of the cetacean fauna of the Greek seas. J. Cetacean Res. Manag. 5, 219–232. https://doi.org/10.47536/jcrm.v5i3.801 (2023).

    Article 

    Google Scholar
     

  • Grose, S. O., Pendleton, L. & Leathers, A. Climate change will re-draw the map for marine megafauna and the people who depend on them. Front. Mar. Sci. 7 (547). https://doi.org/10.3389/fmars.2020.00547 (2020).

  • Haubrock, P. J., Innocenti, G. & Mueller, S. A. Prey availability and community composition: Diet analysis of the black angler fish Lophius budegassa spinola, 1807 in the south-eastern mediterranean sea. Reg. Stud. Mar. Sci. 33, 100940, (2020). https://doi.org/10.1016/j.rsma.2019.100940

  • Enríquez, A. R., Marcos, M. & Álvarez-Ellacuría, A. Changes in beach shoreline due to sea level rise and waves under climate change scenarios: Application to the Balearic Islands (western mediterranean. Nat. Hazards Earth Syst. Sci. 17 (7), 1075–1089. https://doi.org/10.5194/nhess-17-1075-2017 (2017).

    Article 

    Google Scholar
     

  • Monioudi, I. N., Velegrakis, A. F. & Chatzipavlis, A. E. Assessment of Island beach erosion due to sea level rise: The case of the Aegean Archipelago (Eastern mediterranean. Nat. Hazards Earth Syst. Sci. 17 (3), 449–466. https://doi.org/10.5194/nhess-17-449-2017 (2017).

    Article 

    Google Scholar
     

  • Rizzi, J., Torresan, S. & Zabeo, A. Assessing storm surge risk under future sea-level rise scenarios: A case study in the North Adriatic Coast. J. Coastal. Conserv. 21, 453–471. https://doi.org/10.1007/s11852-017-0517-5 (2017).

    Article 

    Google Scholar
     

  • Sanuy, M., Duo, E. & Jäger, W. S. Linking source with consequences of coastal storm impacts for climate change and risk reduction scenarios for mediterranean sandy beaches. Nat. Hazards Earth Syst. Sci. 18 (7), 1825–1847. https://doi.org/10.5194/nhess-18-1825-2018 (2018).

    Article 

    Google Scholar
     

  • Varela, M. R., Patrício, A. R. & Anderson, K. Assessing climate change associated sea-level rise impacts on sea turtle nesting beaches using drones, photogrammetry and a novel GPS system. Glob. Chang. Biol. 25 (2), 753–762. https://doi.org/10.1111/gcb.14526 (2019).

    Article 

    Google Scholar
     

  • Antonioli, F., Falco, G. & Lo Presti, V. Relative sea-level rise and potential submersion risk for 2100 on 16 coastal plains of the mediterranean sea. Water 12 (8). https://doi.org/10.3390/w12082173 (2020).

  • Anzidei, M., Scicchitano, G. & Scardino, G. Relative sea-level rise scenario for 2100 along the Coast of South Eastern Sicily (Italy) by InSAR data, satellite images and high-resolution topography. Remote Sens. 13 (6). https://doi.org/10.3390/rs13061108 (2021).

  • Thiéblemont, R., Le Cozannet, G. & Rohmer, J. Deep uncertainties in shoreline change projections: An extra-probabilistic approach applied to sandy beaches. Nat. Hazards Earth Syst. Sci. 21 (7), 2257–2276. https://doi.org/10.5194/nhess-21-2257-2021 (2021).

    Article 

    Google Scholar
     

  • Rizzo, A., Vandelli, V. & Gauci, C. Potential sea level rise inundation in the mediterranean: From susceptibility assessment to risk scenarios for policy action. Water 14 (416). https://doi.org/10.3390/w14030416 (2022).

  • Filippaki, E., Tsakalos, E. & Kazantzaki, M. Forecasting impacts on vulnerable shorelines: Vulnerability assessment along the coastal zone of Messolonghi area—Western Greece. Climate 11 (1). https://doi.org/10.3390/cli11010024 (2023).

  • Vandelli, V., Sarkar, N. & Micallef, A. S. Coastal inundation scenarios in the north-eastern sector of the Island of Gozo (Malta, mediterranean Sea) as a response to sea level rise. J. Maps. 19 (1). https://doi.org/10.1080/17445647.2022.2145918 (2023).

  • Monioudi, I. N. et al. Climate change—induced hazards on touristic Island beaches: Cyprus, Eastern mediterranean. Front. Mar. Sci. 10 https://doi.org/10.3389/fmars.2023.1188896 (Jul. 2023).

