Dominant species predict plant richness and biomass in global grasslands


  • Willig, M. R. Biodiversity and productivity. Science 333, 1709–1710 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mittelbach, G. G. et al. What is the observed relationship between species richness and productivity? Ecology 82, 2381–2396 (2001).

    Article 

    Google Scholar
     

  • Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lavers, C. & Field, R. A resource‐based conceptual model of plant diversity that reassesses causality in the productivity–diversity relationship. Glob. Ecol. Biogeogr. 15, 213–224 (2006).


    Google Scholar
     

  • Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl Acad. Sci. USA 109, 10394–10397 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bongers, F. J. et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5, 1594–1603 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, C. et al. The productive performance of intercropping. Proc. Natl Acad. Sci. USA 120, e2201886120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grace, J. B. et al. Does species diversity limit productivity in natural grassland communities? Ecol. Lett. 10, 680–689 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraser, L. H. et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349, 302–305 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tredennick, A. T. et al. Comment on “Worldwide evidence of a unimodal relationship between productivity and plant species richness”. Science 351, 457 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dee, L. E. et al. Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference. Nat. Commun. 14, 2607 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  • Magurran, A. E. & Henderson, P. A. Explaining the excess of rare species in natural species abundance distributions. Nature 422, 714–716 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42–58 (1943).

    Article 

    Google Scholar
     

  • MacArthur, R. H. On the relative abundance of bird species. Proc. Natl Acad. Sci. USA 43, 293–295 (1957).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whittaker, R. H. Dominance and diversity in land plant communities: numerical relations of species express the importance of competition in community function and evolution. Science 147, 250–260 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

    Article 

    Google Scholar
     

  • Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).

    Article 

    Google Scholar
     

  • Cooper, D. L. M. et al. Consistent patterns of common species across tropical tree communities. Nature 625, 728–734 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Article 

    Google Scholar
     

  • Dangles, O. & Malmqvist, B. Species richness–decomposition relationships depend on species dominance. Ecol. Lett. 7, 395–402 (2004).

    Article 

    Google Scholar
     

  • Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Avolio, M. L. et al. Demystifying dominant species. New Phytol. 223, 1106–1126 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Preston, F. W. The commonness, and rarity, of species. Ecology 29, 254–283 (1948).

    Article 

    Google Scholar
     

  • Limpert, E., Stahel, W. A. & Abbt, M. Log-normal distributions across the sciences: keys and clues. BioScience 51, 341–352 (2001).

    Article 

    Google Scholar
     

  • Ulrich, W., Ollik, M. & Ugland, K. I. A meta-analysis of species–abundance distributions. Oikos 119, 1149–1155 (2010).

    Article 

    Google Scholar
     

  • Callaghan, C. T., Borda-de-Água, L., Van Klink, R., Rozzi, R. & Pereira, H. M. Unveiling global species abundance distributions. Nat. Ecol. Evol. 7, 1600–1609 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callaghan, C. T., Santini, L., Spake, R. & Bowler, D. E. Population abundance estimates in conservation and biodiversity research. Trends Ecol. Evol. 39, 515–523 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • McNaughton, S. J. & Volf, L. L. Dominance and the niche in ecological systems: dominance is an expression of ecological inequalities arising out of different exploitation strategies. Science 167, 131–139 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leibold, M. A., Chase, J. M. & Ernest, S. K. M. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bannar‐Martin, K. H. et al. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach. Ecol. Lett. 21, 167–180 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Harte, J., Brush, M., Newman, E. A. & Umemura, K. An equation of state unifies diversity, productivity, abundance and biomass. Commun. Biol. 5, 874 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ladouceur, E. et al. Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecol. Lett. 25, 2699–2712 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Nair, J., Wierman, A. & Zwart, B. The Fundamentals of Heavy Tails: Properties, Emergence, and Estimation Vol. 53 (Cambridge Univ. Press, 2022).

  • Bock, C. E., Jones, Z. F. & Bock, J. H. Relationships between species richness, evenness, and abundance in a southwestern savanna. Ecology 88, 1322–1327 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Locey, K. J. & White, E. P. How species richness and total abundance constrain the distribution of abundance. Ecol. Lett. 16, 1177–1185 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. SRUD: a simple non-destructive method for accurate quantification of plant diversity dynamics. J. Ecol. 107, 2155–2166 (2019).

