DNA metabarcoding of spider egg sacs uncovers novel insights into host parasitoid complexes and trophic networks


  • Kawatsu, K., Ushio, M., van Veen, F. F. & Kondoh, M. Are networks of trophic interactions sufficient for Understanding the dynamics of multi-trophic communities? Analysis of a tri‐trophic insect food‐web time‐series. Ecol. Lett. 24(3), 543–552 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fei, M., Gols, R. & Harvey, J. A. The biology and ecology of parasitoid wasps of predatory arthropods. Annu. Rev. Entomol. 68(1), 109–128 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, K. E., Polaszek, A. & Evans, D. M. A dearth of data: fitting parasitoids into ecological networks. Trends Parasitol. 37(10), 863–874 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz, O. J., Hambäck, P. A. & Beckerman, A. P. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Amer Nat. 155, 141–153 (2000).

    Article 

    Google Scholar
     

  • Finch, O. D. The parasitoid complex and parasitoid-induced mortality of spiders (Araneae) in a central European woodland. J. Nat. Hist. 39(25), 2339–2354 (2005).


    Google Scholar
     

  • Debnath, R., Rajmohana, K., Sen, S., Shabnam, A. & Dinesh, K. P. On Baeine wasps (Hymenoptera: Scelionidae) as egg parasitoids of myrmecomorph spiders (Araneae: Salticidae) from India, along with description of a new species of Idris Förster. Zool. Anz. 309, 66–74 (2024).

    Article 

    Google Scholar
     

  • Austin, A. D., Johnson, N. F. & Dowton, M. Systematics, evolution, and biology of scelionid and platygastrid wasps. Annu. Rev. Entomol. 50(1), 553–582 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sunita, P. & Rajmohana, K. On a new species of Neoceratobaeus Rajmohana (Hymenoptera: Scelionidae) from India. Entomon 44(4), 269–274 (2019).

    Article 

    Google Scholar
     

  • Johnson, N. F., Chen, H. & Huber, B. A. New species of Idris Förster (Hymenoptera, Platygastroidea) from Southeast Asia, parasitoids of the eggs of pholcid spiders (Araneae, Pholcidae). Zookeys 811, 65–80 (2018).

    Article 

    Google Scholar
     

  • Triana, E., Barrantes, G. & Hanson, P. Incidence of parasitoids and predators on eggs of seven species of Therididae (Araneae). Arachnology 15(9), 293–298 (2012).

    Article 

    Google Scholar
     

  • Austin, A. D. The function of spider egg sacs in relation to parasitoids and predators, with special reference to the Australian fauna. J. Nat. Hist. 19(2), 359–376 (1985).

    Article 

    Google Scholar
     

  • Richman, D. B. & Jackson, R. R. A review of the ethology of jumping spiders (Araneae, Salticidae). Bull. Br. Arachnol Soc. 9(2), 33–37 (1992).


    Google Scholar
     

  • Hrcek, J. A. N., Miller, S. E., Quicke, D. L. & Smith, M. A. Molecular detection of trophic links in a complex insect host–parasitoid food web. Mol. Ecol. Resour. 11(5), 786–794 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kartzinel, T. R. & Pringle, R. M. Molecular detection of invertebrate prey in vertebrate diets: trophic ecology of Caribbean Island lizards. Mol. Ecol. Res. 15, 903–914 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wirta, H. K. et al. Complementary molecular information changes our perception of food web structure. Proc. Natl. Acad. Sci. USA. 111, 1885–1890 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hata, H. et al. Diet disparity among sympatric herbivorous cichlids in the same ecomorphs in lake Tanganyika: amplicon pyrosequences on algal farms and stomach contents. BMC Biol. 12, 90. https://doi.org/10.1186/s12915-014-0090-4 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šigut, M. et al. Performance of DNA metabarcoding, standard barcoding, and morphological approach in the identification of host-parasitoid interactions. PloS One. 12(12), e0187803. https://doi.org/10.1371/journal.pone.0187803 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sow, A. et al. Deciphering host-parasitoid interactions and parasitism rates of crop pests using DNA metabarcoding. Sci. Rep. 9(1), 3646. https://doi.org/10.1038/s41598-019-40243-z (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sow, A., Haran, J., Benoit, L., Galan, M. & Brévault, T. DNA metabarcoding as a tool for disentangling food webs in agroecosystems. Insects 11(5), 294. https://doi.org/10.3390/insects11050294 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toju, H. & Baba, Y. G. DNA metabarcoding of spiders, insects, and springtails for exploring potential linkage between above-and below-ground food webs. Zoological Lett. 4, 1–12 (2018).

    Article 

    Google Scholar
     

  • Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45(3), 373–385 (2020).

    Article 

    Google Scholar
     

  • Masner, L. Revisionary notes and keys to world genera of scelionidae (Hymenoptera: Proctotrupoidea). Mem. Entomol. Soc. Can. 108(S97), 1–87 (1976).

    Article 

    Google Scholar
     

  • Valerio, A. A., Austin, A. D., Masner, L. & Johnson, N. F. Systematics of old world Odontacolus Kieffer S.l. (Hymenoptera, Platygastridae S.l.): parasitoids of spider eggs. Zookeys 314, 1–151 (2013).

    Article 

    Google Scholar
     

  • Polaszek, A. & LaSalle, J. The hyperparasitoids (Hymenoptera: Ceraphronidae, Encyriidae, Eulophidae, Eurytomidae) of cereal stem borers (Lepidoptera: Noctuidae, Pyralidae) in Africa. Afr. Entomol. 3(2), 131–146 (1995).


    Google Scholar
     

  • Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 1–14 (2013).

