Community science helps digitize 78 years of fish and habitat data for thousands of lakes in Michigan, USA

[ad_1]

  • Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54, 2298–2314 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peters N. E. et al. Hydrology and biogeochemistry linkages. In: Wilderer P. ed. Treatise on water science, Vol. 2. Oxford, Academic Press. Pp. 271–304. (2011).

  • U.S. Department of the Interior, U.S. Fish and Wildlife Service [USDOI]. National survey of fishing, hunting, and wildlife-associated recreation. U.S. Department of Commerce, U.S. Census Bureau. https://www.fws.gov/sites/default/files/documents/Final_2022-National-Survey_101223-accessible-single-page.pdf (2022).

  • Lansford, N. H. & Jones, L. L. Recreational and aesthetic value of water using hedonic price analysis. Journal of Agricultural and Resource Economics 20(2), 341–355 (1995).


    Google Scholar
     

  • Reynaud, A. & Lanzanova, D. A global meta-analysis of the value of ecosystem services provided by lakes. Ecological Economy 137, 184–194, https://doi.org/10.1016/j.ecolecon.2017.03.001 (2017).

    Article 

    Google Scholar
     

  • O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42(10), 773–781 (2015).


    Google Scholar
     

  • U.S. Environmental Protection Agency [USEPA]. National Lakes Assessment 2012: A Collaborative Survey of Lakes in the United States. EPA 841-R-16-113. U.S. Environmental Protection Agency, Washington, DC. https://nationallakesassessment.epa.gov/ (2016).

  • Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94, 849–873, https://onlinelibrary.wiley.com/doi/full/10.1111/brv.12480 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Alofs, K. M., Jackson, D. A. & Lester, N. P. Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Divers. Distrib. 20, 123–136 (2014).

    Article 

    Google Scholar
     

  • Hansen, G. J. A., Read, J. S., Hansen, J. F. & Winslow, L. A. Projected shifts in fish species dominance in Wisconsin lakes under climate change. Global Change Biol 23, 1463–1476 (2017).

    Article 
    ADS 

    Google Scholar
     

  • King, K. B. S. et al. Using historical fish catch data to evaluate predicted changes in relative abundance in response to a warming climate. Ecography 2023, 8, https://doi.org/10.1111/ecog.06798 (2023).

    Article 

    Google Scholar
     

  • Whittier, T. R. et al. Indicators of Ecological Stress and Their Extent in the Population of Northeastern Lakes: A Regional-Scale Assessment. BioScience 52(3), 235–247 (2012).

    Article 

    Google Scholar
     

  • Solokas M. et al. Shrinking body size and climate warming: many freshwater salmonids do not follow the rule. Global Change Biology. https://doi.org/10.1111/gcb.16626 (2023).

  • Lynch, A. J. et al. Climate change effects on North American inland fish populations and assemblages. Fisheries 41(7), 346–361, https://doi.org/10.1080/03632415.2016.1186016 (2016).

    Article 

    Google Scholar
     

  • Magee, M. R. et al. Scientific advances and adaptation strategies for Wisconsin lakes facing climate change. Lake and Reservoir Management 35(4), 364–381, https://doi.org/10.1080/10402381.2019.1622612 (2019).

    Article 

    Google Scholar
     

  • Tingley, R. W. et al. Adapting to climate change: guidance for the management of inland glacial lake fisheries. Lake and Reservoir Management 35(4), 435–452, https://doi.org/10.1080/10402381.2019.1678535 (2019).

    Article 

    Google Scholar
     

  • Müller, F. et al. Assessing resilience in long-term ecological data sets. Ecological Indicators 65, 10–43 (2016).

    Article 

    Google Scholar
     

  • Kling, M. M., Auer, S. L., Comer, P. J., Ackerly, D. D. & Hamilton, H. Multiple axes of ecological vulnerability to climate change. Global Change Biology 26(5), 2798–2813 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Moore, J. W. & Schindler, D. E. Getting ahead of climate change for ecological adaptation and resilience. Science 376(6600), 1421–1426 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Willis, K. J. et al. How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society: 362175–187 (2007).

