Comparing and quantifying the ecological niches of the saltmarsh grass Spartina alterniflora and major mangrove species in China


  • Samal, P., Srivastava, J., Charles, B. & Singarasubramanian, S. R. Species distribution models to predict the potential niche shift and priority conservation areas for mangroves (Rhizophora apiculata R. mucronata) in response to climate and sea level fluctuations along coastal India. Ecol. Ind. 154, 110631. https://doi.org/10.1016/j.ecolind.2023.110631 (2023).

    Article 

    Google Scholar
     

  • Morris, J. T. et al. Mangrove trees outperform saltmarsh grasses in building elevation but collapse rapidly under high rates of sea-level rise. Earth’s Future https://doi.org/10.1029/2022ef003202 (2023).

    Article 

    Google Scholar
     

  • Song, S. et al. Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change. Nat. Commun. 14, 756. https://doi.org/10.1038/s41467-023-36477-1 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234. https://doi.org/10.1038/s41586-018-0476-5 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559. https://doi.org/10.1038/nature15538 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Chao, B., Dong, P., Zhang, D. & Chen, B. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 788, 147914. https://doi.org/10.1016/j.scitotenv.2021.147914 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, W. et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total Environ. 748, 142321. https://doi.org/10.1016/j.scitotenv.2020.142321 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An, S., Gu, B., Zhou, C., Wang, Z. & Liu, Y. Spartina invasion in China implications for invasive species management and future research. Weed Res. 47, 183–191. https://doi.org/10.1111/j.1365-3180.2007.00559.x (2007).

    Article 

    Google Scholar
     

  • Xu, X., Wei, S., Chen, H., Li, B. & Nie, M. Effects of Spartina invasion on the soil organic carbon content in salt marsh and mangrove ecosystems in China. J. Appl. Ecol. 59, 1937–1946. https://doi.org/10.1111/1365-2664.14202 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, D. H., Hu, Y. M. & Liu, M. Potential distribution of Spartinal alterniflora in China coastal areas based on Maxent niche model. Ying Yong Sheng Tai Xue Bao 30, 2329–2337. https://doi.org/10.13287/j.1001-9332.201907.014 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ. 673, 502–510. https://doi.org/10.1016/j.scitotenv.2019.04.122 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X. et al. Impact of Spartina alterniflora invasion in coastal wetlands of China: Boon or bane?. Biology (Basel) 12, 1057. https://doi.org/10.3390/biology12081057 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutchinson, G. E., Hutchinson, G., Hutchinson, G. & Hutchinson, G. Concluding remarks, coldspring harbor symposium. Quant. Biol. 22, 239 (1957).

    Article 

    Google Scholar
     

  • Pastore, A. I., Barabas, G., Bimler, M. D., Mayfield, M. M. & Miller, T. E. The evolution of niche overlap and competitive differences. Nat. Ecol. Evol. 5, 330–337. https://doi.org/10.1038/s41559-020-01383-y (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, S. et al. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Glob. Change Biol. 27, 1627–1644. https://doi.org/10.1111/gcb.15516 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wei, Y. et al. Mangrove-saltmarsh ecotones: Are species shifts determining eco-morphodynamic landform configurations?. Earth’s Future https://doi.org/10.1029/2024ef004990 (2024).

    Article 

    Google Scholar
     

  • Ndayambaje, P. et al. Niche separation and weak interactions in the high tidal zone of saltmarsh-mangrove mixing communities. Ecol. Evol. 11, 3871–3883. https://doi.org/10.1002/ece3.7263 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 111, 723–727. https://doi.org/10.1073/pnas.1315800111 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wani, I. A. et al. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Sci. Rep. 12, 13205. https://doi.org/10.1038/s41598-022-16837-5 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. H., Hu, Y. M. & Liu, M. Potential distribution of Spartinal alterniflora in China coastal areas based on Maxent niche model. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 30, 2329–2337. https://doi.org/10.13287/j.1001-9332.201907.014 (2019).

    Article 

    Google Scholar
     

  • Cui, L. et al. Global potential distribution of mangroves: Taking into account salt marsh interactions along latitudinal gradients. J. Environ. Manag. 351, 119892. https://doi.org/10.1016/j.jenvman.2023.119892 (2024).

    Article 

    Google Scholar
     

  • Karla, R. M., Carlos, Y. A., Townsend, P., Jorge, E. A. & Jorge, H.-S. Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE 15, e0237701. https://doi.org/10.1371/journal.pone.0237701 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. Invasive trends of Spartina alterniflora in the southeastern coast of china and potential distributional impacts on mangrove forests. Plants 12, 1923. https://doi.org/10.3390/plants12101923 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Y. et al. Ensemble species distribution modeling and multilocus phylogeography provide insight into the spatial genetic patterns and distribution dynamics of a keystone forest species, Quercus glauca. BMC Plant Biol. 24, 168. https://doi.org/10.1186/s12870-024-04830-1 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, L. et al. Conservation and restoration of mangroves in response to invasion of Spartina alterniflora based on the MaxEnt model: A case study in China. Forests 14, 1220. https://doi.org/10.3390/f14061220 (2023).

    Article 

    Google Scholar
     

  • Schmitt, S. et al. ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 8, 1795–1803. https://doi.org/10.1111/2041-210x.12841 (2017).

    Article 

    Google Scholar
     

  • McCullagh, P. & Nelder, J. A. Generalized Linear Models (Routledge, London, 1989).

    Book 

    Google Scholar
     

  • Hastie, T. & Tibshirani, R. Generalized additive mdels. Stat. Sci. 1, 297–318 (1986).


    Google Scholar
     

  • Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat. 19, 1–67. https://doi.org/10.1214/aos/1176347963 (1991).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ridgeway, G. Generalized boosted models: A guide to the gbm package R (2020).

