Wang, Z. et al. Biodiversity conservation in the context of climate change: facing challenges and management strategies. Sci. Total Environ. 937, 173377. https://doi.org/10.1016/j.scitotenv.2024.173377 (2024).
Wiens, J. J. & Zelinka, J. How many species will Earth lose to climate change? Glob Chang. Biol. 30, e17125. https://doi.org/10.1111/gcb.17125 (2024).
Hansen, J. et al. Climate impact of increasing atmospheric carbon dioxide. Science 213, 957–966. https://doi.org/10.1126/science.213.4511.957 (1981).
O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change. 42, 169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004 (2017).
Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ. Change-Human Policy Dimensions. 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009 (2017).
Hiller, A. E. et al. Niche conservatism predominates in adaptive radiation: comparing the diversification of Hawaiian arthropods using ecological niche modelling. Biol. J. Linn. Soc. 127, 479–492. https://doi.org/10.1093/biolinnean/blz023 (2019).
Rodder, D. & Weinsheimer, F. Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? J. Nat. Hist. 43, 1207–1217. https://doi.org/10.1080/00222930902783752 (2009).
Larson, S. R., DeGroote, J. P., Bartholomay, L. C. & Sugumaran, R. Ecological niche modeling of potential West nile virus vector mosquito species in Iowa. J. Insect Sci. 10, 110. https://doi.org/10.1673/031.010.11001 (2010).
Pulparambil, H. Sukumaran pradeep, N. Ecological niche modelling in identifying habitats for effective species conservation: A study on endemic aquatic plant Crinum Malabaricum. J. Nat. Conserv. 76, 126517. https://doi.org/10.1016/j.jnc.2023.126517 (2023).
Fontúrbel, F. E., Nespolo, R. F., Amico, G. C. & Watson, D. M. Climate change can disrupt ecological interactions in mysterious ways: using ecological generalists to forecast community-wide effects. Clim. Change Ecol. 2, 100044. https://doi.org/10.1016/j.ecochg.2021.100044 (2021).
Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965. https://doi.org/10.1038/ncomms13965 (2016).
García-Girón, J., Heino, J., García-Criado, F., Fernández-Aláez, C. & Alahuhta, J. Biotic interactions hold the key to Understanding metacommunity organisation. Ecography 43, 1180–1190. https://doi.org/10.1111/ecog.05032 (2020).
Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 (2017).
Tong, Z. Y. et al. New calculations indicate that 90% of flowering plant species are animal-pollinated. Natl. Sci. Rev. 10 https://doi.org/10.1093/nsr/nwad219 (2023).
Aizen, M. A., Ashworth, L. & Galetto, L. Reproductive success in fragmented habitats: do compatibility systems and pollination specialization matter? J. Veg. Sci. 13, 885–892. https://doi.org/10.1111/j.1654-1103.2002.tb02118.x (2002).
Spira, T. P. Plant-pollinator interactions: A threatened mutualism with implications for the ecology and management of rare plants. Nat. Areas JournalNatural Areas J. 21, 78–88 (2001).
Ashworth, L., Aguilar, R., Galetto, L. & Aizen, M. A. Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J. Ecol. 92, 717–719. https://doi.org/10.1111/j.0022-0477.2004.00910.x (2004).
Gérard, M., Vanderplanck, M., Wood, T. & Michez, D. Global warming and plant-pollinator mismatches. Emerg. Top. Life Sci. 4, 77–86. https://doi.org/10.1042/etls20190139 (2020).
Kolanowska, M., Rewicz, A. & Nowak, S. Significant habitat loss of the black vanilla Orchid (Nigritella Nigra s.l., Orchidaceae) and shifts in its pollinators availability as results of global warming. Global Ecol. Conserv. 27, e01560. https://doi.org/10.1016/j.gecco.2021.e01560 (2021).
