Depth-structured lineages in the coral Stylophora pistillata of the Northern Red Sea


  • Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Reaka-Kudla, M. L. The Global biodiversity of coral reefs: A comparison with Rain Forests. In: Biodiversity II Understanding and Protecting Our Natural Resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 83–108 (Joseph Henry/National Academy Press, 1997).

  • WoRMS. Scleractinia. https://www.marinespecies.org/aphia.php?p=taxdetails&id=1363 (2024).

  • Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).


    Google Scholar
     

  • Eddy, T. D., Cheung, W. W. L. & Bruno, J. F. Historical baselines of coral cover on tropical reefs as estimated by expert opinion. PeerJ 6, e4308 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science. 359, 80–83 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoeksema, B. W. & Cairns, S. D. World List of Scleractinia. Stylophora pistillata (Esper, 1792). World Register of Marine Species, https://www.marinespecies.org/aphia.php?p=taxdetails&id=206982 on 2024-01-31 (2023).

  • Scheer, G. & Pillai, C. S. G. Report on the stony corals from the Red Sea. Zoologica 131, 1–198 (1983).


    Google Scholar
     

  • Keshavmurthy, S. et al. DNA barcoding reveals the coral ‘laboratory-rat’, Stylophora pistillata encompasses multiple identities. Sci. Rep. 3, 1520 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flot, J.-F. et al. Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC Ecol. 11, 22 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefani, F. et al. Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs 30, 1033–1049 (2011).


    Google Scholar
     

  • Arrigoni, R., Benzoni, F., Terraneo, T. I., Caragnano, A. & Berumen, M. L. Recent origin and semi-permeable species boundaries in the scleractinian coral genus Stylophora from the Red Sea. Sci. Rep. 6, 34612 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todd, P. a. Morphological plasticity in scleractinian corals. Biol. Rev. 83, 315–337 (2008).

    PubMed 

    Google Scholar
     

  • Ladner, J. T. & Palumbi, S. R. Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Mol. Ecol. 21, 2224–2238 (2012).

    PubMed 

    Google Scholar
     

  • Schmidt-Roach, S. et al. Assessing hidden species diversity in the coral Pocillopora damicornis from Eastern Australia. Coral Reefs 32, 161–172 (2013).


    Google Scholar
     

  • Warner, P. A., Van Oppen, M. J. H. & Willis, B. L. Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity. Mol. Ecol. 24, 2993–3008 (2015).

    PubMed 

    Google Scholar
     

  • Richards, Z. T., Berry, O. & van Oppen, M. J. H. Cryptic genetic divergence within threatened species of Acropora coral from the Indian and Pacific Oceans. Conserv. Genet. 17, 577–591 (2016).


    Google Scholar
     

  • Veron, J. E. N. Corals in Space and Time. The Biogeography and Evolution of the Scleractinia. Cornell University Press (Cornell University Press, 1995). https://doi.org/10.1017/S0016756800008050.

  • Richards, Z. T. & Hobbs, J. P. A. Hybridisation on coral reefs and the conservation of evolutionary novelty. Curr. Zool. 61, 132–145 (2015).


    Google Scholar
     

  • Hobbs, J. P. A. et al. Hybridisation and the evolution of coral reef biodiversity. Coral Reefs 41, 535–549 (2022).


    Google Scholar
     

  • Chen, C. A., Odorico, D. M., Tenlohuis, M., Veron, J. E. N. & Miller, D. J. Systematic Relationships within the Anthozoa (Cnidaria, Anthozoa) Using the 5′-End of the 28s rDNA. Mol. Phylogenet. Evol. 4, 175–183 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Romano, S. L. & Palumbi, S. R. Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. J. Mol. Evol. 45, 397–411 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Romano, S. L. & Cairns, S. Molecular phylogenetic hypothesis for the evolution of scleractinian corals. Bull. Mar. Sci. 67, 1043–1068 (2000).


    Google Scholar
     

  • Fukami, H. et al. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Microb. Ecol. 427, 0–3 (2004).