    Article 

    Google Scholar
     

  • Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3(5), 294–299 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajmohana, K., Debnath, R., Sushama, V., Sen, S. & Dinesh, K. P. Weaving a new web: gregarious parasitism in Idris Förster (Hymenoptera: Scelionidae) attacking spider eggs. PLoS ONE. 20(2), e0319209 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RStudio Team. RStudio: Integrated Development Environment for R. RStudio (PBC, 2023). https://posit.co/

  • Marques, V. et al. Blind assessment of vertebrate taxonomic diversity across Spatial scales by clustering environmental DNA metabarcoding sequences. Ecography 43(12), 1779–1790 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, e7745 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrera-Mesías, F., Jarboui, I. K. E. & Weigand, A. M. A metabarcoding framework for wild bee assessment in Luxembourg. J. Hymenopt Res. 94, 215–246 (2022).

    Article 

    Google Scholar
     

  • Ficetola, G. F. et al. An in Silico approach for the evaluation of DNA barcodes. BMC Genom. 11, 1–10 (2010).

    Article 

    Google Scholar
     

  • Matsuo, K., Ganaha-Kikumura, T., Ohno, S. & Yukawa, J. Description of a new species of Aphanogmus Thomson (Hymenoptera, Ceraphronidae) that parasitizes acarivorous gall midges of Feltiella (Diptera, Cecidomyiidae) in Japan. ZooKeys 596, 77–85 (2016).

    Article 

    Google Scholar
     

  • Topakcı, N. Spider mite predator Feltiella Acarisuga(Vallot, 1827) (Diptera: Cecidomyiidae) in greenhouse strawberry cultivation in Antalya Province: recognition, population dynamics and parasitization by Aphanogmus Sp. Turk. J. Entomol. 46(1), 25–36 (2022).

    Article 

    Google Scholar
     

  • Fagan, W. F. & Denno, R. F. Stoichiometry of actual vs. potential predator-prey interactions: insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7, 876–883 (2004).

    Article 

    Google Scholar
     

  • Harvey, J. A., Wagenaar, R. & Bezemer, T. M. Interactions to the fifth trophic level: secondary and tertiary parasitoid wasps show extraordinary efficiency in utilizing host resources. J. Anim. Ecol. 78(3), 686–692 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Foelix, R. Biology of Spiders (Oxford University Press, 2011).

  • Darling, J. A., Jerde, C. L. & Sepulveda, A. J. What do you mean by false positive? Environ. DNA. 3(5), 879–883 (2021).

    Article 

    Google Scholar
     

  • Fitton, M. G., Shaw, M. R. & Austin, A. D. The hymenoptera associated with spiders in Europe. Zool. J. Linn. Soc. 90(1), 65–93 (1987).

    Article 

    Google Scholar
     

  • Quicke, D. L. J. Parasitic Wasps 470 (Chapman and Hall, 1997).

  • Patra, S. et al. A novel host association of Idris Förster (Hymenoptera: Scelionidae) with description of a new species from India. J. Nat. Hist. 58(1–4), 189–203 (2024).

    Article 

    Google Scholar
     

  • Rameshkumar, A. et al. Fauna of India Checklist. Arthropoda: Insecta: Hymenoptera. Version 1.0 (Zoological Survey India, 2024). https://doi.org/10.26515/Fauna/1/2023/Arthropoda:Insecta:Hymenoptera

  • Veenakumari, K. & Mohanraj Prashanth, M. P. Odontacolus markadicus sp. nov. (Hymenoptera: Platygastroidea: Platygastridae)-an addition to the platygastrid fauna of India. J. Biol. Control. 25(2), 188–192 (2011).


    Google Scholar
     

  • Mukundan, S., Rajmohana, K. & Bijoy, C. A biosystematic account on Baeini wasps (Hymenoptera: Platygastridae), the little known natural enemy complex of Spiders in India. In Proceedings of 26th Kerala Science Congress 28–31 (2014).

  • Gariepy, T. D. et al. A modified DNA barcode approach to define trophic interactions between native and exotic pentatomids and their parasitoids. Mol. Ecol. 28(2), 456–470 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gariepy, T. D., Haye, T. & Zhang, J. A molecular diagnostic tool for the preliminary assessment of host–parasitoid associations in biological control programmes for a new invasive pest. Mol. Ecol. 23(15), 3912–3924 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gariepy, T. D., Kuhlmann, U., Gillott, C. & Erlandson, M. Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of arthropods. J. Appl. Entomol. 131(4), 225–240 (2017).

    Article 

    Google Scholar
     

  • Elbrecht, V. & Leese, F. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front. Environ. Sci. 5, 11. https://doi.org/10.3389/fenvs.2017.00011 (2017).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Attenborough’s echidna rediscovered by combining Indigenous knowledge with camera-trapping

    Attenborough’s long-beaked echidna still survives in the Cyclops MountainsWe didn’t capture any photographic evidence of Z. attenboroughi during the 2022 survey; from the...
    Biodiversity
    4
    minutes

    Impact of transfer learning methods and dataset characteristics on generalization in...

    The data processing, methodology, and evaluation workflow for this study are outlined in Fig. 1.(Left) Distribution of the number of recordings per species in...
    Biodiversity
    18
    minutes

    Global intraspecific diversity of marine forests of brown macroalgae predicted by...

    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433. https://doi.org/10.1038/nrg.2016.58 (2016).Maggs, C. A. et al. Evaluating signatures of...
    Biodiversity
    9
    minutes

    Insect trafficking poses a risk to wildlife and human health

    Four men were recently arrested and fined for attempting to smuggle more than 5,000 ants out of Kenya. Aiming...
    Biodiversity
    3
    minutes
    spot_imgspot_img