Drivers and benefits of natural regeneration in tropical forests


  • Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

    Article 

    Google Scholar
     

  • Rasmussen, L. V. et al. Forest regrowth improves people’s dietary quality in Nigeria. npj Sustain. Agric. 1, 3 (2023).

    Article 

    Google Scholar
     

  • Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).

    Article 

    Google Scholar
     

  • Cazzolla Gatti, R. et al. The number of tree species on Earth. Proc. Natl Acad. Sci. USA 119, e2115329119 (2022).

    Article 

    Google Scholar
     

  • Novotny, V. & Miller, S. E. Mapping and understanding the diversity of insects in the tropics: past achievements and future directions. Austral Entomol. 53, 259–267 (2014).

    Article 

    Google Scholar
     

  • Rivers, M., Newton, A. C., Oldfield, S. & Contributors, G. T. A. Scientists’ warning to humanity on tree extinctions. Plants People Planet 5, 466–482 (2023).

    Article 

    Google Scholar
     

  • de Lima, R. A. et al. Comprehensive conservation assessments reveal high extinction risks across Atlantic Forest trees. Science 383, 219–225 (2024).

    Article 

    Google Scholar
     

  • Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Seymour, F. & Busch, J. Why Forests? Why Now?: The Science, Economics, and Politics of Tropical Forests and Climate Change (Brookings Institution Press, 2016).

  • Hua, F. et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376, 839–844 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Anderson-Teixeira, K. J. et al. Altered dynamics of forest recovery under a changing climate. Glob. Change Biol. 19, 2001–2021 (2013).

    Article 

    Google Scholar
     

  • Convention on Biological Diversity (CBD). Decision adopted by the Conference of the Parties to the Convention on Biological Diversity 15/4. Kunming-Montreal Global Biodiversity Framework. CBD, https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf (2022).

  • Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Saint-Laurent, C., Begeladze, S., Vidal, A. & Hingorani, S. The Bonn challenge: building momentum on restoration. Restoring Earth Decade 71, 82–91 (2020).


    Google Scholar
     

  • United Nations Environmental Programme (UNEP). Resolution adopted by the General Assembly on 1 March 2019. 73/284. United Nations Decade on Ecosystem Restoration (2021–2030). un.org, https://documents.un.org/doc/undoc/gen/n19/060/16/pdf/n1906016.pdf (2019).

  • Mayhew, R. J., Tobias, J. A., Bunnefeld, L. & Dent, D. H. Connectivity with primary forest determines the value of secondary tropical forests for bird conservation. Biotropica 51, 219–233 (2019).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nat. Sustain. 3, 290–295 (2020).

    Article 

    Google Scholar
     

  • Roe, S. et al. Land‐based measures to mitigate climate change: potential and feasibility by country. Glob. Change Biol. 27, 6025–6058 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brancalion, P. H. et al. A call to develop carbon credits for second-growth forests. Nat. Ecol. Evol. 8, 179–180 (2024).

    Article 

    Google Scholar
     

  • Murugan, P. & Israel, F. Impact of forest carbon sequestration initiative on community assets: the case of assisted natural regeneration project in Humbo, southwestern Ethiopia. Afr. Stud. Q. 17, 23–42 (2017).


    Google Scholar
     

  • Hernández-Aguilar, J., Durán, E., de Jong, W., Velázquez, A. & Pérez-Verdín, G. Understanding drivers of local forest transition in community forests in Mixteca Alta, Oaxaca, Mexico. For. Policy Econ. 131, 102542 (2021).

    Article 

    Google Scholar
     

  • Peltier, R. et al. Assisted natural regeneration in slash-and-burn agriculture: results in the democratic Republic of the Congo. Bois For. des Tropiques 68, 67–79 (2014).

    Article 

    Google Scholar
     

  • Mwaanga, B. et al. Sustainable Woodfuel Management Through Community Action Planning and Assisted Natural Regeneration in Zambia (CIFOR, 2023).

  • Acevedo-Charry, O. & Aide, T. M. Recovery of amphibian, reptile, bird and mammal diversity during secondary forest succession in the tropics. Oikos 128, 1065–1078 (2019).

    Article 

    Google Scholar
     

  • Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).

    Article 

    Google Scholar
     

  • Tito, R. et al. Secondary forests in Peru: differential provision of ecosystem services compared to other post-deforestation forest transitions. Ecol. Soc. https://doi.org/10.5751/ES-13446-270312 (2022).

  • Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (Univ. Chicago Press, 2014).

  • Jakovac, C. C. et al. The role of land‐use history in driving successional pathways and its implications for the restoration of tropical forests. Biol. Rev. 96, 1114–1134 (2021).

    Article 

    Google Scholar
     

  • Poorter, L. et al. Successional theories. Biol. Rev. 98, 2049–2077 (2023).

    Article 

    Google Scholar
     

  • Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910 (2010).

    Article 

    Google Scholar
     

  • Souza, C. M. Jr et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and earth engine. Remote Sens. 12, 2735 (2020).

    Article 

    Google Scholar
     

  • Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).

    Article 

    Google Scholar
     

  • Lesiv, M. et al. Global forest management data for 2015 at a 100 m resolution. Sci. Data 9, 199 (2022).

    Article 

    Google Scholar
     

  • Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 13, 3927–3950 (2021).

    Article 

    Google Scholar
     

  • Heinrich, V. H. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Heinrich, V. H. et al. The carbon sink of secondary and degraded humid tropical forests. Nature 615, 436–442 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hunka, N. et al. Intergovernmental Panel on Climate Change (IPCC) Tier 1 forest biomass estimates from Earth Observation. Sci. Data 11, 1127 (2024).

    Article 

    Google Scholar
     

  • Araza, A. et al. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sens. Environ. 272, 112917 (2022).

    Article 

    Google Scholar
     

  • Bourgoin, C. et al. Human degradation of tropical moist forests is greater than previously estimated. Nature 631, 570–576 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. First validation of GEDI canopy heights in African savannas. Remote Sens. Environ. 285, 113402 (2023).

    Article 

    Google Scholar
     

  • Reiche, J. et al. Forest disturbance alerts for the Congo Basin using Sentinel-1. Environ. Res. Lett. 16, 024005 (2021).

    Article 

    Google Scholar
     

  • Masolele, R. N. et al. Mapping the diversity of land uses following deforestation across Africa. Sci. Rep. 14, 1681 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dalagnol, R. et al. Mapping tropical forest degradation with deep learning and Planet NICFI data. Remote Sens. Environ. 298, 113798 (2023).

    Article 

    Google Scholar
     

  • Holcomb, A., Mathis, S. V., Coomes, D. A. & Keshav, S. Computational tools for assessing forest recovery with GEDI shots and forest change maps. Sci. Remote Sens. 8, 100106 (2023).

    Article 

    Google Scholar
     

  • Almeida, D. R. A. et al. Detecting successional changes in tropical forest structure using GatorEye drone‐borne lidar. Biotropica 52, 1155–1167 (2020).

    Article 

    Google Scholar
     

  • Longo, M. et al. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Glob. Biogeochem. Cycles 30, 1639–1660 (2016).

