Climate change will cause the spatial mismatch between sexually deceptive beetle daisy (Gorteria diffusa, Asteraceae) and its pollinator


  • Wang, Z. et al. Biodiversity conservation in the context of climate change: facing challenges and management strategies. Sci. Total Environ. 937, 173377. https://doi.org/10.1016/j.scitotenv.2024.173377 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiens, J. J. & Zelinka, J. How many species will Earth lose to climate change? Glob Chang. Biol. 30, e17125. https://doi.org/10.1111/gcb.17125 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hansen, J. et al. Climate impact of increasing atmospheric carbon dioxide. Science 213, 957–966. https://doi.org/10.1126/science.213.4511.957 (1981).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change. 42, 169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004 (2017).

    Article 

    Google Scholar
     

  • Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ. Change-Human Policy Dimensions. 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009 (2017).

    Article 

    Google Scholar
     

  • Hiller, A. E. et al. Niche conservatism predominates in adaptive radiation: comparing the diversification of Hawaiian arthropods using ecological niche modelling. Biol. J. Linn. Soc. 127, 479–492. https://doi.org/10.1093/biolinnean/blz023 (2019).

    Article 

    Google Scholar
     

  • Rodder, D. & Weinsheimer, F. Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? J. Nat. Hist. 43, 1207–1217. https://doi.org/10.1080/00222930902783752 (2009).

    Article 

    Google Scholar
     

  • Larson, S. R., DeGroote, J. P., Bartholomay, L. C. & Sugumaran, R. Ecological niche modeling of potential West nile virus vector mosquito species in Iowa. J. Insect Sci. 10, 110. https://doi.org/10.1673/031.010.11001 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pulparambil, H. Sukumaran pradeep, N. Ecological niche modelling in identifying habitats for effective species conservation: A study on endemic aquatic plant Crinum Malabaricum. J. Nat. Conserv. 76, 126517. https://doi.org/10.1016/j.jnc.2023.126517 (2023).

    Article 

    Google Scholar
     

  • Fontúrbel, F. E., Nespolo, R. F., Amico, G. C. & Watson, D. M. Climate change can disrupt ecological interactions in mysterious ways: using ecological generalists to forecast community-wide effects. Clim. Change Ecol. 2, 100044. https://doi.org/10.1016/j.ecochg.2021.100044 (2021).

    Article 

    Google Scholar
     

  • Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965. https://doi.org/10.1038/ncomms13965 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Girón, J., Heino, J., García-Criado, F., Fernández-Aláez, C. & Alahuhta, J. Biotic interactions hold the key to Understanding metacommunity organisation. Ecography 43, 1180–1190. https://doi.org/10.1111/ecog.05032 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 (2017).

    Article 

    Google Scholar
     

  • Tong, Z. Y. et al. New calculations indicate that 90% of flowering plant species are animal-pollinated. Natl. Sci. Rev. 10 https://doi.org/10.1093/nsr/nwad219 (2023).

  • Aizen, M. A., Ashworth, L. & Galetto, L. Reproductive success in fragmented habitats: do compatibility systems and pollination specialization matter? J. Veg. Sci. 13, 885–892. https://doi.org/10.1111/j.1654-1103.2002.tb02118.x (2002).

    Article 

    Google Scholar
     

  • Spira, T. P. Plant-pollinator interactions: A threatened mutualism with implications for the ecology and management of rare plants. Nat. Areas JournalNatural Areas J. 21, 78–88 (2001).


    Google Scholar
     

  • Ashworth, L., Aguilar, R., Galetto, L. & Aizen, M. A. Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J. Ecol. 92, 717–719. https://doi.org/10.1111/j.0022-0477.2004.00910.x (2004).

    Article 

    Google Scholar
     

  • Gérard, M., Vanderplanck, M., Wood, T. & Michez, D. Global warming and plant-pollinator mismatches. Emerg. Top. Life Sci. 4, 77–86. https://doi.org/10.1042/etls20190139 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolanowska, M., Rewicz, A. & Nowak, S. Significant habitat loss of the black vanilla Orchid (Nigritella Nigra s.l., Orchidaceae) and shifts in its pollinators availability as results of global warming. Global Ecol. Conserv. 27, e01560. https://doi.org/10.1016/j.gecco.2021.e01560 (2021).

    Article 

    Google Scholar
     

  • Ellis, A. G. & Johnson, S. D. Floral mimicry enhances pollen export: the evolution of pollination by sexual deceit outside of the orchidaceae. Am. Nat. 176, E143–151. https://doi.org/10.1086/656487 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Roessler, H. The compositae of the flora Zambesiaca area, 5 subtribe gorteriinae. Kirkia 10, 73–99 (1975).


