Divergent alpha and beta diversity trends of soil nematode fauna along gradients of environmental change in the Carpathian Ecoregion


  • Keith, D. A. et al. A function-based typology for Earth’s ecosystems. Nature 610, 513–518 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Magurran, A. E., Dornelas, M., Moyes, F. & Henderson, P. A. Temporal β diversity—a macroecological perspective. Glob. Ecol. Biogeogr. 28, 1949–1960 (2019).

    Article 

    Google Scholar
     

  • Dornelas, M. et al. Looking back on biodiversity change: lessons for the road ahead. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378, 20220199 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penny, A., Dornelas, M. & Magurran, A. Comparing temporal dynamics of compositional reorganization in long-term studies of birds and fish. Ecol. Lett. 26, 1071–1083 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finderup Nielsen, T., Sand-Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Q. et al. The global loss of floristic uniqueness. Nat. Commun. 12, 7290 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • FAO, ITPS, GSBI, SCBD, and EC. State of knowledge of soil biodiversity—Status, Challenges and Potentialities. Summary for Policy Makers (FAO, 2020).

  • Johnson, T. F. et al. Revealing uncertainty in the status of biodiversity change. Nature 628, 788–794 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra, C. A. et al. Global hotspots for soil nature conservation. Nature 610, 693–698 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenhauer, N., Bonn, A. & A. Guerra, C. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 50 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA. 120, e2304663120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394 (2020).

    Article 

    Google Scholar
     

  • Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. USA. 115, E10397–E10406 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A Multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article 

    Google Scholar
     

  • de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Chang. 2, 276–280 (2012).

    Article 

    Google Scholar
     

  • Oliver, T. H. et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Chang. 5, 941–945 (2015).

    Article 

    Google Scholar
     

  • Lopez, B. E. et al. Global environmental changes more frequently offset than intensify detrimental effects of biological invasions. Proc. Natl. Acad. Sci. Usa. 119, e2117389119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira, H. M. et al. Scenarios for Global Biodiversity in the 21st Century. Science 330, 1496–1501 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Field, C. B. & Barros, V. R. Climate Change 2014Impacts, Adaptation and Vulnerability: Regional Aspects (Cambridge University Press, 2014).

  • Phillips, H. et al. Global Change and their Environmental Stressors have a Significant Impact On Soil Biodiversity—A Meta-Analysis (Authorea, Inc., 2023).

  • Beaumelle, L. et al. Pesticide effects on soil fauna communities—a meta-analysis. J. Appl. Ecol. 60, 1239–1253 (2023).

    Article 

    Google Scholar
     

  • Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hooper, D. U. et al. Effects of biodivesrity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article 

    Google Scholar
     

  • Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale. N. Phytol. 215, 1186–1196 (2017).

    Article 

    Google Scholar
     

  • Wang, M. et al. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nat. Commun. 13, 5514 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbour, K. M., Weihe, C., Allison, S. D. & Martiny, J. B. H. Bacterial community response to environmental change varies with depth in the surface soil. Soil Biol. Biochem. 172, 108761 (2022).

    Article 
    CAS 

    Google Scholar
     

  • van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Orgiazzi, A. et al. Global Soil Biodiversity Atlas. European Commission, Publications Office of the European Union, Luxembourg (2016).

  • de Goede, R. G. M. & Bongers, T. Nematode community structure in relation to soil and vegetation characteristics. Appl. Soil Ecol. 1, 29–44 (1994).

    Article 

    Google Scholar
     

  • Bongers, T. & Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14, 224–228 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, G. et al. The response of soil nematode fauna to climate drying and warming in Stipa breviflora desert steppe in Inner Mongolia, China. J. Soils Sediment. 20, 2166–2180 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Du Preez, G. et al. Nematode-based indices in soil ecology: application, utility, and future directions. Soil Biol. Biochem. 169, 108640 (2022).