    Article 
    CAS 

    Google Scholar
     

  • de Almeida Papa, D. et al. Evaluating tropical forest classification and field sampling stratification from lidar to reduce effort and enable landscape monitoring. For. Ecol. Manag. 457, 117634 (2020).

    Article 

    Google Scholar
     

  • Féret, J.-B. & de Boissieu, F. biodivMapR: an R package for α- and β-diversity mapping using remotely sensed images. Methods Ecol. Evol. 11, 64–70 (2020).

    Article 

    Google Scholar
     

  • Almeida, D. R. A. D. et al. Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. Remote Sens. Environ. 264, 112582 (2021).

    Article 

    Google Scholar
     

  • Ferreira, M. P. et al. Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. For. Ecol. Manag. 475, 118397 (2020).

    Article 

    Google Scholar
     

  • Wagner, F. H. et al. Regional mapping and spatial distribution analysis of canopy palms in an Amazon forest using deep learning and VHR images. Remote Sens. 12, 2225 (2020).

    Article 

    Google Scholar
     

  • Albuquerque, R. W. et al. A protocol for canopy cover monitoring on forest restoration projects using low-cost drones. Open Geosci. 14, 921–929 (2022).

    Article 

    Google Scholar
     

  • Bagaram, M. B., Giuliarelli, D., Chirici, G., Giannetti, F. & Barbati, A. UAV remote sensing for biodiversity monitoring: are forest canopy gaps good covariates? Remote Sens. 10, 1397 (2018).

    Article 

    Google Scholar
     

  • Almeida, D. et al. Monitoring the structure of forest restoration plantations with a drone-lidar system. Int. J. Appl. Earth Obser. Geoinf. 79, 192–198 (2019).


    Google Scholar
     

  • Kaçamak, B. et al. Linking drone and ground-based liana measurements in a Congolese forest. Front. For. Glob. Change 5, 803194 (2022).

    Article 

    Google Scholar
     

  • Owen, K. C. et al. Bioacoustic analyses reveal that bird communities recover with forest succession in tropical dry forests. Avian Conserv. Ecol. 15, 25 (2020).

    Article 

    Google Scholar
     

  • Müller, J. et al. Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests. Nat. Commun. 14, 6191 (2023).

    Article 

    Google Scholar
     

  • Do Nascimento, L. A., Pérez-Granados, C., Alencar, J. B. R. & Beard, K. H. Time and habitat structure shape insect acoustic activity in the Amazon. Philos. Trans. R. Soc. B 379, 20230112 (2024).

    Article 

    Google Scholar
     

  • van Klink, R. Delivering on a promise: futureproofing automated insect monitoring methods. Philos. Trans. R. Soc. B 379, 20230105 (2024).

    Article 

    Google Scholar
     

  • Nunez, N. F. et al. Potential of high-throughput eDNA sequencing of soil fungi and bacteria for monitoring ecological restoration in ultramafic substrates: the case study of the New Caledonian biodiversity hotspot. Ecol. Eng. 173, 106416 (2021).

    Article 

    Google Scholar
     

  • McGee, K. M., Porter, T. M., Wright, M. & Hajibabaei, M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci. Rep. 10, 18429 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pedersen, K. M., von Beeren, C., Oggioni, A. & Blüthgen, N. Mammal dung–dung beetle trophic networks: an improved method based on gut-content DNA. PeerJ 12, e16627 (2024).

    Article 

    Google Scholar
     

  • Martins, A. C. et al. Contrasting patterns of foraging behavior in neotropical stingless bees using pollen and honey metabarcoding. Sci. Rep. 13, 14474 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Silva Junior, C. H. L. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 7, 269 (2020).

    Article 

    Google Scholar
     

  • Hansen, M. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Potapov, P. et al. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote. Sens. 3, 856903 (2022).

    Article 

    Google Scholar
     

  • Besnard, S. et al. Global covariation of forest age transitions with the net carbon balance. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-4655317/v1 (2024).

  • Poorter, L. et al. A comprehensive framework for vegetation succession. Ecosphere 15, e4794 (2024).

    Article 

    Google Scholar
     

  • van Breugel, M. et al. Feedback loops drive ecological succession; towards a unified conceptual framework. Biol. Rev. 99, 928–949 (2024).

    Article 

    Google Scholar
     

  • Mesquita, R. D. C. G., dos Santos Massoca, P. E., Jakovac, C. C., Bentos, T. V. & Williamson, G. B. Amazon rain forest succession: stochasticity or land-use legacy? BioScience 65, 849–861 (2015).

    Article 

    Google Scholar
     

  • Norden, N. et al. Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proc. Natl Acad. Sci. USA 112, 8013–8018 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Arroyo-Rodríguez, V. et al. Landscape-scale forest cover drives the predictability of forest regeneration across the Neotropics. Proc. R. Soc. B Biol. Sci. 290, 20222203 (2023).

    Article 

    Google Scholar
     

  • Hordijk, I. et al. Land use legacies affect early tropical forest succession in Mexico. Appl. Veg. Sci. 27, e12784 (2024).

    Article 

    Google Scholar
     

  • Sloan, S., Goosem, M. & Laurance, S. G. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31, 601–618 (2016).

    Article 

    Google Scholar
     

  • Martínez‐Ramos, M. et al. Natural forest regeneration and ecological restoration in human‐modified tropical landscapes. Biotropica 48, 745–757 (2016).

    Article 

    Google Scholar
     

  • van Breugel, M., Hall, J. S., Bailon, M. & Craven, D. Persistent effects of landscape context on recruitment dynamics during secondary succession of tropical forests. Glob. Change Biol. 31, e70037 (2025).

    Article 

    Google Scholar
     

  • Rezende, C. L., Uezu, A., Scarano, F. R. & Araujo, D. S. D. Atlantic forest spontaneous regeneration at landscape scale. Biodivers. Conserv. 24, 2255–2272 (2015).

    Article 

    Google Scholar
     

  • Molin, P. G., Chazdon, R. L., Ferraz, S. F. & Brancalion, P. H. S. A landscape approach for cost-effective large-scale forest restoration. J. Appl. Ecol. 55, 2767–2778 (2018).

    Article 

    Google Scholar
     

  • Borda‐Niño, M., Meli, P. & Brancalion, P. H. Drivers of tropical forest cover increase: a systematic review. Land Degrad. Dev. 31, 1366–1379 (2020).

    Article 

    Google Scholar
     

  • Crouzeilles, R. et al. Achieving cost‐effective landscape‐scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).

    Article 

    Google Scholar
     

  • Williams, B. A. et al. Global potential for natural regeneration in deforested tropical regions. Nature 636, 131–137 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Calaboni, A. et al. The forest transition in São Paulo, Brazil: historical patterns and potential drivers. Ecol. Soc. 23, 242–251 (2018).

    Article 

    Google Scholar
     

  • Alencar, L., Escada, M. I. S. & Camargo, J. L. C. Forest regeneration pathways in contrasting deforestation patterns of Amazonia. Front. Environ. Sci. 11, 991695 (2023).

    Article 

    Google Scholar
     

  • Benzeev, R., Wiens, A., Piotto, D. & Newton, P. Property size and forest cover were key determinants of forest restoration in Southern Bahia in the Atlantic Forest of Brazil. Land Use Policy 134, 106879 (2023).