    CAS 

    Google Scholar
     

  • Kitahara, M. V., Cairns, S. D., Stolarski, J., Blair, D. & Miller, D. J. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One 5, e11490 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stolarski, J. et al. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol. Biol. 11, 316 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, D., Licuanan, W. Y., Baird, A. H. & Fukami, H. Cleaning up the ‘Bigmessidae’: Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol. Biol. 11, 37 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benzoni, F., Arrigoni, R., Waheed, Z., Stefani, F. & Hoeksema, B. W. Phylogenetic relationships and revision of the genus Blastomussa (Cnidaria: Anthozoa: Scleractinia) with description of a new species. Raffles Bull. Zool. 62, 358–378 (2014).


    Google Scholar
     

  • Arrigoni, R. et al. Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species. Mol. Phylogenet. Evol. 105, 146–159 (2016).

    PubMed 

    Google Scholar
     

  • Seiblitz, I. G. L. et al. Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: Insights from mitochondrial and nuclear phylogenomics. Mol. Phylogenet. Evol. 175, 107565 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • McFadden, C. S. et al. Phylogenomics, origin, and diversification of Anthozoans (Phylum Cnidaria). Syst. Biol. 70, 635–647 (2021).

    PubMed 

    Google Scholar
     

  • Fukami, H. et al. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 3, e3222 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loya, Y. Settlement, mortality and recruitment of a Red Sea Scleractinian coral population. In: Coelenterate Ecology and Behavior (ed. Mackie, G. O.) 89–100 (Springer, Boston, MA, 1976). https://doi.org/10.1007/978-1-4757-9724-4.

  • Harrison, P. L. & Wallace, C. Reproduction, dispersal and recruitment of scleractinian corals. In: Ecosystems of the World 25: Coral Reefs (ed. Dubinsky, Z.) 133–207 (Elsevier Science Publisher, 1990).

  • Shefy, D. & Rinkevich, B. Stylophora pistillata – A model colonial species in basic and applied studies. In: Handbook of Marine Model Organisms in Experimental Biology: Established and Emerging (eds. Boutet, A. & Schierwater, B.) 195–216 (CRC Press, 2021). https://doi.org/10.1201/9781003217503-11.

  • Veron, J. E. N. Corals of the World (Australian Institute of Marine Science, 2000).

  • Fadlallah, Y. H. Sexual reproduction, development and larval biology in Scleractinian corals: a review. Coral Reefs 2, 129–150 (1983).


    Google Scholar
     

  • Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).


    Google Scholar
     

  • Underwood, J. N., Smith, L. D., Van Oppen, M. J. H. & Gilmour, J. P. Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol. Ecol. 16, 771–784 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Underwood, J. N., Smith, L. D., Van Oppen, M. J. H. & Gilmour, J. P. Ecologically relevant dispersal of corals on isolated reefs: Implications for managing resilience. Ecol. Appl. 19, 18–29 (2009).

    PubMed 

    Google Scholar
     

  • Nunes, F. L. D., Norris, R. D. & Knowlton, N. Long Distance Dispersal and Connectivity in Amphi-Atlantic Corals at Regional and Basin Scales. PLoS One 6, e22298 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, L. et al. Contrasting patterns of genetic connectivity in brooding and spawning corals across a remote atoll system in northwest Australia. Coral Reefs 39, 55–60 (2020).


    Google Scholar
     

  • van der Ven, R. M., Heynderickx, H. & Kochzius, M. Differences in genetic diversity and divergence between brooding and broadcast spawning corals across two spatial scales in the Coral Triangle region. Mar. Biol. 168, 17 (2021).


    Google Scholar
     

  • Ayre, D. J., Hughes, T. P. & Standish, R. J. Genetic differentiation, reproductive mode, and gene flow in the brooding coral Pocillopora damicornis along the Great Barrier Reef, Australia. Mar. Ecol. Prog. Ser. 159, 175–187 (1997).


    Google Scholar
     

  • Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 21619 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buitrago-López, C. et al. Disparate population and holobiont structure of pocilloporid corals across the Red Sea gradient demonstrate species-specific evolutionary trajectories. Mol. Ecol. 32, 2151–2173 (2023).