    Article 

    Google Scholar
     

  • Wilschut, R. A. & Geisen, S. Nematodes as drivers of plant performance in natural systems. Trends Plant Sci. 26, 237–247 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Webster, R., Holt, S. & Avis, C. The Status of the Carpathians: A Report Developed as a Part of the Carpathian Ecoregion Initiative (CEI, 2001).

  • United Nations Environment Programme. Division of Early Warning and AssessmentCreate citation. Carpathians Environment Outlook, 2007 (United Nations Environment Programme, Division of Early Warning and Assessment—Europe, 2007).

  • Butsic, V. et al. The effect of protected areas on forest disturbance in the Carpathian Mountains 1985–2010. Conserv. Biol. 31, 570–580 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ferris, H., Bongers, T. & de Goede, R. G. M. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18, 13–29 (2001).

    Article 

    Google Scholar
     

  • Keresztesi, Á, Nita, I.-A., Birsan, M.-V., Bodor, Z. & Szép, R. The risk of cross-border pollution and the influence of regional climate on the rainwater chemistry in the Southern Carpathians, Romania. Environ. Sci. Pollut. Res. 27, 9382–9402 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Szép, R. et al. Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians, Romania). Atmos. Res. 214, 311–328 (2018).

    Article 

    Google Scholar
     

  • Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potapov, A. M. et al. Global monitoring of soil animal communities using a common methodology. Soil Org. 94, 55–68 (2022).


    Google Scholar
     

  • Tedersoo, L. et al. Global patterns in endemicity and vulnerability of soil fungi. Glob. Change Biol. 28, 6696–6710 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Eisenhauer, N. et al. Frontiers in soil ecology—insights from the World Biodiversity Forum 2022. J. Sustain. Agric. Environ. 1, 245–261 (2022).

    Article 

    Google Scholar
     

  • Kuemmerle, T. et al. Cross-border comparison of post-socialist farmland abandonment in the carpathians. Ecosystems 11, 614–628 (2008).

    Article 

    Google Scholar
     

  • Akeroyd, J. & Page, N. Conservation of High Nature Value (HNV) grassland in a farmed landscape in Transylvania, Romania. Contrib. Bot. 46, 57–71 (2011).


    Google Scholar
     

  • Pereira, H. M. & Navarro, L. M. Rewilding European Landscapes (Springer International Publishing, 2015).

  • Spinoni, J. et al. An overview of drought events in the Carpathian Region in 1961–2010. Adv. Sci. Res. 10, 21–32 (2013).

    Article 

    Google Scholar
     

  • Micu, D. M., Dumitrescu, A., Cheval, S. and Birsan, M. V. Climate of the Romanian Carpathians—Variability and Trends 213 (Springer, 2016).

  • Smart, S. M. et al. Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc. R. Soc. B 273, 2659–2665 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kessler, M. et al. Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecol. Appl. 19, 2142–2156 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, G. M. et al. Conserving alpha and beta diversity in wood-production landscapes. Conserv. Biol. 36, e13872 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sünnemann, M. et al. Climate change and cropland management compromise soil integrity and multifunctionality. Commun. Earth Environ. 4, 394 (2023).

    Article 

    Google Scholar
     

  • Năstase, G., Șerban, A., Năstase, A. F., Dragomir, G. & Brezeanu, A. I. Air quality, primary air pollutants and ambient concentrations inventory for Romania. Atmos. Environ. 184, 292–303 (2018).

    Article 

    Google Scholar
     

  • Prăvălie, R. et al. NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018. Ecol. Indic. 136, 108629 (2022).

    Article 

    Google Scholar
     

  • Bongers, T. & Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 10, 239–251 (1998).

    Article 

    Google Scholar
     

  • Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. The multidimensionality of soil macroecology. Glob. Ecol. Biogeogr. 30, 4–10 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guerra, C. A., Wall, D. & Eisenhauer, N. Unearthing soil ecological observations: see supporting information as supplementary material. Soil Org. 93, 79–81 (2021).


    Google Scholar
     

  • Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Intergovernmental Panel on Climate Change. The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar
     

  • Griffiths, P. et al. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens. Environ. 151, 72–88 (2014).