    Article 

    Google Scholar
     

  • Schweizer, D. et al. Natural forest regrowth under different land use intensities and landscape configurations in the Brazilian Atlantic Forest. For. Ecol. Manag. 508, 120012 (2022).

    Article 

    Google Scholar
     

  • Borda-Nino, M. et al. Integrating farmers’ decisions on the assessment of forest regeneration drivers in a rural landscape of Southeastern Brazil. Perspect. Ecol. Conserv. 19, 338–344 (2021).


    Google Scholar
     

  • Giles, A. L. et al. Simple ecological indicators benchmark regeneration success of Amazonian forests. Commun. Earth Environ. 5, 780 (2024).

    Article 

    Google Scholar
     

  • Cesar, R. et al. It’s not just about time: agricultural practices and landscape-level forest cover dictate secondary forest recovery in deforested tropical landscapes. Biotropica 53, 496–508 (2021).

    Article 

    Google Scholar
     

  • Pérez-Cárdenas, N. et al. Effects of landscape composition and site land-use intensity on secondary succession in a tropical dry forest. For. Ecol. Manag. 482, 118818 (2021).

    Article 

    Google Scholar
     

  • Zermeño‐Hernández, I., Méndez‐Toribio, M., Siebe, C., Benítez‐Malvido, J. & Martínez‐Ramos, M. Ecological disturbance regimes caused by agricultural land uses and their effects on tropical forest regeneration. Appl. Veg. Sci. 18, 443–455 (2015).

    Article 

    Google Scholar
     

  • Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Streubig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).

    Article 

    Google Scholar
     

  • Bello, C. et al. Frugivores enhance potential carbon recovery in fragmented landscapes. Nat. Clim. Change 14, 636–643 (2024).

    Article 

    Google Scholar
     

  • Grella, N. et al. Vertebrate diversity and biomass along a recovery gradient in a lowland tropical forest. Biotropica 57, e13417 (2025).

    Article 

    Google Scholar
     

  • Escobar, S. et al. Reassembly of a tropical rainforest: a new chronosequence in the Chocó tested with the recovery of tree attributes. Ecosphere 16, e70157 (2025).

    Article 

    Google Scholar
     

  • Poorter, L. et al. Multidimensional tropical forest recovery. Science 374, 1370–1376 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Makelele, I. A. et al. Afrotropical secondary forests exhibit fast diversity and functional recovery, but slow compositional and carbon recovery after shifting cultivation. J. Veg. Sci. 32, e13071 (2021).

    Article 

    Google Scholar
     

  • Amani, B. H. et al. Lessons from a regional analysis of forest recovery trajectories in West Africa. Environ. Res. Lett. 17, 115005 (2022).

    Article 

    Google Scholar
     

  • Rozendaal, D. M. A. et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, eaau3114 (2019).

    Article 

    Google Scholar
     

  • Mora, F. et al. Testing chronosequences through dynamic approaches: time and site effects on tropical dry forest succession. Biotropica 47, 38–48 (2015).

    Article 

    Google Scholar
     

  • Chazdon, R. L., Norden, N., Colwell, R. K. & Chao, A. Monitoring recovery of tree diversity during tropical forest restoration: lessons from long-term trajectories of natural regeneration. Philos. Trans. R. Soc. B 378, 20210069 (2022).

    Article 

    Google Scholar
     

  • Uriarte, M., Lasky, J. R., Boukili, V. & Chazdon, R. A trait-mediated, neighborhood approach to quantify climate impacts on successional dynamics of tropical rainforests. Funct. Ecol. 30, 157–167 (2016).

    Article 

    Google Scholar
     

  • Weidlich, E. W. A. et al. Priority effects and ecological restoration. Restor. Ecol. 29, e13317 (2021).

    Article 

    Google Scholar
     

  • Williamson, G. B., Bentos, T. V., Longworth, J. B. & Mesquita, R. C. G. Convergence and divergence in alternative successional pathways in Central Amazonia. Plant Ecol. Divers. 7, 341–348 (2014).

    Article 

    Google Scholar
     

  • Rüger, N. et al. Successional shifts in tree demographic strategies in wet and dry Neotropical forests. Glob. Ecol. Biogeogr. 32, 1002–1014 (2023).

    Article 

    Google Scholar
     

  • Schorn, M. E. et al. Tree demographic strategies largely overlap across succession. Ecology 105, e4321 (2024).

    Article 

    Google Scholar
     

  • Poorter, L. et al. Functional recovery of secondary tropical forests. Proc. Natl Acad. Sci. USA 118, e2003405118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • van der Sande, M. T. et al. Tropical forest succession increases taxonomic and functional tree richness but decreases evenness. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13856 (2024).

  • Dent, D. H. & Estrada-Villegas, S. Uniting niche differentiation and dispersal limitation predicts tropical forest succession. Trends Ecol. Evol. 36, 700–708 (2021).

    Article 

    Google Scholar
     

  • Hughes, E. C., Edwards, D. P., Sayer, C. A., Martin, P. A. & Thomas, G. H. The effects of tropical secondary forest regeneration on avian phylogenetic diversity. J. Appl. Ecol. 57, 1351–1362 (2020).

    Article 

    Google Scholar
     

  • Jakovac, C. C. et al. Strong floristic distinctiveness across Neotropical successional forests. Sci. Adv. 8, eabn1767 (2022).

    Article 

    Google Scholar
     

  • Letcher, S. G. et al. Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. J. Ecol. 103, 1276–1290 (2015).

    Article 

    Google Scholar
     

  • Satdichanh, M. et al. Phylogenetic diversity correlated with above-ground biomass production during forest succession: evidence from tropical forests in Southeast Asia. J. Ecol. 107, 1419–1432 (2019).

    Article 

    Google Scholar
     

  • Matos, F. A. et al. Secondary forest fragments offer important carbon and biodiversity cobenefits. Glob. Change Biol. 26, 509–522 (2020).

    Article 

    Google Scholar
     

  • Capellesso, E. S. et al. Co-benefits in biodiversity conservation and carbon stock during forest regeneration in a preserved tropical landscape. For. Ecol. Manag. 492, 119222 (2021).

    Article 

    Google Scholar
     

  • Rocha, R. et al. Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape. Sci. Rep. 8, 3819 (2018).

    Article 

    Google Scholar
     

  • Stouffer, P. C. Birds in fragmented Amazonian rainforest: lessons from 40 years at the biological dynamics of forest fragments project. Condor 122, 1–15 (2020).

    Article 

    Google Scholar
     

  • De Aquino, K. K. S. et al. Forest fragments, primary and secondary forests harbour similar arthropod assemblages after 40 years of landscape regeneration in the Central Amazon. Agric. For. Entomol. 24, 178–188 (2022).

    Article 

    Google Scholar
     

  • Genes, L. & Dirzo, R. Restoration of plant–animal interactions in terrestrial ecosystems. Biol. Conserv. 265, 109393 (2022).

    Article 

    Google Scholar
     

  • Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    Article 

    Google Scholar
     

  • Del-Claro, K. et al. in Ecological Networks in the Tropics: An Integrative Overview of Species Interactions from Some of the Most Species-Rich Habitats on Earth (eds Dáttilo, W. & Rico-Gray, V.) 59–72 (Springer, 2018).

