DNA metabarcoding of spider egg sacs uncovers novel insights into host parasitoid complexes and trophic networks


  • Kawatsu, K., Ushio, M., van Veen, F. F. & Kondoh, M. Are networks of trophic interactions sufficient for Understanding the dynamics of multi-trophic communities? Analysis of a tri‐trophic insect food‐web time‐series. Ecol. Lett. 24(3), 543–552 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fei, M., Gols, R. & Harvey, J. A. The biology and ecology of parasitoid wasps of predatory arthropods. Annu. Rev. Entomol. 68(1), 109–128 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, K. E., Polaszek, A. & Evans, D. M. A dearth of data: fitting parasitoids into ecological networks. Trends Parasitol. 37(10), 863–874 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz, O. J., Hambäck, P. A. & Beckerman, A. P. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Amer Nat. 155, 141–153 (2000).

    Article 

    Google Scholar
     

  • Finch, O. D. The parasitoid complex and parasitoid-induced mortality of spiders (Araneae) in a central European woodland. J. Nat. Hist. 39(25), 2339–2354 (2005).


    Google Scholar
     

  • Debnath, R., Rajmohana, K., Sen, S., Shabnam, A. & Dinesh, K. P. On Baeine wasps (Hymenoptera: Scelionidae) as egg parasitoids of myrmecomorph spiders (Araneae: Salticidae) from India, along with description of a new species of Idris Förster. Zool. Anz. 309, 66–74 (2024).

    Article 

    Google Scholar
     

  • Austin, A. D., Johnson, N. F. & Dowton, M. Systematics, evolution, and biology of scelionid and platygastrid wasps. Annu. Rev. Entomol. 50(1), 553–582 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sunita, P. & Rajmohana, K. On a new species of Neoceratobaeus Rajmohana (Hymenoptera: Scelionidae) from India. Entomon 44(4), 269–274 (2019).

    Article 

    Google Scholar
     

  • Johnson, N. F., Chen, H. & Huber, B. A. New species of Idris Förster (Hymenoptera, Platygastroidea) from Southeast Asia, parasitoids of the eggs of pholcid spiders (Araneae, Pholcidae). Zookeys 811, 65–80 (2018).

    Article 

    Google Scholar
     

  • Triana, E., Barrantes, G. & Hanson, P. Incidence of parasitoids and predators on eggs of seven species of Therididae (Araneae). Arachnology 15(9), 293–298 (2012).

    Article 

    Google Scholar
     

  • Austin, A. D. The function of spider egg sacs in relation to parasitoids and predators, with special reference to the Australian fauna. J. Nat. Hist. 19(2), 359–376 (1985).

    Article 

    Google Scholar
     

  • Richman, D. B. & Jackson, R. R. A review of the ethology of jumping spiders (Araneae, Salticidae). Bull. Br. Arachnol Soc. 9(2), 33–37 (1992).


    Google Scholar
     

  • Hrcek, J. A. N., Miller, S. E., Quicke, D. L. & Smith, M. A. Molecular detection of trophic links in a complex insect host–parasitoid food web. Mol. Ecol. Resour. 11(5), 786–794 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kartzinel, T. R. & Pringle, R. M. Molecular detection of invertebrate prey in vertebrate diets: trophic ecology of Caribbean Island lizards. Mol. Ecol. Res. 15, 903–914 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wirta, H. K. et al. Complementary molecular information changes our perception of food web structure. Proc. Natl. Acad. Sci. USA. 111, 1885–1890 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hata, H. et al. Diet disparity among sympatric herbivorous cichlids in the same ecomorphs in lake Tanganyika: amplicon pyrosequences on algal farms and stomach contents. BMC Biol. 12, 90. https://doi.org/10.1186/s12915-014-0090-4 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šigut, M. et al. Performance of DNA metabarcoding, standard barcoding, and morphological approach in the identification of host-parasitoid interactions. PloS One. 12(12), e0187803. https://doi.org/10.1371/journal.pone.0187803 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sow, A. et al. Deciphering host-parasitoid interactions and parasitism rates of crop pests using DNA metabarcoding. Sci. Rep. 9(1), 3646. https://doi.org/10.1038/s41598-019-40243-z (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sow, A., Haran, J., Benoit, L., Galan, M. & Brévault, T. DNA metabarcoding as a tool for disentangling food webs in agroecosystems. Insects 11(5), 294. https://doi.org/10.3390/insects11050294 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toju, H. & Baba, Y. G. DNA metabarcoding of spiders, insects, and springtails for exploring potential linkage between above-and below-ground food webs. Zoological Lett. 4, 1–12 (2018).

    Article 

    Google Scholar
     

  • Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45(3), 373–385 (2020).

    Article 

    Google Scholar
     

  • Masner, L. Revisionary notes and keys to world genera of scelionidae (Hymenoptera: Proctotrupoidea). Mem. Entomol. Soc. Can. 108(S97), 1–87 (1976).

    Article 

    Google Scholar
     

  • Valerio, A. A., Austin, A. D., Masner, L. & Johnson, N. F. Systematics of old world Odontacolus Kieffer S.l. (Hymenoptera, Platygastridae S.l.): parasitoids of spider eggs. Zookeys 314, 1–151 (2013).