    Article 

    Google Scholar
     

  • Grabherr, G., Gottfried, M. & Pauli, H. GLORIA: A Global Observation Research Initiative in Alpine environments. Mt. Res. Dev. 20, 190–191 (2009).

  • Turnock, D. Ecoregion-based conservation in the Carpathians and the land-use implications. Land Use Policy 19, 47–63 (2002).

    Article 

    Google Scholar
     

  • Kuemmerle, T., Radeloff, V. C., Perzanowski, K. & Hostert, P. Cross-border comparison of land cover and landscape pattern in Eastern Europe using a hybrid classification technique. Remote Sens. Environ. 103, 449–464 (2006).

    Article 

    Google Scholar
     

  • Kozak, J., Estreguil, C. & Ostapowicz, K. European forest cover mapping with high resolution satellite data: the Carpathians case study. Int. J. Appl. Earth Obs. Geoinf. 10, 44–55 (2008).


    Google Scholar
     

  • Ciobanu, M., Eisenhauer, N., Stoica, I.-A. & Cesarz, S. Natura 2000 priority and non-priority habitats do not differ in soil nematode diversity. Appl. Soil Ecol. 135, 166–173 (2019).

    Article 

    Google Scholar
     

  • Ciobanu, M. & Popovici, I. Nematode Fauna of the Romanian Carpathians (Presa Universitară Clujeană, 2021).

  • De Grisse, A. T. Redescription ou modifications de quelques technique utilisées dans 1’étude des nématodes phytoparasitaires. Meded. Fac. Landbouwwet. 34, 351–369 (1969).


    Google Scholar
     

  • Harrison, J. M. & Green, C. D. Comparison of centrifugal and other methods for standarization of extraction of nematodes from soil. Annl. Appl. Biol. 82, 299–308 (1976).

    Article 

    Google Scholar
     

  • McSorley, R. & Walter, D. E. Comparison of soil extraction methods for nematodes and microarthropods. Agr. Eco. Env. 34, 201–207 (1991).

    Article 

    Google Scholar
     

  • Archidona-Yuste, A., Navas-Cortés, J. A., Cantalapiedra-Navarrete, C., Palomares-Rius, J. E. & Castillo, P. Unravelling the biodiversity and molecular phylogeny of needle nematodes of the genus Longidorus (Nematoda: Longidoridae) in olive and a description of six new species. PloS ONE 11, e0147689 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • István, A. Klasse Nematoda: Ordnungen Monhysterida, Desmoscolecida, Araeolaimida, Chromadorida, Rhabditida (Akademie-Verlag, 1984).

  • Siddiqi, M. R. Tylenchida: Parasites of Plants and Insects (CABI Pub., 2000).

  • Zimmermann, A. De Nematoden der Koffiewortels (Kolff, 1900).

  • Yeates, G. W., Bongers, T., De Goede, R. G., Freckman, D. W. & Georgieva, S. S. Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 25, 315–331 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bongers, T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19 (1990).

    Article 
    PubMed 

    Google Scholar
     

  • Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 46, 97–104 (2010).

    Article 

    Google Scholar
     

  • Neher, D. A. Nematode communities in organically and conventionally managed agricultural soils. J. Nematol. 31, 142–154 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legendre, P. Replacement and richness difference components. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).

    Article 

    Google Scholar
     

  • Sánchez-Moreno, S. & Ferris, H. Nematode ecology and soil health. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture (eds Sikora, R., Coyne, D., Hallmann, J. & Timper, P.) 62–86 (CAB International, 2018).

  • Porazinska, D. L. et al. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol. Ecol. Resour. 9, 1439–1450 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeates, G. W. & Bongers, T. Nematode diversity in agroecosystems. Agric. Ecosyst. Environ. 74, 113–135 (1999).