  • Andresen, E. & Urrea-Galeano, L. A. Effects of dung beetle activity on tropical forest plants. Front. Ecol. Evol. 10, 979676 (2022).

    Article 

    Google Scholar
     

  • Carlo, T. A. & Morales, J. M. Generalist birds promote tropical forest regeneration and increase plant diversity via rare‐biased seed dispersal. Ecology 97, 1819–1831 (2016).

    Article 

    Google Scholar
     

  • Heymann, E. W., Fuzessy, L. & Culot, L. Small but nice — seed dispersal by tamarins compared to large neotropical primates. Diversity 14, 1033 (2022).

    Article 

    Google Scholar
     

  • Estrada-Villegas, S. et al. Animal seed dispersal recovery during passive restoration in a forested landscape. Philos. Trans. R. Soc. B 378, 20210076 (2023).

    Article 

    Google Scholar
     

  • Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in Neotropical agricultural systems. Science 345, 1343–1346 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Borges, S. H., Tavares, T. D. R. S., Crouch, N. M. & Baccaro, F. Successional trajectories of bird assemblages in Amazonian secondary forests: perspectives from complementary biodiversity dimensions. For. Ecol. Manag. 483, 118731 (2021).

    Article 

    Google Scholar
     

  • Stouffer, P. C. & Rutt, C. L. Partial recovery of primary rainforest bird communities in Amazonian secondary forests. Biotropica 57, e13415 (2025).

    Article 

    Google Scholar
     

  • Hoenle, P. O. et al. Rapid ant community reassembly in a Neotropical forest: recovery dynamics and land‐use legacy. Ecol. Appl. 32, e2559 (2022).

    Article 

    Google Scholar
     

  • Lennox, G. D. et al. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Change Biol. 24, 5680–5694 (2018).

    Article 

    Google Scholar
     

  • Hernández-Ordóñez, O., Urbina-Cardona, N. & Martínez-Ramos, M. Recovery of amphibian and reptile assemblages during old-field succession of tropical rain forests. Biotropica 47, 377–388 (2015).

    Article 

    Google Scholar
     

  • Szefer, P., Molem, K., Sau, A. & Novotny, V. Impact of pathogenic fungi, herbivores and predators on secondary succession of tropical rainforest vegetation. J. Ecol. 108, 1978–1988 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Redmond, C. M. et al. High specialization and limited structural change in plant–herbivore networks along a successional chronosequence in tropical montane forest. Ecography 42, 162–172 (2019).

    Article 

    Google Scholar
     

  • Ribeiro da Silva, F. et al. The restoration of tropical seed dispersal networks. Restor. Ecol. 23, 852–860 (2015).

    Article 

    Google Scholar
     

  • Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Boukili, V. K. & Chazdon, R. L. Environmental filtering, local site factors and landscape context drive changes in functional trait composition during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 24, 37–47 (2017).

    Article 

    Google Scholar
     

  • Lasky, J. R., Uriarte, M., Boukili, V. K. & Chazdon, R. L. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proc. Natl Acad. Sci. USA 111, 5616–5621 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wendt, A. L., Chazdon, R. L. & Vargas Ramirez, O. Successional trajectories of seed dispersal mode and seed size of canopy tree species in wet tropical forests. Front. Forests Glob. Change https://doi.org/10.3389/ffgc.2022.946541 (2022).

  • Teixeira, H. M. et al. Linking vegetation and soil functions during secondary forest succession in the Atlantic forest. For. Ecol. Manag. 457, 117696 (2020).

    Article 

    Google Scholar
     

  • Lohbeck, M. et al. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94, 1211–1216 (2013).

    Article 

    Google Scholar
     

  • Buzzard, V., Hulshof, C. M., Birt, T., Violle, C. & Enquist, B. J. Re-growing a tropical dry forest: functional plant trait composition and community assembly during succession. Funct. Ecol. 30, 1006–1013 (2016).

    Article 

    Google Scholar
     

  • Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).

    Article 

    Google Scholar
     

  • Hoenle, P. O., Staab, M., Donoso, D. A., Argoti, A. & Blüthgen, N. Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest. J. Anim. Ecol. 92, 1372–1387 (2023).

    Article 

    Google Scholar
     

  • Shen, Y. et al. Differences in mixed‐species bird flocks across forest succession: combining network analysis and trait‐based ecology related to the fast–slow continuum. Funct. Ecol. 38, 1236–1249 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Magnuszewski, P. et al. Resilience and alternative stable states of tropical forest landscapes under shifting cultivation regimes. PLoS ONE 10, e0137497 (2015).

    Article 

    Google Scholar
     

  • Lovejoy, T. E. & Nobre, C. Amazon tipping point: last chance for action. Sci. Adv. 5, eaba2949 (2019).

    Article 

    Google Scholar
     

  • Falk, D. A. et al. Mechanisms of forest resilience. For. Ecol. Manag. 512, 120129 (2022).

    Article 

    Google Scholar
     

  • Mata, S. et al. Forever young: arrested succession in communities subjected to recurrent fires in a lowland tropical forest. Plant Ecol. 223, 659–670 (2022).

    Article 

    Google Scholar
     

  • Sansevero, J. B. B., Prieto, P. V., Sánchez-Tapia, A., Braga, J. M. A. & Rodrigues, P. J. F. P. Past land-use and ecological resilience in a lowland Brazilian Atlantic Forest: implications for passive restoration. N. For. 48, 573–586 (2017).


    Google Scholar
     

  • Barahukwa, A. et al. The effects of the invasive species, Lantana camara, on regeneration of an African rainforest. Afr. J. Ecol. 61, 451–460 (2023).

    Article 

    Google Scholar
     

  • Albert, S., Flores, O. & Strasberg, D. Collapse of dispersal trait diversity across a long-term chronosequence reveals a strong negative impact of frugivore extinctions on forest resilience. J. Ecol. 108, 1386–1397 (2020).

    Article 

    Google Scholar
     

  • Banko, P. C. et al. Hypotheses and lessons from a native moth outbreak in a low-diversity, tropical rainforest. Ecosphere 13, e3926 (2022).

    Article 

    Google Scholar
     

  • Uriarte, M., Muscarella, R. & Zimmerman, J. K. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Glob. Change Biol. 24, e692–e704 (2018).

    Article 

    Google Scholar
     

  • Ibarra-Manríquez, G. et al. in Plant Regeneration from Seeds (eds Baskin, C. C. & Baskin, J. M.) 169–181 (Academic Press, 2022).

  • Barros, M. F. et al. Resprouting drives successional pathways and the resilience of Caatinga dry forest in human-modified landscapes. For. Ecol. Manag. 482, 118881 (2021).

    Article 

    Google Scholar
     

  • Noutcheu, R., Oliveira, F. M. P., Wirth, R., Tabarelli, M. & Leal, I. R. Coppicing as a driver of plant resprouting and the regeneration of a Caatinga dry forest. For. Ecol. Manag. 529, 120736 (2023).