Ellis, A. G. & Johnson, S. D. Floral mimicry enhances pollen export: the evolution of pollination by sexual deceit outside of the orchidaceae. Am. Nat. 176, E143–151. https://doi.org/10.1086/656487 (2010).
Roessler, H. The compositae of the flora Zambesiaca area, 5 subtribe gorteriinae. Kirkia 10, 73–99 (1975).
Snijman, D. A. Plants of the Greater Cape Floristic Region 2: the Extra Cape Flora. Strelitzia 30 (South African National Biodiversity Institute, 2013).
LaFountain, A. M., Yuan, Y. W. & Evolution The Art of deceptive pollination. Curr. Biol. 33, R301–R303. https://doi.org/10.1016/j.cub.2023.03.027 (2023).
Delahaie, B. et al. The phylogenetic history of the Gorteria diffusa radiation sheds light on the origins of plant sexual deception. bioRxiv, 2022.2012.2022.521170, (2022). https://doi.org/10.1101/2022.12.22.521170
Ellis, A. G. & Johnson, S. D. The evolution of floral variation without pollinator shifts in gorteria diffusa (Asteraceae). Am. J. Bot. 96, 793–801. https://doi.org/10.3732/ajb.0800222 (2009).
de Jager, M. & Ellis, A. Gender-specific pollinator preference for floral traits. Funct. Ecol. 26, 1197–1204. https://doi.org/10.1111/j.1365-2435.2012.02028.x (2012).
Frida, S. & Arne, A. A. Morphology and taxonomic reclassification of Gorteria (Asteraceae). Willdenowia 44, 97–120. https://doi.org/10.3372/wi.44.44112 (2014).
GBIF.org. Gorteria diffusa. GBIF Occurrence Download. (2025).
GBIF.org. Megapalpus capensis. GBIF Occurrence Download. (2025).
Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 (2014).
Brown, J. L., Bennett, J. R. & French, C. M. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e4095. https://doi.org/10.7717/peerj.4095 (2017).
Phillips, S., Anderson, R. & Schapire, R. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).
Fick, S. & Hijmans, R. WorldClim 2: new 1-km Spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).
Kramer-Schadt, S. et al. The importance of correcting for sampling bias in maxent species distribution models. Divers. Distrib. 19, 1366–1379. https://doi.org/10.1111/ddi.12096 (2013).
Williams, K. D. et al. The Met office global coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J. Adv. Model. Earth Syst. 10, 357–380. https://doi.org/10.1002/2017MS001115 (2018).
Parding, K. M. et al. GCMeval – An interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 18, 100167. https://doi.org/10.1016/j.cliser.2020.100167 (2020).
Santini, L., Benitez-Lopez, A., Maiorano, L., Cengic, M. & Huijbregts, M. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27, 1035–1050. https://doi.org/10.1111/ddi.13252 (2021).
Evans, M. E., Smith, S. A., Flynn, R. S. & Donoghue, M. J. Climate, niche evolution, and diversification of the bird-cage evening primroses (Oenothera, sections Anogra and Kleinia). Am. Nat. 173, 225–240. https://doi.org/10.1086/595757 (2009).
Lawal, S., Lennard, C. & Hewitson, B. Response of Southern African vegetation to climate change at 1.5 and 2.0° global warming above the pre-industrial level. Clim. Serv. 16, 100134. https://doi.org/10.1016/j.cliser.2019.100134 (2019).
Engelbrecht, F. A., Steinkopf, J., Padavatan, J. & Midgley, G. F. in In Sustainability of Southern African Ecosystems Under Global Change: Science for Management and Policy Interventions. Maltitz169–190 (eds von Graham, P.) (Springer International Publishing, 2024).
Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change. 3, 678–682. https://doi.org/10.1038/nclimate1887 (2013).
Munzhedzi, S. M. et al. Long-Term Adaptation Scenarios for South Africa (Long-Term Adaptation Scenarios Flagship Research Programme, 2016).