  • Prisco, I., Carboni, M. & Acosta, A. T. The fate of threatened coastal Dune habitats in Italy under climate change scenarios. PLoS One. 8 (7). https://doi.org/10.1371/journal.pone.0068850 (2013).

  • Sharaan, M. & Udo, K. Projections of future beach loss along the mediterranean coastline of Egypt due to sea-level rise. Appl. Ocean Res. 94 (101972). https://doi.org/10.1016/j.apor.2019.101972 (2020).

  • Sánchez-Artús, X., Gracia, V. & Espino, M. Present and future flooding and erosion along the NW Spanish mediterranean Coast. Front. Mar. Sci. 10 (1125138). https://doi.org/10.3389/fmars.2023.1125138 (2023).

  • Scapini, F., Innocenti Degli, E. & Defeo, O. Behavioral adaptations of sandy beach macrofauna in face of climate change impacts: A conceptual framework. Estuar. Coast Shelf Sci. 225 (19), 106236. https://doi.org/10.1016/j.ecss.2019.05.018Scardino (2019).

    Article 

    Google Scholar
     

  • Rilov, G., David, N. & Guy-Haim, T. Sea level rise can severely reduce biodiversity and community net production on Rocky Shores. Sci. Total Environ. 791 (148377). https://doi.org/10.1016/j.scitotenv.2021.148377 (2021).

  • Bonello, G., Carpi, L. & Mucerino, L. Sea-level change and the supralittoral environment: Potential impact on a splashpool habitat on the Ligurian Coast (NW mediterranean. J. Biol. Res.-Bollettino Della Società Italiana Di Biol. Sper. 95 (2). https://doi.org/10.4081/jbr.2022.10485 (2022).

  • Lo Presti, V., Antonioli, F. & Casalbore, D. Geohazard assessment of the north-eastern Sicily continental margin (SW Mediterranean): Coastal erosion, sea-level rise and retrogressive canyon head dynamics. Mar. Geophys. Res. 43 (1). https://doi.org/10.1007/s11001-021-09463-9 (2022).

  • Milazzo, M., Rodolfo-Metalpa, R. & Chan, V. B. S. Ocean acidification impairs vermetid reef recruitment. Sci. Rep. 4 (1). https://doi.org/10.1038/srep04189 (2014).

  • Freitas, D., Borges, D. & Arenas, F. Forecasting distributional shifts of Patella spp. In the Northeast Atlantic ocean, under climate change. Mar. Environ. Res. 186 (105945). https://doi.org/10.1016/j.marenvres.2023.105945 (2023).

  • Rizzi, J., Gallina, V. & Torresan, S. Regional risk assessment addressing the impacts of climate change in the coastal area of the Gulf of Gabes (Tunisia. Sustain. Sci. 11, 455–476. https://doi.org/10.1007/s11625-015-0344-2 (2016).

    Article 

    Google Scholar
     

  • Mastrocicco, M., Busico, G. & Colombani, N. Modelling actual and future seawater intrusion in the variconi coastal wetland (Italy) due to climate and landscape changes. Water 11 (7). https://doi.org/10.3390/w11071502 (2019).

  • Estrela-Segrelles, C., Gómez-Martinez, G. & Pérez-Martín, M. Á. Risk assessment of climate change impacts on mediterranean coastal wetlands. Application in Júcar river basin district (Spain. Sci. Total Environ. 790 (148032). https://doi.org/10.1016/j.scitotenv.2021.148032 (2021).

  • Ramírez, F., Rodríguez, C. & Seoane, J. How will climate change affect endangered mediterranean waterbirds? PLoS ONE. 13 (2). https://doi.org/10.1371/journal.pone.0192702 (2018).

  • Lefebvre, G., Redmond, L. & Germain, C. Predicting the vulnerability of seasonally-flooded wetlands to climate change across the mediterranean basin. Sci. Total Environ. 692, 546–555. https://doi.org/10.1016/j.scitotenv.2019.07.263 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herbert, E. R., Boon, P. & Burgin, A. J. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6 (10), 1–43. https://doi.org/10.1890/ES14-00534.1 (2015).

    Article 

    Google Scholar
     

  • Waterkeyn, A., Vanschoenwinkel, B., Grillas, P. & Brendoncka, L. Effect of salinity on seasonal community patterns of mediterranean temporary wetland crustaceans: A mesocosm study. Limnol. Oceanogr. 55 (4), 1712–1722. https://doi.org/10.4319/lo.2010.55.4.1712 (2010).