    Google Scholar
     

  • Snijman, D. A. Plants of the Greater Cape Floristic Region 2: the Extra Cape Flora. Strelitzia 30 (South African National Biodiversity Institute, 2013).

  • LaFountain, A. M., Yuan, Y. W. & Evolution The Art of deceptive pollination. Curr. Biol. 33, R301–R303. https://doi.org/10.1016/j.cub.2023.03.027 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delahaie, B. et al. The phylogenetic history of the Gorteria diffusa radiation sheds light on the origins of plant sexual deception. bioRxiv, 2022.2012.2022.521170, (2022). https://doi.org/10.1101/2022.12.22.521170

  • Ellis, A. G. & Johnson, S. D. The evolution of floral variation without pollinator shifts in gorteria diffusa (Asteraceae). Am. J. Bot. 96, 793–801. https://doi.org/10.3732/ajb.0800222 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • de Jager, M. & Ellis, A. Gender-specific pollinator preference for floral traits. Funct. Ecol. 26, 1197–1204. https://doi.org/10.1111/j.1365-2435.2012.02028.x (2012).

    Article 

    Google Scholar
     

  • Frida, S. & Arne, A. A. Morphology and taxonomic reclassification of Gorteria (Asteraceae). Willdenowia 44, 97–120. https://doi.org/10.3372/wi.44.44112 (2014).

    Article 

    Google Scholar
     

  • GBIF.org. Gorteria diffusa. GBIF Occurrence Download. (2025).

  • GBIF.org. Megapalpus capensis. GBIF Occurrence Download. (2025).

  • Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 (2014).

    Article 

    Google Scholar
     

  • Brown, J. L., Bennett, J. R. & French, C. M. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e4095. https://doi.org/10.7717/peerj.4095 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, S., Anderson, R. & Schapire, R. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

    Article 

    Google Scholar
     

  • Fick, S. & Hijmans, R. WorldClim 2: new 1-km Spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).

    Article 

    Google Scholar
     

  • Kramer-Schadt, S. et al. The importance of correcting for sampling bias in maxent species distribution models. Divers. Distrib. 19, 1366–1379. https://doi.org/10.1111/ddi.12096 (2013).

    Article 

    Google Scholar
     

  • Williams, K. D. et al. The Met office global coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J. Adv. Model. Earth Syst. 10, 357–380. https://doi.org/10.1002/2017MS001115 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Parding, K. M. et al. GCMeval – An interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 18, 100167. https://doi.org/10.1016/j.cliser.2020.100167 (2020).

    Article 

    Google Scholar
     

  • Santini, L., Benitez-Lopez, A., Maiorano, L., Cengic, M. & Huijbregts, M. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27, 1035–1050. https://doi.org/10.1111/ddi.13252 (2021).

    Article 

    Google Scholar
     

  • Evans, M. E., Smith, S. A., Flynn, R. S. & Donoghue, M. J. Climate, niche evolution, and diversification of the bird-cage evening primroses (Oenothera, sections Anogra and Kleinia). Am. Nat. 173, 225–240. https://doi.org/10.1086/595757 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Lawal, S., Lennard, C. & Hewitson, B. Response of Southern African vegetation to climate change at 1.5 and 2.0° global warming above the pre-industrial level. Clim. Serv. 16, 100134. https://doi.org/10.1016/j.cliser.2019.100134 (2019).

    Article 

    Google Scholar
     

  • Engelbrecht, F. A., Steinkopf, J., Padavatan, J. & Midgley, G. F. in In Sustainability of Southern African Ecosystems Under Global Change: Science for Management and Policy Interventions. Maltitz169–190 (eds von Graham, P.) (Springer International Publishing, 2024).

  • Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change. 3, 678–682. https://doi.org/10.1038/nclimate1887 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Munzhedzi, S. M. et al. Long-Term Adaptation Scenarios for South Africa (Long-Term Adaptation Scenarios Flagship Research Programme, 2016).

  • Stevens, N., Bond, W., Hoffman, T. & Midgley, G. Change Is in the Air. Ecological Trends and their Drivers in South Africa (South African Environmental Observation Network (SAEON), 2015).

  • Midgley, J. J., Kruger, L. M. & Skelton, R. How do fires kill plants? The hydraulic death hypothesis and cape Proteaceae fire-resisters. South. Afr. J. Bot. 77, 381–386. https://doi.org/10.1016/j.sajb.2010.10.001 (2011).