  • Dietl, G. P. et al. Conservation Paleobiology: Leveraging Knowledge of the Past to Inform Conservation and Restoration. The Annual Review of Earth and Planetary Sciences 43, 79–103, https://doi.org/10.1146/annurev-earth-040610-133349 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stein, E. D. et al. Establishing Targets for Regional Coastal Wetland Restoration Planning Using Historical Ecology and Future Scenario Analysis: The Past, Present, Future Approach. Estuaries and Coasts 43, 207–222, https://doi.org/10.1007/s12237-019-00681-4 (2020).

    Article 

    Google Scholar
     

  • Tingley, M. W. & Beissinger, S. R. Detecting range shifts from historical species occurrences: new perspectives on old data. Trends in Ecology and Evolution 24(11), 625–33, https://doi.org/10.1016/j.tree.2009.05.009 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Pyke, G. H. & Ehrlich, P. R. Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biological Reviews of the Cambridge Philosophical Society 85, 247–266 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353(6304), aad8466 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kwok, R. Historical data: Hidden in the past. Nature 549, 419–421, https://doi.org/10.1038/nj7672-419 (2017).

    Article 

    Google Scholar
     

  • Astudillo-Clavijo, V., Mankis, T., & López-Fernández, H. Opening the museum’s vault: historical field records preserve reliable ecological data. The American Naturalist. https://doi.org/10.1086/728422 (2024).

  • Thomer, A., Vaidya, G., Guralnick, R., Bloom, D., & Russell L. From documents to datasets: A MediaWiki-based method of annotating and extracting species observations in century-old field notebooks. Zookeys. (209):235-53. https://doi.org/10.3897/zookeys.209.3247 (2012).

  • Singer, R. A., Ellis, S. & Page, L. M. Awareness and use of biodiversity collections by fish biologists. Journal of Fish Biology 96(2), 297–306 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lendemer, J. et al. The extended specimen network: A strategy to enhance US biodiversity collections, promote research and education. BioScience 70(1), 23–30, https://doi.org/10.1093/biosci/biz140 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kelly, J. A., Farrell, S. L., Hendrickson, L. G., Luby, J. & Mastel, K. L. A critical literature review of historic scientific analog data: uses, successes, and challenges. Data Science Journal 21, 14–14 (2022).

    Article 

    Google Scholar
     

  • Hamad, K., & Kaya, M. A detailed analysis of optical character recognition technology. International Journal of Applied Mathematics Electronics and Computers, (Special Issue-1), 244-249 (2016).

  • Cox, J. et al. Defining and Measuring Success in Online Citizen Science: A Case Study of Zooniverse Projects. in Computing in Science & Engineering 17(no. 4), 28–41, https://doi.org/10.1109/MCSE.2015.65 (2015).

    Article 

    Google Scholar
     

  • Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Frontiers in Ecology and the Environment 10(6), 291–297, https://doi.org/10.1890/110236 (2012).

    Article 

    Google Scholar
     

  • Grabda, E. E. et al. Mismatch between climate-based bioenergetics model of fish growth and long-term and regional-scale empirical data. Canadian Journal of Fisheries and Aquatic Sciences 82, 1–15, https://doi.org/10.1139/cjfas-2024-0266 (2025).

    Article 

    Google Scholar
     

  • Zooniverse. Panoptes-cli. v1.1.5. Github repository. https://github.com/zooniverse/panoptes-cli (2021).

  • Alofs, K. M. et al. Community science brings together natural history collections and historical survey data to understand changing ecological patterns. Bioscience https://doi.org/10.1093/biosci/biae131 (2024).

    Article 

    Google Scholar
     

  • Krawczyk, C., Langley, A., Allen, C., McMaster, A. & Wolfenbarger, Z. zooniverse/aggregation-for-caesar: Version 4.0.0 (v4.0.0). Zenodo https://doi.org/10.5281/zenodo.6979588 (2022).