    PubMed 

    Google Scholar
     

  • Meziere, Z. et al. Exploring coral speciation: Multiple sympatric Stylophora pistillata taxa along a divergence continuum on the Great Barrier Reef. Evol. Appl. 17, 1–17 (2024).


    Google Scholar
     

  • Bongaerts, P. et al. Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS One 5, e10871 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sturm, A. B. et al. Does depth divide? Variable genetic connectivity patterns among shallow and mesophotic Montastraea cavernosa coral populations across the Gulf of Mexico and western Caribbean. Ecol. Evol. 13, e10622 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serrano, X. M. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Bell, J. J. et al. Global status, impacts, and management of rocky temperate mesophotic ecosystems. Conserv. Biol. 38, 1–17 (2022).


    Google Scholar
     

  • Hinderstein, L. M. et al. Theme section on ‘Mesophotic Coral Ecosystems: Characterization, Ecology, and Management. Coral Reefs 29, 247–251 (2010).


    Google Scholar
     

  • Pyle, R. L. & Copus, J. M. Mesophotic Coral Ecosystems: Introduction and Overview. Coral Reefs World 12, 3–27 (2019).


    Google Scholar
     

  • Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).


    Google Scholar
     

  • Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loya, Y. Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar. Biol. 13, 100–123 (1972).


    Google Scholar
     

  • Kramer, N., Eyal, G., Tamir, R. & Loya, Y. Upper mesophotic depths in the coral reefs of Eilat, Red Sea, offer suitable refuge grounds for coral settlement. Sci. Rep. 9, 1–12 (2019).

    CAS 

    Google Scholar
     

  • Eyal, G., Tamir, R., Kramer, N., Eyal-Shaham, L. & Loya, Y. The Red Sea: Israel. in Mesophotic Coral Ecosystems. Coral Reefs of the World (eds. Loya, Y., Puglise, K. & Bridge, T.) 12 199–214 (Springer, 2019).

  • Kleinhaus, K. et al. Science, Diplomacy, and the Red Sea’s Unique Coral Reef: It’s Time for Action. Front. Mar. Sci. 7, 1–9 (2020).


    Google Scholar
     

  • Ayalon, I., de Barros Marangoni, L. F., Benichou, J. I. C., Avisar, D. & Levy, O. Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment. Glob. Chang. Biol. 25, 4194–4207 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg, Y. et al. Urbanization comprehensively impairs biological rhythms in coral holobionts. Glob. Chang. Biol. 28, 3349–3364 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy, O. et al. Complex diel cycles of gene expression in coral-algal symbiosis. Science 331, 175 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Levy, O. et al. Light-Responsive Cryptochromes from a Simple Multicellular Animal, the Coral Acropora millepora. Science 318, 467–470 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Ayalon, I. et al. Coral gametogenesis collapse under artificial light pollution. Curr. Biol. 31, 413–419 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Tamir, R., Eyal, G., Cohen, I. & Loya, Y. Effects of Light Pollution on the Early Life Stages of the Most Abundant Northern Red Sea Coral. Microorganisms 8, 193 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quek, Z. B. R. et al. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol. Phylogenet. Evol. 186, 107867 (2023).

    PubMed 

    Google Scholar
     

  • Shaish, L., Abelson, A. & Rinkevich, B. How plastic can phenotypic plasticity be? The branching coral Stylophora pistillata as a model system. PLoS One 2, e644 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramer, N., Guan, J., Chen, S., Wangpraseurt, D. & Loya, Y. Morpho-functional traits of the coral Stylophora pistillata enhance light capture for photosynthesis at mesophotic depths. Commun. Biol. 5, 861 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberty, S. et al. Shallow and mesophotic colonies of the coral Stylophora pistillata share similar regulatory strategies of photosynthetic electron transport but differ in their sensitivity to light. Coral Reefs 42, 645–659 (2023).

    CAS 

    Google Scholar
     

  • Martinez, S. et al. Energy sources of the depth-generalist mixotrophic coral Stylophora pistillata. Front. Mar. Sci. 7, 1–16 (2020).