Stevens, N., Bond, W., Hoffman, T. & Midgley, G. Change Is in the Air. Ecological Trends and their Drivers in South Africa (South African Environmental Observation Network (SAEON), 2015).
Midgley, J. J., Kruger, L. M. & Skelton, R. How do fires kill plants? The hydraulic death hypothesis and cape Proteaceae fire-resisters. South. Afr. J. Bot. 77, 381–386. https://doi.org/10.1016/j.sajb.2010.10.001 (2011).
Rosenbloom, D., Markard, J., Geels, F. W. & Fuenfschilling, L. Why carbon pricing is not sufficient to mitigate climate change—and how sustainability transition policy can help. Proceedings of the National Academy of Sciences 117, 8664–8668, doi: (2020). https://doi.org/10.1073/pnas.2004093117
IPCC. in. in Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 1–34 (eds Team, C. W., Lee, H. & Romero, J.) (IPCC, 2023).
López-Uribe, M. M. et al. Critical thermal maxima differ between groups of insect pollinators and their foraging times: implications for their responses to climate change. J. Melittology. https://doi.org/10.17161/jom.vi122.22505 (2024).
Kolanowska, M. & Michalska, E. The effect of global warming on the Australian endemic Orchid cryptostylis Leptochila and its pollinator. PLOS ONE. 18, e0280922. https://doi.org/10.1371/journal.pone.0280922 (2023).
Kolanowska, M., Michalska, E. & Konowalik, K. The impact of global warming on the niches and pollinator availability of sexually deceptive Orchid with a single pollen vector. Sci. Total Environ. 795, 148850. https://doi.org/10.1016/j.scitotenv.2021.148850 (2021).
Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x (2006).
Cai, P. et al. Phenological responses of Bactrocera dorsalis (Hendel) to climate warming in China based on long-term historical data. Int. J. Trop. Insect Sci. 43, 881–894. https://doi.org/10.1007/s42690-023-00996-7 (2023).
Raza, M. M. et al. Impact of global warming on insects. Archives Phytopathol. Plant. Prot. 48, 84–94. https://doi.org/10.1080/03235408.2014.882132 (2015).
Geissler, C., Davidson, A. & Niesenbaum, R. A. The influence of climate warming on flowering phenology in relation to historical annual and seasonal temperatures and plant functional traits. PeerJ 11, e15188. https://doi.org/10.7717/peerj.15188 (2023).
Puchałka, R. et al. Citizen science helps predictions of climate change impact on flowering phenology: A study on Anemone nemorosa. Agric. For. Meteorol. 325, 109133. https://doi.org/10.1016/j.agrformet.2022.109133 (2022).
Schenk, M., Krauss, J. & Holzschuh, A. Desynchronizations in bee–plant interactions cause severe fitness losses in solitary bees. J. Anim. Ecol. 87, 139–149. https://doi.org/10.1111/1365-2656.12694 (2018).
Michelle, J. S., Jason, P. H. & Amy, C. G. Timing is everything: an overview of phenological changes to plants and their pollinators. Nat. Areas J. 34, 227–234. https://doi.org/10.3375/043.034.0213 (2014).
Malhi, Y. et al. Climate change and ecosystems: threats, opportunities and solutions. Philosophical Trans. Royal Soc. B: Biol. Sci. 375, 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).
Fletcher, C. et al. Earth at risk: an urgent call to end the age of destruction and Forge a just and sustainable future. PNAS Nexus. 3 https://doi.org/10.1093/pnasnexus/pgae106 (2024).
Keppel, G., Stralberg, D., Morelli, T. L. & Bátori, Z. Managing climate-change refugia to prevent extinctions. Trends Ecol. Evol. 39, 800–808. https://doi.org/10.1016/j.tree.2024.05.002 (2024).
Morelli, T. L. et al. Climate-change refugia: biodiversity in the slow lane. Front. Ecol. Environ. 18, 228–234. https://doi.org/10.1002/fee.2189 (2020).