    Article 

    Google Scholar
     

  • Ben Haj, S. C. D., and L. A., Sub-regional report on vulnerability and impacts of climate change on marine and coastal biological diversity in the Mediterranean Arab Countries. UNEP-MAP RAC/SPA, Tunis, [Online]. (2009). https://rac-spa.org/sites/default/files/doc_climate_change/ccc_med_arab.pdf

  • Shaltout, M., Tonbol, K. & Omstedt, A. Sea-level change and projected future flooding along the Egyptian mediterranean Coast. Oceanologia 57 (4), 293–307. https://doi.org/10.1016/j.oceano.2015.06.004 (2015).

    Article 

    Google Scholar
     

  • Lionello, P., Nicholls, R. J. & Umgiesser, G. Venice flooding and sea level: Past evolution, present issues, and future projections (introduction to the special issue. Nat. Hazards Earth Syst. Sci. 21 (8), 2633–2641. https://doi.org/10.5194/nhess-21-2633-2021 (2021).

    Article 

    Google Scholar
     

  • Jeunesse, I., Cirelli, C. & Sellami, H. Is the governance of the thau coastal lagoon ready to face climate change impacts? Ocean. Coastal. Manag. 118, 234–246. https://doi.org/10.1016/j.ocecoaman.2015.05.014 (2015).

    Article 

    Google Scholar
     

  • Lloret, J., Marín, A. & Marín-Guirao, L. Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuarine. Coastal. Shelf Sci. 78 (2), 403–412. https://doi.org/10.1016/j.ecss.2008.01.003 (2008).

    Article 

    Google Scholar
     

  • Abd-Elhamid, H. F., Zeleňáková, M. & Barańczuk, J. Historical trend analysis and forecasting of shoreline change at the nile Delta using RS data and GIS with the DSAS tool. Remote Sens. 15 (7). https://doi.org/10.3390/rs15071737 (2023).

  • Sánchez-Arcilla, A., Jiménez, J. A. & Valdemoro, H. I. Implications of Climatic change on Spanish mediterranean low-lying coasts: The Ebro delta case. J. Coastal Res. 24 (2), 306–316. https://doi.org/10.2112/07A-0005.1 (2008).

    Article 

    Google Scholar
     

  • Range, P., Chícharo, M. A. & Ben-Hamadou, R. Impacts of CO2-induced seawater acidification on coastal mediterranean bivalves and interactions with other Climatic stressors. Reg. Envriron. Chang. 14, 19–30. https://doi.org/10.1007/s10113-013-0478-7 (2014).

    Article 

    Google Scholar
     

  • Simantiris, N. & Avlonitis, M. Effects of future climate conditions on the zooplankton of a mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 282 (108231). https://doi.org/10.1016/j.ecss.2023.108231 (2023).

  • Day, J. W., Ibáñez, C. & Pont, D. Status and sustainability of mediterranean deltas: The case of the ebro, rhône, and Po deltas and Venice lagoon. pp. 237–249, (2019). https://doi.org/10.1016/B978-0-12-814003-1.00014-9

  • Frihy, O. E. & El-Sayed, M. K. Vulnerability risk assessment and adaptation to climate change induced sea level rise along the Mediterranean coast of Egypt, Mitigation Adaptation Strateg. Global Chang. 18, 1215–1237, (2013). https://doi.org/10.1007/s11027-012-9418-y

  • Deininger, A., Faithfull, C. L. & Lange, K. Simulated terrestrial runoff triggered a phytoplankton succession and changed Seston stoichiometry in coastal lagoon mesocosms. Mar. Environ. Res. 119, 40–50. https://doi.org/10.1016/j.marenvres.2016.05.001 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardoch, L., Day, J. W. & Ibàñez, C. Net primary productivity as an Indicator of sustainability in the Ebro and Mississippi deltas. Ecol. Appl. 12, 1044–1055. https://doi.org/10.1890/1051-0761(2002)012 (2002).

    Article 

    Google Scholar
     

  • Scardino, G. et al. Jan., The impact of future sea-level rise on low-lying subsiding coasts: A case study of Tavoliere Delle Puglie (Southern Italy), Remote Sens. 14 (19), 19 (2022). https://doi.org/10.3390/rs14194936

  • Strain, E. M., Belzen, J. & Comandini, P. The role of changing climate in driving the shift from perennial grasses to annual succulents in a mediterranean saltmarsh. J. Ecol. 105 (5), 1374–1385. https://doi.org/10.1111/1365-2745.12799 (2017).