  • Bailey, R. M., William, C. L., & Smith, G. R. An Atlas of Michigan Fishes with Keys and Illustrations for Their Identification. Miscellaneous Publications, Museum of Zoology, University of Michigan. No. 192, pp5-10. ISSN 0076-8405 (2004).

  • Michigan Department of Natural Resources (MDNR). FISHHUB Service, FISH Hydro Polygons. Downloaded 15 Nov 2024. https://midnr.maps.arcgis.com/home/item.html?id=3e5ecc59566c409d8b38c86f7ca62e08&sublayer=3 (2024).

  • Open Knowledge Foundation. reconcile-csv-0.1.2 https://okfnlabs.org/reconcile-csv/ (2013).

  • King, K. et al. CHANGES Project – Lake Summary Curated Data [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/72e8-ka38 (2025).

  • King, K. et al. CHANGES Project – Fish Collection Curated Data [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/1pz4-x763 (2025).

  • King, K. et al. CHANGES Project – Fish Growth Curated Data [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/h8hp-gw58 (2025).

  • Alofs, K. et al. Collections, Heterogeneous data, and Next Generation Ecological Studies (CHANGES) – Michigan Lake Surveys. University of Michigan – Deep Blue Data. https://doi.org/10.7302/ggk0-sx94 (2024).

  • Alofs, K. et al. CHANGES Project – Lake Summary (SUMM) [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/k18b-m416 (2024).

  • Alofs, K. et al. CHANGES Project – Fish Collection (FISHc) [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/mr06-c572 (2024).

  • Alofs, K. et al. CHANGES Project – Fish Growth Analysis (GROW) [Data set], University of Michigan – Deep Blue Data. https://doi.org/10.7302/w1a0-8t39 (2024).

  • Cheruvelil, K. S. et al. LAGOS-US LOCUS v1.0: Data module of location, identifiers, and physical characteristics of lakes and their watersheds in the conterminous U.S. Limnology and Oceanography Letters 6(5), 270–292, https://doi.org/10.1002/lol2.10203 (2021).

    Article 

    Google Scholar
     

  • Winslow, L. A., Hansen, G. J. A., Read, J. S. & Notaro, M. Large-scale modeled contemporary and future water temperature estimates for 10774 Midwestern U.S. Lakes. Scientific Data 4, 170053, https://doi.org/10.1038/sdata.2017.53 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen, G. J. A., Wehrly, K. E., Vitense, K., Walsh, J. R. & Jacobson, P. C. Quantifying the Resilience of Coldwater Lake Habitat to Climate and Land Use Change to Prioritize Watershed Conservation. Ecosphere 13(7), e4172, https://doi.org/10.1002/ecs2.4172 (2022).

    Article 

    Google Scholar
     

  • Rypel, A. L., Lyons, J., Griffin, J. D. T. & Simonson, T. D. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries 41(5), 230–243, https://doi.org/10.1080/03632415.2016.1160894 (2016).

    Article 

    Google Scholar
     

  • Loewen, C. J. G. et al. Bioregions are predominantly climatic for fishes of northern lakes. Global Ecology and Biogeography 31, 233–246, https://doi.org/10.1111/geb.13424 (2022).

    Article 

    Google Scholar
     

  • Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philosophical Transactions of the Royal Society 374(1763), 20170386374 (2018).


    Google Scholar
     

  • Turner, T. F. et al. Long-term ecological research in freshwaters enabled by regional biodiversity collections, stable isotope analysis, and environmental informatics. BioScience 73(7), 479–493 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Nanglu, K. et al. The nature of science: The fundamental role of natural history in ecology, evolution, conservation, and education. Ecology and Evolution. 13, e10621 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perrine, J. D. & Patton, J. L. Letters to the Future. In Canfield M. R. (Ed) Field Notes on Science & Nature. Harvard University Press, Cambridge, Massachusetts (2011).

  • R Core Team. R: a language and environment for statistical computing version 4.4.0. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/ (2024).

  • King, K. CHANGES-UM/summ_fishc_grow: Lake summary, fish collection, and fish growth data (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.15389937 (2025).

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes
    spot_imgspot_img