    Article 

    Google Scholar
     

  • Zhang, P. et al. Space resource utilization of dominant species integrates abundance‐ and functional‐based processes for better predictions of plant diversity dynamics. Oikos 4, e09519 (2023).

    Article 

    Google Scholar
     

  • Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article 

    Google Scholar
     

  • Wilfahrt, P. A. et al. Nothing lasts forever: dominant species decline under rapid environmental change in global grasslands. J. Ecol. 111, 2472–2482 (2023).

    Article 

    Google Scholar
     

  • Pan, X. et al. The convex relationship between plant cover and biomass: implications for assessing species and community properties. J. Veg. Sci. 35, e13288 (2024).

    Article 

    Google Scholar
     

  • De Haan, L. Sample extremes: an elementary introduction. Stat. Neerl. 30, 161–172 (1976).

    Article 

    Google Scholar
     

  • Goldberg, D. E. & Barton, A. M. Patterns and consequences of interspecific competition in natural communities: a review of field experiments with plants. Am. Nat. 139, 771–801 (1992).

    Article 

    Google Scholar
     

  • Mac Nally, R. Use of the abundance spectrum and relative–abundance distributions to analyze assemblage change in massively altered landscapes. Am. Nat. 170, 319–330 (2007).

    Article 

    Google Scholar
     

  • Chao, A., Chiu, C. H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).

    Article 

    Google Scholar
     

  • Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Pearse, I. S., Sofaer, H. R., Zaya, D. N. & Spyreas, G. Non‐native plants have greater impacts because of differing per‐capita effects and nonlinear abundance–impact curves. Ecol. Lett. 22, 1214–1220 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gotelli, N. J. et al. Estimating species relative abundances from museum records. Methods Ecol. Evol. 14, 431–443 (2023).

    Article 

    Google Scholar
     

  • Dawson, G. The usefulness of absolute (“census”) and relative (“sampling” or “index”) measures of abundance. Stud. Avian Biol. 6, 554–558 (1981).


    Google Scholar
     

  • Theodose, T. A. & Bowman, W. D. Nutrient availability, plant abundance, and species diversity in two alpine tundra communities. Ecology 78, 1861–1872 (1997).

    Article 

    Google Scholar
     

  • Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence–absence data or point counts. Ecology 84, 777–790 (2003).

    Article 

    Google Scholar
     

  • Chao, A., Hsieh, T. C., Chazdon, R. L., Colwell, R. K. & Gotelli, N. J. Unveiling the species‐rank abundance distribution by generalizing the Good–Turing sample coverage theory. Ecology 96, 1189–1201 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Burton, A. C. et al. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).

    Article 

    Google Scholar
     

  • Cerini, F., Childs, D. Z. & Clements, C. F. A predictive timeline of wildlife population collapse. Nat. Ecol. Evol. 7, 320–331 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).


    Google Scholar
     

  • Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA 108, 17034–17039 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallmin, E., Traulsen, A. & De Monte, S. Chaotic turnover of rare and abundant species in a strongly interacting model community. Proc. Natl Acad. Sci. USA 121, e2312822121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert, B., Turkington, R. & Srivastava, D. S. Dominant species and diversity: linking relative abundance to controls of species establishment. Am. Nat. 174, 850–862 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karatzas, I. & Shreve, S. E. Brownian Motion and Stochastic Calculus (Springer Science & Business Media, 1998).

  • Kindt, R. & Coe, R. Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies (World Agroforestry Centre, 2005).

  • Pinheiro, J. & Bates, D. Mixed-Effects Models in S and S-PLUS (Springer Science & Business Media, 2006).

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar
     

  • R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  • Borer, E. T. et al. Species cover, community biomass, and richness in global grasslands from NutNet (2007–2023): dominant species predict plant richness and biomass in global grasslands ver 4. Environmental Data Initiative https://doi.org/10.6073/pasta/442895326274ea09942bd04e6ea92df2 (2025).



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img