    Article 

    Google Scholar
     

  • Borges, F. O., Santos, C. P. & Paula, J. R. Invasion and extirpation potential of native and invasive Spartina species under climate change. Front. Mar. Sci. 8 (696333). https://doi.org/10.3389/fmars.2021.696333 (2021).

  • O’Leary, J. K., Micheli, F. & Airoldi, L. The resilience of marine ecosystems to Climatic disturbances. BioScience 67 (3), 208–220 (2017).


    Google Scholar
     

  • Carneiro, J. F., Boughriba, M. & Correia, A. Evaluation of climate change effects in a coastal aquifer in Morocco using a density-dependent numerical model. Environ. Earth Sci. 61, 241–252. https://doi.org/10.1007/s12665-009-0339-3 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sefelnasr, A. & Sherif, M. Impacts of seawater rise on seawater intrusion in the nile Delta aquifer, Egypt. Groundwater 52 (2), 264–276. https://doi.org/10.1111/gwat.12058 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Romanazzi, A., Gentile, F. & Polemio, M. Modelling and management of a mediterranean karstic coastal aquifer under the effects of seawater intrusion and climate change. Environ. Earth Sci. 74, 115–128. https://doi.org/10.1007/s12665-015-4423-6 (2015).

    Article 

    Google Scholar
     

  • Al-Najjar, H., Ceribasi, G. & Dogan, E. GCMs simulation-based assessment for the response of the mediterranean Gaza coastal aquifer to climate-induced changes. J. Water Clim. Chang. 13 (6), 2278–2297. https://doi.org/10.2166/wcc.2022.339 (2022).

    Article 

    Google Scholar
     

  • Schorpp, L., Dall’Alba, V. & Renard, P. Hydrogeological modeling of the Roussillon coastal aquifer (France): Stochastic inversion and analysis of future stresses. Environ. Earth Sci. 82 (9). https://doi.org/10.1007/s12665-023-10877-4 (2023).

  • Lyra, A. & Loukas, A. Water and nitrogen use and agricultural production efficiency under climate change in a Mediterranean coastal watershed. Environ. Sci. Proc. 25 (1) (2023). https://doi.org/10.3390/ECWS-7-14180

  • García-Ruiz, J. M., López-Moreno, J. I. & Vicente-Serrano, S. M. Mediterranean water resources in a global change scenario. Earth Sci. Rev. 105, 3–4. https://doi.org/10.1016/j.earscirev.2011.01.006 (2011).

    Article 

    Google Scholar
     

  • Stigter, T. Y., Nunes, J. P. & Pisani, B. Comparative assessment of climate change and its impacts on three coastal aquifers in the mediterranean. Reg. Envriron. Chang. 14, 41–56. https://doi.org/10.1007/s10113-012-0377-3 (2014).

    Article 

    Google Scholar
     

  • El Asri, H., Larabi, A. & Faouzi, M. Assessment of future climate trend based on multi-RCMs models and its impact on groundwater recharge of the Mediterranean coastal aquifer of Ghis-Nekkor (Morocco, in Climate Change in the Mediterranean and Middle Eastern Region (Leal Filho, M. W. and E., Eds., pp. 3–19. (2022). https://doi.org/10.1007/978-3-030-78566-6_1

  • Pisinaras, V., Paraskevas, C. & Panagopoulos, A. Investigating the effects of agricultural water management in a mediterranean coastal aquifer under current and projected climate conditions. Water 13 (1). https://doi.org/10.3390/w13010108 (2021).

  • Sherif, M., Sefelnasr, A. & Ebraheem, A. A. Quantitative and qualitative assessment of seawater intrusion in Wadi Ham under different pumping scenarios. J. Hydrol. Eng. 19 (5), 855–866. https://doi.org/10.1061/(ASCE)HE.1943-5584.000090 (2014).

    Article 

    Google Scholar
     

  • Owojori, O. J., Reinecke, A. J. & Rozanov, A. B. Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil. Biol. Biochem. Spec. Sect. Enzymes Environ. 40, 2385–2393. https://doi.org/10.1016/j.soilbio.2008.05.019 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Owojori, O. J., Waszak, K. & Roembke, J. Avoidance and reproduction tests with the predatory mite hypoaspis aculeifer: effects of different chemical substances. Environ. Toxicol. Chem. 33, 230–237. https://doi.org/10.1002/etc.2421Pag (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bencherif, K., Boutekrabt, A. & Fontaine, J. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Sci. Total Environ. 533, 488–494. https://doi.org/10.1016/j.scitotenv.2015.07.007 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes
    spot_imgspot_img