    CAS 

    Google Scholar
     

  • Osman, E. O. et al. Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 8, 8 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossbach, S. et al. Flexibility in Red Sea Tridacna maxima-Symbiodiniaceae associations supports environmental niche adaptation. Ecol. Evol. 11, 3393–3406 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, I. & Dubinsky, Z. Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: photosynthesis and calcification. Front. Mar. Sci. 2, 45 (2015).


    Google Scholar
     

  • Einbinder, S. et al. Novel Adaptive Photosynthetic Characteristics of Mesophotic Symbiotic Microalgae within the Reef-Building Coral, Stylophora pistillata. Front. Mar. Sci. 3, 195 (2016).


    Google Scholar
     

  • Scucchia, F., Nativ, H., Neder, M., Goodbody-Gringley, G. & Mass, T. Physiological Characteristics of Stylophora pistillata Larvae Across a Depth Gradient. Front. Mar. Sci. 7, 13 (2020).


    Google Scholar
     

  • Prada, C. & Hellberg, M. E. Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc. Natl. Acad. Sci. 110, 3961–3966 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 7200 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bongaerts, P. et al. Morphological stasis masks ecologically divergent coral species on tropical reefs. Curr. Biol. 31, 2286–2298.e8 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • van Oppen, M. J. H., McDonald, B. J., Willis, B. & Miller, D. J. The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: Reticulation, incomplete lineage sorting, or morphological convergence? Mol. Biol. Evol. 18, 1315–1329 (2001).

    PubMed 

    Google Scholar
     

  • Davies, T. W. & Smyth, T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Chang. Biol. 24, 872–882 (2018).

    PubMed 

    Google Scholar
     

  • Marangoni, L. F. B. et al. Impacts of artificial light at night in marine ecosystems—A review. Glob. Chang. Biol. 28, 5346–5367 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meziere, Z. et al. Stylophora under stress: A review of research trends and impacts of stressors on a model coral species. Sci. Total Environ. 816, 151639 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Levy, O. et al. Artificial light at night (ALAN) alters the physiology and biochemistry of symbiotic reef building corals. Environ. Pollut. 266, 114987 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Cresswell, A. K. et al. Structure-from-motion reveals coral growth is influenced by colony size and wave energy on the reef slope at Ningaloo Reef, Western Australia. J. Exp. Mar. Bio. Ecol. 530–531, 151438 (2020).


    Google Scholar
     

  • Tamir, R., Lerner, A., Haspel, C., Dubinsky, Z. & Iluz, D. The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat). Sci. Rep. 7, 42329 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Feine, I., Shpitzen, M., Roth, J. & Gafny, R. A novel cell culture model as a tool for forensic biology experiments and validations. Forensic Sci. Int. Genet. 24, 114–119 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Russello, M. A., Waterhouse, M. D., Etter, P. D. & Johnson, E. A. From promise to practice: pairing non-invasive sampling with genomics in conservation. PeerJ 3, e1106 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voolstra, C. R. et al. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci. Rep. 7, 17583 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beugin, M., Gayet, T., Pontier, D., Devillard, S. & Jombart, T. A fast likelihood solution to the genetic clustering problem. Methods Ecol. Evol. 9, 1006–1016 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    More From Forest Beat

    The global determinants of climate niche breadth in birds

    We begin our analyses by leveraging the highest quality breeding range maps available for birds, inferred with state-of-the-art species distribution models and powered...
    Biodiversity
    18
    minutes

    Allowing forests to regrow and regenerate is a great way to...

    Queensland is widely known as the land clearing capital of Australia. But what’s not so well known is many...
    Biodiversity
    4
    minutes

    ‘De-extinction’ of dire wolves promotes false hope: technology can’t undo extinction

    Over the past week, the media have been inundated with news of the “de-extinction” of the dire wolf (Aenocyon...
    Biodiversity
    3
    minutes

    NDVI and vegetation volume as predictors of urban bird diversity

    UNHSP. World Cities Report 2022. (2022). https://unhabitat.org/wcr/.Lai, H., Flies, E. J., Weinstein, P. & Woodward, A. The impact of green space and biodiversity...
    Biodiversity
    10
    minutes
    spot_imgspot_img