    Article 

    Google Scholar
     

  • Ticktin, T. et al. High resilience of Pacific Island forests to a category-5 cyclone. Sci. Total Environ. 922, 170973 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Smith-Martin, C. M. et al. Hurricanes increase tropical forest vulnerability to drought. N. Phytol. 235, 1005–1017 (2022).

    Article 

    Google Scholar
     

  • Villa, P. M. et al. Woody species diversity as an indicator of the forest recovery after shifting cultivation disturbance in the northern Amazon. Ecol. Indic. 95, 687–694 (2018).

    Article 

    Google Scholar
     

  • Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103, 67–77 (2015).

    Article 

    Google Scholar
     

  • Banerjee, O. et al. Can we avert an Amazon tipping point? The economic and environmental costs. Environ. Res. Lett. 17, 125005 (2022).

    Article 

    Google Scholar
     

  • Chazdon, R. L. et al. The intervention continuum in restoration ecology: rethinking the active–passive dichotomy. Restor. Ecol. 32, e13535 (2024).

    Article 

    Google Scholar
     

  • Hallett, L. M. & Hobbs, R. J. Thinking systemically about ecological interventions: what do system archetypes teach us? Restor. Ecol. 28, 1017–1025 (2020).

    Article 

    Google Scholar
     

  • Maes, S. L. et al. Explore before you restore: incorporating complex systems thinking in ecosystem restoration. J. Appl. Ecol. 61, 922–939 (2024).

    Article 

    Google Scholar
     

  • Millennium Ecosystem Assessment. Ecosystems and Human Well-Being, Vol. 5 (Island Press, 2005).

  • Pascual, U. et al. Valuing nature’s contributions to people: the IPBES approach. Curr. Opin. Environ. Sustain. 26, 7–16 (2017).

    Article 

    Google Scholar
     

  • Naime, J., Mora, F., Sánchez-Martínez, M., Arreola, F. & Balvanera, P. Economic valuation of ecosystem services from secondary tropical forests: trade-offs and implications for policy making. For. Ecol. Manag. 473, 118294 (2020).

    Article 

    Google Scholar
     

  • Melo, F. P. et al. Adding forests to the water–energy–food nexus. Nat. Sustain. 4, 85–92 (2021).

    Article 

    Google Scholar
     

  • Siddique, I. et al. Woody species richness drives synergistic recovery of socio-ecological multifunctionality along early tropical dry forest regeneration. For. Ecol. Manag. 482, 118848 (2021).

    Article 

    Google Scholar
     

  • Vallet, A. et al. Dynamics of ecosystem services during forest transitions in Reventazón, Costa Rica. PLoS ONE 11, e0158615 (2016).

    Article 

    Google Scholar
     

  • Wilson, S. J., Schelhas, J., Grau, R., Nanni, A. S. & Sloan, S. Forest ecosystem-service transitions: the ecological dimensions of the forest transition. Ecol. Soc. 22, 38 (2017).

    Article 

    Google Scholar
     

  • Simões, L. H. P. et al. Green deserts, but not always: a global synthesis of native woody species regeneration under tropical tree monocultures. Glob. Change Biol. 30, e17269 (2024).

    Article 

    Google Scholar
     

  • Zhu, H. et al. Monoculture plantations impede forest recovery: evidence from the regeneration of lowland subtropical forest in Hong Kong. Front. For. Glob. Change 6, 1098666 (2023).

    Article 

    Google Scholar
     

  • Meli, P., Ellison, D., Ferraz, S. F. D. B., Filoso, S. & Brancalion, P. H. On the unique value of forests for water: hydrologic impacts of forest disturbances, conversion, and restoration. Glob. Change Biol. 30, e17162 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lohbeck, M., Poorter, L., Martínez-Ramos, M. & Bongers, F. Biomass is the main driver of changes into ecosystem process rates during tropical forest succession. Ecology 96, 1242–1252 (2015).

    Article 

    Google Scholar
     

  • Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schwartz, N. B., Aide, T. M., Graesser, J., Grau, H. R. & Uriarte, M. Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Front. For. Glob. Change 3, 85 (2020).

    Article 

    Google Scholar
     

  • Aryal, D. R. et al. Biomass recovery along a tropical forest succession: trends on tree diversity, wood traits and stand structure. For. Ecol. Manag. 555, 121709 (2024).

    Article 

    Google Scholar
     

  • Strassburg, B. N. et al. The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest. Biotropica 48, 890–899 (2016).

    Article 

    Google Scholar
     

  • Filoso, S., Bezerra, M. O., Weiss, K. C. & Palmer, M. A. Impacts of forest restoration on water yield: a systematic review. PLoS ONE 12, e0183210 (2017).

    Article 

    Google Scholar
     

  • Ilstedt, U. et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 6, 21930 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sheil, D. Forests, atmospheric water and an uncertain future: the new biology of the global water cycle. For. Ecosyst. 5, 1–22 (2018).

    Article 

    Google Scholar
     

  • te Wierik, S. A., Cammeraat, E. L., Gupta, J. & Artzy‐Randrup, Y. A. Reviewing the impact of land use and land‐use change on moisture recycling and precipitation patterns. Water Resour. Res. 57, e2020WR029234 (2021).

    Article 

    Google Scholar
     

  • van Meerveld, H. et al. Forest regeneration can positively contribute to local hydrological ecosystem services: implications for forest landscape restoration. J. Appl. Ecol. 58, 755–765 (2021).

    Article 

    Google Scholar
     

  • Birch, A. L., Stallard, R. F., Bush, S. A. & Barnard, H. R. The influence of land cover and storm magnitude on hydrologic flowpath activation and runoff generation in steep tropical catchments of central Panama. J. Hydrol. 596, 126138 (2021).

    Article 

    Google Scholar
     

  • Chavarria, K. A. et al. Land use influences stream bacterial communities in lowland tropical watersheds. Sci. Rep. 11, 21752 (2021).

    Article 
    CAS 

    Google Scholar
     

  • de Mello, K., Valente, R. A., Randhir, T. O. & Vettorazzi, C. A. Impacts of tropical forest cover on water quality in agricultural watersheds in southeastern Brazil. Ecol. Indic. 93, 1293–1301 (2018).

    Article 

    Google Scholar
     

  • Herrera, D. et al. Upstream watershed condition predicts rural children’s health across 35 developing countries. Nat. Commun. 8, 811 (2017).

    Article 

    Google Scholar
     

  • Powers, J. S. & Marín-Spiotta, E. Ecosystem processes and biogeochemical cycles during secondary tropical forest succession. Annu. Rev. Ecol. Evol. Syst. 48, 497–519 (2017).

    Article 

    Google Scholar
     

  • N’Guessan, A. E. et al. Drivers of biomass recovery in a secondary forested landscape of West Africa. For. Ecol. Manag. 433, 325–331 (2019).

    Article 

    Google Scholar
     

  • Van Der Sande, M. T. et al. Soil resistance and recovery during Neotropical forest succession. Philos. Trans. R. Soc. B 378, 20210074 (2023).

    Article 

    Google Scholar
     

  • Lohbeck, M., Winowiecki, L., Aynekulu, E., Okia, C. & Vågen, T. G. Trait‐based approaches for guiding the restoration of degraded agricultural landscapes in East Africa. J. Appl. Ecol. 55, 59–68 (2018).