    Article 

    Google Scholar
     

  • Polaszek, A. & LaSalle, J. The hyperparasitoids (Hymenoptera: Ceraphronidae, Encyriidae, Eulophidae, Eurytomidae) of cereal stem borers (Lepidoptera: Noctuidae, Pyralidae) in Africa. Afr. Entomol. 3(2), 131–146 (1995).


    Google Scholar
     

  • Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 1–14 (2013).

    Article 

    Google Scholar
     

  • Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3(5), 294–299 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajmohana, K., Debnath, R., Sushama, V., Sen, S. & Dinesh, K. P. Weaving a new web: gregarious parasitism in Idris Förster (Hymenoptera: Scelionidae) attacking spider eggs. PLoS ONE. 20(2), e0319209 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RStudio Team. RStudio: Integrated Development Environment for R. RStudio (PBC, 2023). https://posit.co/

  • Marques, V. et al. Blind assessment of vertebrate taxonomic diversity across Spatial scales by clustering environmental DNA metabarcoding sequences. Ecography 43(12), 1779–1790 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, e7745 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrera-Mesías, F., Jarboui, I. K. E. & Weigand, A. M. A metabarcoding framework for wild bee assessment in Luxembourg. J. Hymenopt Res. 94, 215–246 (2022).

    Article 

    Google Scholar
     

  • Ficetola, G. F. et al. An in Silico approach for the evaluation of DNA barcodes. BMC Genom. 11, 1–10 (2010).

    Article 

    Google Scholar
     

  • Matsuo, K., Ganaha-Kikumura, T., Ohno, S. & Yukawa, J. Description of a new species of Aphanogmus Thomson (Hymenoptera, Ceraphronidae) that parasitizes acarivorous gall midges of Feltiella (Diptera, Cecidomyiidae) in Japan. ZooKeys 596, 77–85 (2016).

    Article 

    Google Scholar
     

  • Topakcı, N. Spider mite predator Feltiella Acarisuga(Vallot, 1827) (Diptera: Cecidomyiidae) in greenhouse strawberry cultivation in Antalya Province: recognition, population dynamics and parasitization by Aphanogmus Sp. Turk. J. Entomol. 46(1), 25–36 (2022).

    Article 

    Google Scholar
     

  • Fagan, W. F. & Denno, R. F. Stoichiometry of actual vs. potential predator-prey interactions: insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7, 876–883 (2004).

    Article 

    Google Scholar
     

  • Harvey, J. A., Wagenaar, R. & Bezemer, T. M. Interactions to the fifth trophic level: secondary and tertiary parasitoid wasps show extraordinary efficiency in utilizing host resources. J. Anim. Ecol. 78(3), 686–692 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Foelix, R. Biology of Spiders (Oxford University Press, 2011).

  • Darling, J. A., Jerde, C. L. & Sepulveda, A. J. What do you mean by false positive? Environ. DNA. 3(5), 879–883 (2021).

    Article 

    Google Scholar
     

  • Fitton, M. G., Shaw, M. R. & Austin, A. D. The hymenoptera associated with spiders in Europe. Zool. J. Linn. Soc. 90(1), 65–93 (1987).

    Article 

    Google Scholar
     

  • Quicke, D. L. J. Parasitic Wasps 470 (Chapman and Hall, 1997).

  • Patra, S. et al. A novel host association of Idris Förster (Hymenoptera: Scelionidae) with description of a new species from India. J. Nat. Hist. 58(1–4), 189–203 (2024).

    Article 

    Google Scholar
     

  • Rameshkumar, A. et al. Fauna of India Checklist. Arthropoda: Insecta: Hymenoptera. Version 1.0 (Zoological Survey India, 2024). https://doi.org/10.26515/Fauna/1/2023/Arthropoda:Insecta:Hymenoptera

  • Veenakumari, K. & Mohanraj Prashanth, M. P. Odontacolus markadicus sp. nov. (Hymenoptera: Platygastroidea: Platygastridae)-an addition to the platygastrid fauna of India. J. Biol. Control. 25(2), 188–192 (2011).


    Google Scholar
     

  • Mukundan, S., Rajmohana, K. & Bijoy, C. A biosystematic account on Baeini wasps (Hymenoptera: Platygastridae), the little known natural enemy complex of Spiders in India. In Proceedings of 26th Kerala Science Congress 28–31 (2014).

  • Gariepy, T. D. et al. A modified DNA barcode approach to define trophic interactions between native and exotic pentatomids and their parasitoids. Mol. Ecol. 28(2), 456–470 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gariepy, T. D., Haye, T. & Zhang, J. A molecular diagnostic tool for the preliminary assessment of host–parasitoid associations in biological control programmes for a new invasive pest. Mol. Ecol. 23(15), 3912–3924 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gariepy, T. D., Kuhlmann, U., Gillott, C. & Erlandson, M. Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of arthropods. J. Appl. Entomol. 131(4), 225–240 (2017).

    Article 

    Google Scholar
     

  • Elbrecht, V. & Leese, F. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front. Environ. Sci. 5, 11. https://doi.org/10.3389/fenvs.2017.00011 (2017).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img