  • Breiman, L., Friedman, J., Olshen, R. & Stone, C. Classification and Regression Trees. (Routledge, London, 1984).


    Google Scholar
     

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

    Article 

    Google Scholar
     

  • Gupta, N. Artificial neural network. Netw. Complex Syst. 3, 24–28 (2013).


    Google Scholar
     

  • Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 13, 18–28. https://doi.org/10.1109/5254.708428 (1998).

    Article 

    Google Scholar
     

  • Morgane, B. M., Frédéric, J., Cécile, H. A. & Wilfried, T. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).

    Article 

    Google Scholar
     

  • Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x (2005).

    Article 
    ADS 

    Google Scholar
     

  • Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, R., Cao, R., Gong, X. & Feng, J. Large shifts of niche and range in the golden apple snail (Pomacea canaliculata), an aquatic invasive species. Ecosphere 14, e4391. https://doi.org/10.1002/ecs2.4391 (2023).

    Article 

    Google Scholar
     

  • Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x (2012).

    Article 

    Google Scholar
     

  • Meng, W., Feagin, R. A., Hu, B., He, M. & Li, H. The spatial distribution of blue carbon in the coastal wetlands of China. Estuar. Coast. Shelf Sci. 222, 13–20. https://doi.org/10.1016/j.ecss.2019.03.010 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, S., Lu, W. & Zou, Z. Mangrove wetlands: Distribution, species composition and protection in China. Subtrop. Plant Sci. 46, 301–310. https://doi.org/10.3969/j.issn.1009-7791.2017.04.001 (2017).

    Article 

    Google Scholar
     

  • Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105, 6668–6672. https://doi.org/10.1073/pnas.0709472105 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, B. & Zhang, Q. Area, distributionand species composition of mangroves in China. Wetland Sci. 12, 435. https://doi.org/10.13248/j.cnki.wetlandsci.2014.04.005 (2014).

    Article 

    Google Scholar
     

  • Xie, X. F. et al. Impacts of Spartina alterniflora invasion on coastal wetland ecosystem: Advances and prospects. Ying Yong Sheng Tai Xue Bao 31, 2119–2128. https://doi.org/10.13287/j.1001-9332.202006.032 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, H. et al. Nitrogen-enriched eutrophication promotes the invasion of Spartina alterniflora in coastal China. Clean: Soil, Air, Water 43, 244–250. https://doi.org/10.1002/clen.201300844 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mckee, K., Rogers, K. & Saintilan, N. Response of Salt Marsh and Mangrove Wetlands to Changes in Atmospheric CO2, Climate, and Sea Level (Springer, Cham, 2012).

    Book 

    Google Scholar
     

  • Araujo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol Evol 22, 42–47. https://doi.org/10.1016/j.tree.2006.09.010 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Lyons, D. A. et al. Identifying marine invasion hotspots using stacked species distribution models. Biol. Invasions 22, 3403–3423. https://doi.org/10.1007/s10530-020-02332-3 (2020).

    Article 

    Google Scholar
     

  • Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43, 549–558. https://doi.org/10.1111/ecog.04890 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Crimmins, S. M., Dobrowski, S. Z. & Mynsberge, A. R. Evaluating ensemble forecasts of plant species distributions under climate change. Ecol. Model. 266, 126–130. https://doi.org/10.1016/j.ecolmodel.2013.07.006 (2013).

    Article 

    Google Scholar
     

  • Kaky, E., Nolan, V., Alatawi, A. & Gilbert, F. A comparison between ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 60, 101150. https://doi.org/10.1016/j.ecoinf.2020.101150 (2020).

    Article 

    Google Scholar
     

  • Zahoor, B., Liu, X., Ahmad, B., Kumar, L. & Songer, M. Impact of climate change on Asiatic black bear (Ursus thibetanus) and its autumn diet in the northern highlands of Pakistan. Glob. Chang Biol. 27, 4294–4306. https://doi.org/10.1111/gcb.15743 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anibaba, Q. A., Dyderski, M. K. & Jagodzinski, A. M. Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum) in Europe. Sci. Total Environ. 825, 154053. https://doi.org/10.1016/j.scitotenv.2022.154053 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veldkornet, D. A. & Rajkaran, A. Predicting shifts in the geographical distribution of two estuarine plant species from the subtropical and temperate regions of South Africa. Wetlands 39, 1179–1188. https://doi.org/10.1007/s13157-019-01218-y (2019).

    Article 

    Google Scholar
     

  • Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 10, 435–435. https://doi.org/10.1111/j.1461-0248.2007.01044.x (2005).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Complete instars’ morphology of Zercon forsslundi Sellnick, 1958 (Parasitiformes: Mesostigmata) with...

    Morphological ontogeny of Zercon forsslundi (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)Zercon forsslundi, larva....
    Biodiversity
    22
    minutes

    An improved lightweight method based on EfficientNet for birdsong recognition

    Data resourcesThe study employed two publicly available datasets: the BirdsData dataset, released by BirdsData Technology, and the World’s Wild Bird Sounds dataset obtained...
    Biodiversity
    12
    minutes

    Spatial niche differentiation and key driving factors of dominant benthic macroinvertebrates...

    Kumar, P. et al. Impact of pesticides application on aquatic ecosystem and biodiversity: a review. Biol. Bull. 50(6), 1362–1375 (2023).Article  ...
    Biodiversity
    10
    minutes

    Machine learning-based mapping of Acidobacteriota and Planctomycetota using 16 S rRNA gene...

    Jiao, S., Xu, Y., Zhang, J., Hao, X. & Lu, Y. Core microbiota in agricultural soils and their potential associations with nutrient cycling....
    Biodiversity
    10
    minutes
    spot_imgspot_img