    Article 

    Google Scholar
     

  • Gavito, M. et al. Indicators of integrative recovery of vegetation, soil and microclimate in successional fields of a tropical dry forest. For. Ecol. Manag. 479, 118526 (2021).

    Article 

    Google Scholar
     

  • Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).

    Article 

    Google Scholar
     

  • Sears, R. R., Cronkleton, P., Villanueva, F. P., Ruiz, M. M. & del Arco, M. P.-O. Farm-forestry in the Peruvian Amazon and the feasibility of its regulation through forest policy reform. For. Policy Econ. 87, 49–58 (2018).

    Article 

    Google Scholar
     

  • Forero-Montaña, J., Marcano-Vega, H., Zimmerman, J. K. & Brandeis, T. J. Potential of second-growth Neotropical forests for forestry: the example of Puerto Rico. For. Trees Livelihoods 28, 1–16 (2019).

    Article 

    Google Scholar
     

  • Zambiazi, D. C. et al. Timber stock recovery in a chronosequence of secondary forests in Southern Brazil: adding value to restored landscapes. For. Ecol. Manag. 495, 119352 (2021).

    Article 

    Google Scholar
     

  • Toledo-Aceves, T., Günter, S., Guariguata, M. R., García-Díaz, M. & Zhunusova, E. Financial revenues from timber harvesting in secondary cloud forests: a case study from Mexico. Forests 13, 1496 (2022).

    Article 

    Google Scholar
     

  • Lykke, A. M. et al. Tree populations show low regeneration of valued species in West Africa. Biol. Conserv. 301, 110891 (2025).

    Article 

    Google Scholar
     

  • Souza, S. E., Vidal, E., Chagas, G. D. F., Elgar, A. T. & Brancalion, P. H. Ecological outcomes and livelihood benefits of community‐managed agroforests and second growth forests in Southeast Brazil. Biotropica 48, 868–881 (2016).

    Article 

    Google Scholar
     

  • Jansen, M. et al. Food for thought: the underutilized potential of tropical tree‐sourced foods for 21st century sustainable food systems. People Nat. 2, 1006–1020 (2020).

    Article 

    Google Scholar
     

  • Cairns, M. F. Shifting Cultivation and Environmental Change: Indigenous People, Agriculture and Forest Conservation (Routledge, 2015).

  • Mukul, S. A., Herbohn, J. & Firn, J. Co-benefits of biodiversity and carbon from regenerating secondary forests following shifting cultivation in the upland Philippines: implications for forest landscape restoration. Biotropica 48, 882–889 (2016).

    Article 

    Google Scholar
     

  • Mertz, O. et al. Ecosystem service provision by secondary forests in shifting cultivation areas remains poorly understood. Hum. Ecol. 49, 271–283 (2021).

    Article 

    Google Scholar
     

  • Sears, R. R., Cronkleton, P., Miranda Ruiz, M. & Pérez-Ojeda del Arco, M. Hiding in plain sight: how a fallow forestry supply chain remains illegitimate in the eyes of the state. Front. For. Glob. Change 4, 681611 (2021).

    Article 

    Google Scholar
     

  • Souza Oliveira, M. et al. Biomass of timber species in Central American secondary forests: towards climate change mitigation through sustainable timber harvesting. For. Ecol. Manag. 496, 119439 (2021).

    Article 

    Google Scholar
     

  • Gasparinetti, P. et al. Economic feasibility of tropical forest restoration models based on non-timber forest products in Brazil, Cambodia, Indonesia, and Peru. Forests 13, 1878 (2022).

    Article 

    Google Scholar
     

  • Doua-Bi, G. Y. et al. Taking advantage of natural regeneration potential in secondary forests to recover commercial tree resources in Côte d’Ivoire. For. Ecol. Manag. 493, 119240 (2021).

    Article 

    Google Scholar
     

  • Binam, J. N. et al. Effects of farmer managed natural regeneration on livelihoods in semi-arid West Africa. Environ. Econ. Policy Stud. 17, 543–575 (2015).

    Article 

    Google Scholar
     

  • Chomba, S., Sinclair, F., Savadogo, P., Bourne, M. & Lohbeck, M. Opportunities and constraints for using farmer managed natural regeneration for land restoration in sub-Saharan Africa. Front. For. Glob. Change 3, 122 (2020).

    Article 

    Google Scholar
     

  • Magry, M. A., Cahill, D., Rookes, J. & Narula, S. A. An integrated value chain analysis of non-timber forest products: a case of Jharkhand State of India. Small Scale For. 21, 621–645 (2022).

    Article 

    Google Scholar
     

  • Busch, J. et al. Cost–effectiveness of natural forest regeneration and plantations for climate mitigation. Nat. Clim. Change 14, 996–1002 (2024).

    Article 

    Google Scholar
     

  • Wernick, I. K. & Kauppi, P. E. Storing carbon or growing forests? Land Use Policy 121, 106319 (2022).

    Article 

    Google Scholar
     

  • Chazdon, R. L. et al. A policy‐driven knowledge agenda for global forest and landscape restoration. Conserv. Lett. 10, 125–132 (2017).

    Article 

    Google Scholar
     

  • Goodman, R. C., van Hensbergen, H. J., Bengtsson, K., Kaplan, A. & Persson, M. Transforming the tropical timber industry could be the key to realizing the potential of forests and forest products. One Earth 7, 1142–1146 (2024).

    Article 

    Google Scholar
     

  • Chazdon, R. L. & Uriarte, M. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48, 709–715 (2016).

    Article 

    Google Scholar
     

  • Reid, J. L., Fagan, M. E., Lucas, J., Slaughter, J. & Zahawi, R. A. The ephemerality of secondary forests in southern Costa Rica. Conserv. Lett. 12, e12607 (2019).

    Article 

    Google Scholar
     

  • Piffer, P. R., Rosa, M. R., Tambosi, L. R., Metzger, J. P. & Uriarte, M. Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic forest. Environ. Res. Lett. 17, 045009 (2022).

    Article 

    Google Scholar
     

  • Brancalion, P. H. et al. Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica 48, 856–867 (2016).

    Article 

    Google Scholar
     

  • Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, eaas9143 (2018).

    Article 

    Google Scholar
     

  • Macintosh, A. et al. Australian human-induced native forest regeneration carbon offset projects have limited impact on changes in woody vegetation cover and carbon removals. Commun. Earth Environ. 5, 149 (2024).

    Article 

    Google Scholar
     

  • Lewis, S. L., Wheeler, C. E., Mitchard, E. T. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Resende, A. F. et al. How to enhance Atlantic Forest protection? Dealing with the shortcomings of successional stages classification. Perspect. Ecol. Conserv. 22, 101–111 (2024).


    Google Scholar
     

  • Filotas, E. et al. Viewing forests through the lens of complex systems science. Ecosphere 5, art1 (2014).

    Article 

    Google Scholar
     

  • Messier, C. et al. From management to stewardship: viewing forests as complex adaptive systems in an uncertain world. Conserv. Lett. 8, 368–377 (2015).