    Article 

    Google Scholar
     

  • Rosenbloom, D., Markard, J., Geels, F. W. & Fuenfschilling, L. Why carbon pricing is not sufficient to mitigate climate change—and how sustainability transition policy can help. Proceedings of the National Academy of Sciences 117, 8664–8668, doi: (2020). https://doi.org/10.1073/pnas.2004093117

  • IPCC. in. in Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 1–34 (eds Team, C. W., Lee, H. & Romero, J.) (IPCC, 2023).

  • López-Uribe, M. M. et al. Critical thermal maxima differ between groups of insect pollinators and their foraging times: implications for their responses to climate change. J. Melittology. https://doi.org/10.17161/jom.vi122.22505 (2024).

    Article 

    Google Scholar
     

  • Kolanowska, M. & Michalska, E. The effect of global warming on the Australian endemic Orchid cryptostylis Leptochila and its pollinator. PLOS ONE. 18, e0280922. https://doi.org/10.1371/journal.pone.0280922 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolanowska, M., Michalska, E. & Konowalik, K. The impact of global warming on the niches and pollinator availability of sexually deceptive Orchid with a single pollen vector. Sci. Total Environ. 795, 148850. https://doi.org/10.1016/j.scitotenv.2021.148850 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x (2006).

    Article 
    ADS 

    Google Scholar
     

  • Cai, P. et al. Phenological responses of Bactrocera dorsalis (Hendel) to climate warming in China based on long-term historical data. Int. J. Trop. Insect Sci. 43, 881–894. https://doi.org/10.1007/s42690-023-00996-7 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Raza, M. M. et al. Impact of global warming on insects. Archives Phytopathol. Plant. Prot. 48, 84–94. https://doi.org/10.1080/03235408.2014.882132 (2015).

    Article 

    Google Scholar
     

  • Geissler, C., Davidson, A. & Niesenbaum, R. A. The influence of climate warming on flowering phenology in relation to historical annual and seasonal temperatures and plant functional traits. PeerJ 11, e15188. https://doi.org/10.7717/peerj.15188 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puchałka, R. et al. Citizen science helps predictions of climate change impact on flowering phenology: A study on Anemone nemorosa. Agric. For. Meteorol. 325, 109133. https://doi.org/10.1016/j.agrformet.2022.109133 (2022).

    Article 

    Google Scholar
     

  • Schenk, M., Krauss, J. & Holzschuh, A. Desynchronizations in bee–plant interactions cause severe fitness losses in solitary bees. J. Anim. Ecol. 87, 139–149. https://doi.org/10.1111/1365-2656.12694 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Michelle, J. S., Jason, P. H. & Amy, C. G. Timing is everything: an overview of phenological changes to plants and their pollinators. Nat. Areas J. 34, 227–234. https://doi.org/10.3375/043.034.0213 (2014).

    Article 

    Google Scholar
     

  • Malhi, Y. et al. Climate change and ecosystems: threats, opportunities and solutions. Philosophical Trans. Royal Soc. B: Biol. Sci. 375, 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fletcher, C. et al. Earth at risk: an urgent call to end the age of destruction and Forge a just and sustainable future. PNAS Nexus. 3 https://doi.org/10.1093/pnasnexus/pgae106 (2024).

  • Keppel, G., Stralberg, D., Morelli, T. L. & Bátori, Z. Managing climate-change refugia to prevent extinctions. Trends Ecol. Evol. 39, 800–808. https://doi.org/10.1016/j.tree.2024.05.002 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Morelli, T. L. et al. Climate-change refugia: biodiversity in the slow lane. Front. Ecol. Environ. 18, 228–234. https://doi.org/10.1002/fee.2189 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maxwell, S. L., Fuller, R. A., Brooks, T. M., Watson, J. E. M. & Biodiversity The ravages of guns, Nets and bulldozers. Nature 536, 143–145. https://doi.org/10.1038/536143a (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mtshali, H. Gorteria diffusa Thunb. National Assessment, < (2023). http://redlist.sanbi.org/species.php?species=3206-4001

  • Burke, A. Determining landscape function and ecosystem dynamics: contribution to ecological restoration in the Southern Namib desert. Ambio 30, 29–36. https://doi.org/10.1579/0044-7447-30.1.29 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Crawford, C. S. & Gosz, J. R. Desert ecosystems: their resources in space and time. Environ. Conserv. 9, 181–195 (1982).