    Article 

    Google Scholar
     

  • Bongiorno, G. et al. Reduced tillage, but not organic matter input, increased nematode diversity and food web stability in European long-term field experiments. Mol. Ecol. 28, 4987–5005 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCann, K., Humphries, M. & Umbanhowar, J. The role of space, time, and variability in food web dynamics. In Dynamic Food Webs.Multispecies Assemblages, Ecosystem Development and Environmental Change (eds de Ruiter, P. C., Wolters, V. & Moore, J. C.) 56–70 (Elsevier Academic Press, 2005).

  • Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Intergovernmental Panel on Climate, C. Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2023).

  • Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Schwarz, B. et al. Warming alters energetic structure and function but not resilience of soil food webs. Nat. Clim. Chang. 7, 895–900 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmstrup, M. et al. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland. Sci. Rep. 7, 41388 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Carpatclim, C. Climate of the Carpathian Region online database. www.carpatclim-eu.org (2013).

  • Hueso, S., García, C. & Hernández, T. Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol. Biochem. 50, 167–173 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Siebert, J. et al. The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Sci. Rep. 9, 639 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beguería, S., Vicente-Serrano, S. M. & Angulo-Martínez, M. A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meterol. Soc. 91, 1351–1356 (2010).

    Article 

    Google Scholar
     

  • Donat, M. G. et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. Atmos. 118, 2098–2118 (2013).

    Article 

    Google Scholar
     

  • Bueno de Mesquita, C. P., Sartwell, S. A., Schmidt, S. K. & Suding, K. N. Growing-season length and soil microbes influence the performance of a generalist bunchgrass beyond its current range. Ecology 101, e03095 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • R Core Team. R.: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2022).

  • Oksanen J. et al. vegan: Community Ecology Package_. R package version 2.6-4, https://CRAN.R-project.org/package=vegan (2022).

  • Dray S. et al. adespatial: Multivariate Multiscale Spatial Analysis_. R package version 0.3-20, https://CRAN.R-project.org/package=adespatial (2022).

  • Pinheiro, J. nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1-160, https://CRAN.R-project.org/package=nlme (2022).

  • Barton K. MuMIn: Multi-Model Inference_. R package version 1.47.5, https://CRAN.R-project.org/package=MuMIn (2023).

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016). R package version 2.1.2. https://CRAN.R-project.org/package=piecewiseSEM.

  • Archidona-Yuste, A. et al. Agriculture causes homogenization of plant-feeding nematode communities at the regional scale. J. Appl. Ecol. 58, 2881–2891 (2021).

    Article 

    Google Scholar
     

  • Archidona-Yuste, A., Wiegand, T., Castillo, P. & Navas-Cortés, J. A. Spatial structure and soil properties shape local community structure of plant-parasitic nematodes in cultivated olive trees in southern Spain. Agric. Ecosyst. Environ. 287, 106688 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Rao, C. R. A review of canonical coordinates and an alternative to correspondence analysis using hellinger distance. Questiio 19, 23–63 (1995).


    Google Scholar
     

  • Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Legendre, P. Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. J. Plant Ecol. 1, 3–8 (2007).

    Article 

    Google Scholar
     

  • Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology With R. Vol. 17. (Springer New York, 2018).

  • Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruel, J. J. & Ayres, M. P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 14, 361–366 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koenig, W. D. et al. Is the relationship between mast-seeding and weather in oaks related to their life-history or phylogeny?. Ecology 97, 2603–2615 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Duffy, K., Gouhier, T. C. & Ganguly, A. R. Climate-mediated shifts in temperature fluctuations promote extinction risk. Nat. Clim. Chang. 12, 1037–1044 (2022).

    Article 

    Google Scholar
     

  • Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer New York, 2011).

  • Di Cecco, G. J. & Gouhier, T. C. Increased spatial and temporal autocorrelation of temperature under climate change. Sci. Rep. 8, 14850 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Airborne imaging spectroscopy surveys of Arctic and boreal Alaska and northwestern...

    Miller, C. E. et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys, Earth Syst. Sci. Data 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024 (2024).Article  ...
    Biodiversity
    8
    minutes

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes
    spot_imgspot_img