    Article 

    Google Scholar
     

  • Arroyo-Rodriguez, V. et al. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 92, 326–340 (2017).

    Article 

    Google Scholar
     

  • Puettmann, K. J. Restoring the adaptive capacity of forest ecosystems. J. Sustain. For. 33, S15–S27 (2014).

    Article 

    Google Scholar
     

  • Rudel, T. K., Sloan, S., Chazdon, R. & Grau, R. The drivers of tree cover expansion: global, temperate, and tropical zone analyses. Land Use Policy 58, 502–513 (2016).

    Article 

    Google Scholar
     

  • Lazos-Chavero, E., Meli, P. & Bonfil, C. Vulnerabilities and threats to natural forest regrowth: land tenure reform, land markets, pasturelands, plantations, and urbanization in indigenous communities in Mexico. Land 10, 1340 (2021).

    Article 

    Google Scholar
     

  • Kimaro, E. W., Wilson, M. L., Pintea, L., Mjema, P. & Powers, J. S. Community-managed forests can secure forest regrowth and permanence in human-modified landscapes. Glob. Ecol. Conserv. 52, e02966 (2024).


    Google Scholar
     

  • Tauro, A., Gómez-Baggethun, E., García-Frapolli, E., Chavero, E. L. & Balvanera, P. Unraveling heterogeneity in the importance of ecosystem services. Ecol. Soc. https://doi.org/10.5751/ES-10457-230411 (2018).

  • Balvanera, P. et al. Social ecological dynamics of tropical secondary forests. For. Ecol. Manag. 496, 119369 (2021).

    Article 

    Google Scholar
     

  • Adams, C., Rodrigues, S., Calmon, M. & Kumar, C. Impacts of large-scale forest restoration on socioeconomic status and local livelihoods: what we know and do not know. Biotropica 48, 731–744 (2016).

    Article 

    Google Scholar
     

  • Hajjar, R. et al. A global analysis of the social and environmental outcomes of community forests. Nat. Sustain. 4, 216–224 (2021).

    Article 

    Google Scholar
     

  • Sikor, T., He, J. & Lestrelin, G. Property rights regimes and natural resources: a conceptual analysis revisited. World Dev. 93, 337–349 (2017).

    Article 

    Google Scholar
     

  • Tedesco, A. M. et al. The role of incentive mechanisms in promoting forest restoration. Philos. Trans. R. Soc. B Biol. Sci. 378, 20210088 (2023).

    Article 

    Google Scholar
     

  • Brancalion, P. H. S. & Holl, K. D. Upscaling ecological restoration by integrating with agriculture. Front. Ecol. Environ. 23, e2802 (2025).

    Article 

    Google Scholar
     

  • Schwartz, N. B., Uriarte, M., DeFries, R., Gutierrez-Velez, V. & Pinedo-Vasquez, M. Land-use dynamics influence estimates of carbon sequestration potential in tropical second-growth forest. Environ. Res. Lett. 12, 074023 (2017).

    Article 

    Google Scholar
     

  • Crawford, C. L., Yin, H., Radeloff, V. C. & Wilcove, D. S. Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Sci. Adv. 8, eabm8999 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Baragwanath, K., Bayi, E. & Shinde, N. Collective property rights lead to secondary forest growth in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 120, e2221346120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sze, J. S., Carrasco, L. R., Childs, D. & Edwards, D. P. Reduced deforestation and degradation in Indigenous Lands pan-tropically. Nat. Sustain. 5, 123–130 (2022).

    Article 

    Google Scholar
     

  • Levis, C. et al. Indigenizing conservation science for a sustainable Amazon. Science 386, 1229–1232 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Erbaugh, J. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Z. J. et al. A culture of conservation: how an ancient forest plantation turned into an old‐growth forest reserve — the story of the Wamulin forest. People Nat. 3, 1014–1024 (2021).

    Article 

    Google Scholar
     

  • Vieira, I. C. et al. Governance and policy constraints of natural forest regeneration in the Brazilian Amazon. Restor. Ecol. 33, e14272 (2025).

    Article 

    Google Scholar
     

  • Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).

    Article 

    Google Scholar
     

  • Chazdon, R. L. et al. Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 15, 043002 (2020).

    Article 

    Google Scholar
     

  • Rudel, T. K. Reforesting the Earth: The Human Drivers of Forest Conservation, Restoration, and Expansion (Columbia Univ. Press, 2023).

  • Richards, R. C. et al. Governing a pioneer program on payment for watershed services: stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosyst. Serv. 16, 23–32 (2015).

    Article 

    Google Scholar
     

  • Borda-Niño, M., Hernández-Muciño, D. & Ceccon, E. Planning restoration in human-modified landscapes: new insights linking different scales. Appl. Geogr. 83, 118–129 (2017).

    Article 

    Google Scholar
     

  • Richards, R. C., Petrie, R., Christ, B., Ditt, E. & Kennedy, C. J. Farmer preferences for reforestation contracts in Brazil’s Atlantic Forest. For. Policy Econ. 118, 102235 (2020).

    Article 

    Google Scholar
     

  • Edwards, F. A. et al. Sparing land for secondary forest regeneration protects more tropical biodiversity than land sharing in cattle farming landscapes. Curr. Biol. 31, 1284–1293.e4 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pain, A., Marquardt, K., Lindh, A. & Hasselquist, N. J. What is secondary about secondary tropical forest? Rethinking forest landscapes. Hum. Ecol. 49, 239–247 (2021).

    Article 

    Google Scholar
     

  • Toomey, A. H. Why facts don’t change minds: insights from cognitive science for the improved communication of conservation research. Biol. Conserv. 278, 109886 (2023).

    Article 

    Google Scholar
     

  • Mulatu, K. A., Mora, B., Kooistra, L. & Herold, M. Biodiversity monitoring in changing tropical forests: a review of approaches and new opportunities. Remote Sens. 9, 1059 (2017).

    Article 

    Google Scholar
     

  • Carvalho, R. B., Alves, K. J. & Pizo, M. A. Spillover of avian seed dispersers between secondary forests and degraded areas in a tropical island. Acta Oecol. 121, 103959 (2023).

    Article 

    Google Scholar
     

  • Evans, L. J., Goossens, B. & Asner, G. P. Underproductive agriculture aids connectivity in tropical forests. For. Ecol. Manag. 401, 159–165 (2017).

    Article 

    Google Scholar
     

  • Beita, C. M., Murillo, L. F. S. & Alvarado, L. D. A. Ecological corridors in Costa Rica: an evaluation applying landscape structure, fragmentation–connectivity process, and climate adaptation. Conserv. Sci. Pract. 3, e475 (2021).

    Article 

    Google Scholar
     

  • Davies, S. J. et al. Pollen flow in fragmented landscapes maintains genetic diversity following stand-replacing disturbance in a Neotropical pioneer tree, Vochysia ferruginea mart. Heredity 115, 125–129 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Heymann, E. W. et al. Small Neotropical primates promote the natural regeneration of anthropogenically disturbed areas. Sci. Rep. 9, 10356 (2019).