    Article 

    Google Scholar
     

  • Ma, L. et al. Global patterns of climate change impacts on desert bird communities. Nat. Commun. 14, 211. https://doi.org/10.1038/s41467-023-35814-8 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moran, V. C. & Hoffmann, J. H. Conservation of the fynbos biome in the cape floral region: the role of biological control in the management of invasive alien trees. BioControl 57, 139–149. https://doi.org/10.1007/s10526-011-9403-5 (2012).

    Article 

    Google Scholar
     

  • Sandberg, R. N., Allsopp, N. & Esler, K. J. The use of fynbos fragments by birds: Stepping-stone habitats and resource refugia. Koede 58, 1–10. https://doi.org/10.4102/koedoe.v58i1.1321 (2025).

    Article 

    Google Scholar
     

  • Saaed, M. W. et al. Fifteen-year resilience against further degradation of succulent Karoo vegetation in South Africa. J. Arid Environ. 178, 104152. https://doi.org/10.1016/j.jaridenv.2020.104152 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Benjaminsen, T. A., Kepe, T. & Bråthen, S. Between global interests and local needs: conservation and land reform in namaqualand, South Africa. Africa 78, 223–244. https://doi.org/10.3366/E0001972008000144 (2008).

    Article 

    Google Scholar
     

  • Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431 (2005).

    Article 

    Google Scholar
     

  • Fourcade, Y. Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. Ecol. Inf. 36, 8–14. https://doi.org/10.1016/j.ecoinf.2016.09.002 (2016).

    Article 

    Google Scholar
     

  • Bystriakova, N., Peregrym, M., Erkens, R., Bezsmertna, O. & Schneider, H. Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Syst. Biodivers. 10, 305–315. https://doi.org/10.1080/14772000.2012.705357 (2012).

    Article 

    Google Scholar
     

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).

    Article 
    ADS 

    Google Scholar
     

  • Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197. https://doi.org/10.1890/07-2153.1 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).

    Article 

    Google Scholar
     

  • Brotons, L., Thuiller, W., Araujo, M. & Hirzel, A. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27, 437–448. https://doi.org/10.1111/j.0906-7590.2004.03764.x (2004).

    Article 
    ADS 

    Google Scholar
     

  • VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: how Far should you stray from what you know? Ecol. Model. 220, 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010 (2009).

    Article 

    Google Scholar
     

  • Segurado, P. & Araujo, M. An evaluation of methods for modelling species distributions. J. Biogeogr. 31, 1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x (2004).

    Article 

    Google Scholar
     

  • Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46. https://doi.org/10.1038/s41579-019-0265-7 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamidov, A. et al. Impacts of climate change adaptation options on soil functions: A review of European case-studies. Land. Degrad. Dev. 29, 2378–2389. https://doi.org/10.1002/ldr.3006 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oishy, M. N. et al. Unravelling the effects of climate change on the soil-plant-atmosphere interactions: A critical review. Soil. Environ. Health. 3, 100130. https://doi.org/10.1016/j.seh.2025.100130 (2025).

    Article 

    Google Scholar
     

  • Edwards, J. D. et al. Warming disrupts Plant–Fungal endophyte symbiosis more severely in leaves than roots. Glob. Change Biol. 31, e70207. https://doi.org/10.1111/gcb.70207 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Suryanarayanan, T. S. & Shaanker, R. U. Can fungal endophytes fast-track plant adaptations to climate change? Fungal Ecol. 50, 101039. https://doi.org/10.1016/j.funeco.2021.101039 (2021).

    Article 

    Google Scholar
     

  • NEP-WCMC & IUCN. (UNEP-WCMC & IUCN, Cambridge, UK:, 2025).



  • Source link

    More From Forest Beat

    The golden oyster mushroom craze unleashed an invasive species – and...

    Golden oyster mushrooms, with their sunny yellow caps and nutty flavor, have become wildly popular for being healthy, delicious...
    Biodiversity
    6
    minutes

    Ken Henry urges nature law reform after decades of ‘intergenerational bastardry’

    Former Treasury Secretary Ken Henry has warned Australia’s global environmental reputation is at risk if the Albanese government fails...
    Biodiversity
    4
    minutes

    Predicting the potential distribution of Podophyllum hexandrum Royle in the Himalaya...

    Shilky et al. Climate change: A major challenge to biodiversity conservation, ecological services, and sustainable development. in The Palgrave Handbook of Socio-Ecological Resilience...
    Biodiversity
    9
    minutes

    Cryopreservation of juvenile Mytilus galloprovincialis to safeguard mollusk biodiversity and support...

    Increasing larval fitness prior to cryopreservationThe D-larvae of M. galloprovincialis from adult specimens in the Vigo estuary withstand a decrease in salinity of...
    Biodiversity
    18
    minutes
    spot_imgspot_img