Maxwell, S. L., Fuller, R. A., Brooks, T. M., Watson, J. E. M. & Biodiversity The ravages of guns, Nets and bulldozers. Nature 536, 143–145. https://doi.org/10.1038/536143a (2016).
Mtshali, H. Gorteria diffusa Thunb. National Assessment, < (2023). http://redlist.sanbi.org/species.php?species=3206-4001
Burke, A. Determining landscape function and ecosystem dynamics: contribution to ecological restoration in the Southern Namib desert. Ambio 30, 29–36. https://doi.org/10.1579/0044-7447-30.1.29 (2001).
Crawford, C. S. & Gosz, J. R. Desert ecosystems: their resources in space and time. Environ. Conserv. 9, 181–195 (1982).
Ma, L. et al. Global patterns of climate change impacts on desert bird communities. Nat. Commun. 14, 211. https://doi.org/10.1038/s41467-023-35814-8 (2023).
Moran, V. C. & Hoffmann, J. H. Conservation of the fynbos biome in the cape floral region: the role of biological control in the management of invasive alien trees. BioControl 57, 139–149. https://doi.org/10.1007/s10526-011-9403-5 (2012).
Sandberg, R. N., Allsopp, N. & Esler, K. J. The use of fynbos fragments by birds: Stepping-stone habitats and resource refugia. Koede 58, 1–10. https://doi.org/10.4102/koedoe.v58i1.1321 (2025).
Saaed, M. W. et al. Fifteen-year resilience against further degradation of succulent Karoo vegetation in South Africa. J. Arid Environ. 178, 104152. https://doi.org/10.1016/j.jaridenv.2020.104152 (2020).
Benjaminsen, T. A., Kepe, T. & Bråthen, S. Between global interests and local needs: conservation and land reform in namaqualand, South Africa. Africa 78, 223–244. https://doi.org/10.3366/E0001972008000144 (2008).
Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431 (2005).
Fourcade, Y. Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. Ecol. Inf. 36, 8–14. https://doi.org/10.1016/j.ecoinf.2016.09.002 (2016).
Bystriakova, N., Peregrym, M., Erkens, R., Bezsmertna, O. & Schneider, H. Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Syst. Biodivers. 10, 305–315. https://doi.org/10.1080/14772000.2012.705357 (2012).
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).
Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197. https://doi.org/10.1890/07-2153.1 (2009).
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).
Brotons, L., Thuiller, W., Araujo, M. & Hirzel, A. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27, 437–448. https://doi.org/10.1111/j.0906-7590.2004.03764.x (2004).
VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: how Far should you stray from what you know? Ecol. Model. 220, 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010 (2009).
Segurado, P. & Araujo, M. An evaluation of methods for modelling species distributions. J. Biogeogr. 31, 1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x (2004).
Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46. https://doi.org/10.1038/s41579-019-0265-7 (2020).
Hamidov, A. et al. Impacts of climate change adaptation options on soil functions: A review of European case-studies. Land. Degrad. Dev. 29, 2378–2389. https://doi.org/10.1002/ldr.3006 (2018).
Oishy, M. N. et al. Unravelling the effects of climate change on the soil-plant-atmosphere interactions: A critical review. Soil. Environ. Health. 3, 100130. https://doi.org/10.1016/j.seh.2025.100130 (2025).
Edwards, J. D. et al. Warming disrupts Plant–Fungal endophyte symbiosis more severely in leaves than roots. Glob. Change Biol. 31, e70207. https://doi.org/10.1111/gcb.70207 (2025).
Suryanarayanan, T. S. & Shaanker, R. U. Can fungal endophytes fast-track plant adaptations to climate change? Fungal Ecol. 50, 101039. https://doi.org/10.1016/j.funeco.2021.101039 (2021).
NEP-WCMC & IUCN. (UNEP-WCMC & IUCN, Cambridge, UK:, 2025).