    Article 

    Google Scholar
     

  • Sun, J. W., Chazdon, R. L. & Rundel, P. W. Diversity and distribution of monocot understory herbs during tropical forest succession in Northeastern Costa Rica. Diversity 16, 439 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Unmanaged naturally regenerating forests approach intact forest canopy structure but are susceptible to climate and human stress. One Earth 7, 1068–1081 (2024).

    Article 

    Google Scholar
     

  • Richter, J. et al. Spatial Database of Planted Trees (SDPT Version 2.0). Technical Note (World Resources Institute, 2024).

  • Crouzeilles, R. et al. Associations between socio-environmental factors and landscape-scale biodiversity recovery in naturally regenerating tropical and subtropical forests. Conserv. Lett. 14, e12768 (2021).

    Article 

    Google Scholar
     

  • Rosenfield, M. F. et al. Ecological integrity of tropical secondary forests: concepts and indicators. Biol. Rev. 98, 662–676 (2023).

    Article 

    Google Scholar
     

  • Jakovac, C. C., Bongers, F., Kuyper, T. W., Mesquita, R. C. & Peña‐Claros, M. Land use as a filter for species composition in Amazonian secondary forests. J. Veg. Sci. 27, 1104–1116 (2016).

    Article 

    Google Scholar
     

  • Elias, F. et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 101, e02954 (2020).

    Article 

    Google Scholar
     

  • Holl, K. D. & Aide, T. M. When and where to actively restore ecosystems? For. Ecol. Manag. 261, 1558–1563 (2011).

    Article 

    Google Scholar
     

  • Jakovac, A. C., Bentos, T. V., Mesquita, R. C. & Williamson, G. B. Age and light effects on seedling growth in two alternative secondary successions in Central Amazonia. Plant. Ecol. Divers. 7, 349–358 (2014).

    Article 

    Google Scholar
     

  • Rezende, G. M. & Vieira, D. L. M. Forest restoration in southern Amazonia: soil preparation triggers natural regeneration. For. Ecol. Manag. 433, 93–104 (2019).

    Article 

    Google Scholar
     

  • Shono, K., Chazdon, R., Bodin, B., Wilson, S. J. & Durst, P. Assisted natural regeneration: harnessing nature for restoration. Unasylva 252, 71–81 (2020).


    Google Scholar
     

  • McDonald, T. The visible and the invisible of ecological restoration. Ecol. Manag. Restor. 22, 3–4 (2021).

    Article 

    Google Scholar
     

  • Oluwajuwon, T., Chazdon, R., Ota, L., Gregorio, N. & Herbohn, J. Bibliometric and literature synthesis on assisted natural regeneration: an evidence base for Forest and Landscape Restoration in the tropics. Front. For. Glob. Change 7, 1412075 (2024).

    Article 

    Google Scholar
     

  • Orsi, F., Church, R. L. & Geneletti, D. Restoring forest landscapes for biodiversity conservation and rural livelihoods: a spatial optimisation model. Environ. Model. Softw. 26, 1622–1638 (2011).

    Article 

    Google Scholar
     

  • Palomeque, X. et al. Natural or assisted succession as approach of forest recovery on abandoned lands with different land use history in the Andes of Southern Ecuador. N. For. 48, 643–662 (2017).


    Google Scholar
     

  • Fernandez, F. A. et al. Rewilding the Atlantic Forest: restoring the fauna and ecological interactions of a protected area. Perspect. Ecol. Conserv. 15, 308–314 (2017).


    Google Scholar
     

  • Yang, Y. et al. Large ecosystem service benefits of assisted natural regeneration. J. Geophys. Res. Biogeosci. 123, 676–687 (2018).

    Article 

    Google Scholar
     

  • Huebner, L., Fadhil Al-Quraishi, A. M., Branch, O. & Gaznayee, H. A. New approaches: use of assisted natural succession in revegetation of inhabited arid drylands as alternative to large-scale afforestation. SN Appl. Sci. 4, 80 (2022).

    Article 

    Google Scholar
     

  • Wilson, S. J. et al. Assisted Natural Regeneration: A Guide for Restoring Tropical Forests (Conservation International, 2022).

  • Solar, R. Rd. C. et al. How pervasive is biotic homogenization in human‐modified tropical forest landscapes? Ecol. Lett. 18, 1108–1118 (2015).

    Article 

    Google Scholar
     

  • Chao, A. & Jost, L. Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

    Article 

    Google Scholar
     

  • Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).

    Article 

    Google Scholar
     

  • Chao, A. et al. Rarefaction and extrapolation with beta diversity under a framework of Hill numbers: the iNEXT.beta3D standardization. Ecol. Monogr. 93, e1588 (2023).

    Article 

    Google Scholar
     

  • Chao, A., Chiu, C.-H., Hu, K.-H. & Zelený, D. Correction to: revisiting Alwyn H. Gentry’s forest transect data: latitudinal beta diversity patterns are revealed using a statistical sampling-model-based approach. Jpn. J. Statis. Data Sci. 6, 861–884 (2024).

    Article 

    Google Scholar
     

  • Chao, A. et al. Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Good‐Turing theory. Ecology 98, 2914–2929 (2017).

    Article 

    Google Scholar
     

  • Chao, A. et al. An attribute‐diversity approach to functional diversity, functional beta diversity, and related (dis) similarity measures. Ecol. Monogr. 89, e01343 (2019).

    Article 

    Google Scholar
     

  • Blüthgen, N. & Staab, M. A critical evaluation of network approaches for studying species interactions. Ann. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-102722-021904 (2024).

  • Tedersoo, L. et al. Towards a co‐crediting system for carbon and biodiversity. Plants People Planet 6, 18–28 (2024).

    Article 

    Google Scholar
     

  • Ducros, A. & Steele, P. Biocredits to Finance Nature and People: Emerging Lessons (IIED (International Institute for Environment and Development), 2022).

  • Vardon, M. J. & Lindenmayer, D. B. Biodiversity market doublespeak. Science 382, 491 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wauchope, H. S. et al. What is a unit of nature? Measurement challenges in the emerging biodiversity credit market. Proc. R. Soc. B 291, 20242353 (2024).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Reexamination of honey bee Africanization in Mexico and other regions of...

    Ruttner, F. Biogeography and Taxonomy of Honeybees (Springer, 1988).Book  ...
    Biodiversity
    9
    minutes

    Addressing significant challenges for animal detection in camera trap images: a...

    Rovero, F., Kays, R. Camera trapping for conservation. In Conservation Technology, chap. 10 (eds. Wich, S. & Piel, A. K.) 79–101 (Oxford University Press, 2021).Boitani,...
    Biodiversity
    7
    minutes

    Hidden connections of more than 100 migratory marine species revealed in...

    From the enormous blue whale to the delicate monarch butterfly, animals of all shapes and sizes migrate across the...
    Biodiversity
    4
    minutes

    A new deep-sea crustacean family of Tanaidacea is established from Aotearoa...

    Family Arthruridae n. famLSID urn: lsid: zoobank.org:act:1C11F461-89D8-4721-9B78-81E78F3EE4FADiagnosisCuticle well calcified, ornamented and often shiny, white, and brittle. Carapace flask-shaped or domed-capsule (“egg-shaped,”5); eyelobes absent or...
    Biodiversity
    71
    minutes
    spot_imgspot_img