Schupp, E. W., Jordano, P. & Gómez, J. M. Seed dispersal effectiveness revisited: a conceptual review. N. Phytol. 188, 333–353 (2010).
Beckman, N. G. & Sullivan, L. L. The causes and consequences of seed dispersal. Annu. Rev. Ecol. Evol. Syst. 54, 403–427 (2023).
Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).
Traveset, A. Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspect. Plant Ecol. Evol. Syst. 1, 151–190 (1998).
Cain, M. L., Milligan, B. G. & Strand, A. E. Long‐distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).
Levin, S. A., Muller-Landau, H. C., Nathan, R. & Chave, J. The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Ecol. Evol. Syst. 34, 575–604 (2003).
Myers, J. A. & Harms, K. E. Seed arrival, ecological filters, and plant species richness: a meta‐analysis. Ecol. Lett. 12, 1250–1260 (2009).
Clark, J. S. et al. Reid’s paradox of rapid plant migration. BioScience 48, 13–24 (1998).
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Tucker, M. A., Busana, M., Huijbregts, M. A. J. & Ford, A. T. Human‐induced reduction in mammalian movements impacts seed dispersal in the tropics. Ecography 44, 897–906 (2021).
Markl, J. S. et al. Meta‐analysis of the effects of human disturbance on seed dispersal by animals. Conserv. Biol. 26, 1072–1081 (2012).
Cazetta, E. & Fahrig, L. The effects of human‐altered habitat spatial pattern on frugivory and seed dispersal: a global meta‐analysis. Oikos 2022, oik.08288 (2022).
Bello, C. et al. Frugivores enhance potential carbon recovery in fragmented landscapes. Nat. Clim. Change 14, 636–643 (2024).
Benedicto‐Royuela, J. et al. What is the value of biotic seed dispersal in post‐fire forest regeneration? Conserv. Lett. https://doi.org/10.1111/conl.12990 (2023).
Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).
Fleming, T. H. & John Kress, W. A brief history of fruits and frugivores. Acta Oecol. 37, 521–530 (2011).
Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS ONE 8, e66993 (2013).
Rogers, H. S., Donoso, I., Traveset, A. & Fricke, E. C. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52, 641–666 (2021).
Jordano, P. in Seeds: The Ecology of Regeneration in Plant Communities (ed. Fenner, M.) 125–165 (CABI, 2000).
Mendes, S. B. et al. Evidence of a European seed dispersal crisis. Science 386, 206–211 (2024).
Corlett, R. T. Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: an update. Glob. Ecol. Conserv. 11, 1–22 (2017).
Falcón, W., Moll, D. & Hansen, D. M. Frugivory and seed dispersal by chelonians: a review and synthesis. Biol. Rev. 95, 142–166 (2020).
Valido, A. & Olesen, J. M. Frugivory and seed dispersal by lizards: a global review. Front. Ecol. Evol. 7, 49 (2019).
Horn, M. H. et al. Seed dispersal by fishes in tropical and temperate fresh waters: the growing evidence. Acta Oecol. 37, 561–577 (2011).
Gómez, J. M., Schupp, E. W. & Jordano, P. Synzoochory: the ecological and evolutionary relevance of a dual interaction. Biol. Rev. 94, 874–902 (2019).
Comita, L. S. et al. Testing predictions of the Janzen–Connell hypothesis: a meta‐analysis of experimental evidence for distance‐ and density‐dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
Bialozyt, R., Ziegenhagen, B. & Petit, R. J. Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J. Evol. Biol. 19, 12–20 (2006).
Fricke, E. C. et al. When condition trumps location: seed consumption by fruit‐eating birds removes pathogens and predator attractants. Ecol. Lett. 16, 1031–1036 (2013).
Fricke, E. C., Bender, J., Rehm, E. M. & Rogers, H. S. Functional outcomes of mutualistic network interactions: a community‐scale study of frugivore gut passage on germination. J. Ecol. 107, 757–767 (2019).
Steyaert, S. M. J. G. et al. Special delivery: scavengers direct seed dispersal towards ungulate carcasses. Biol. Lett. 14, 20180388 (2018).
Wenny, D. G. & Levey, D. J. Directed seed dispersal by bellbirds in a tropical cloud forest. Proc. Natl Acad. Sci. USA 95, 6204–6207 (1998).
Nuñez, T. A., Prugh, L. R. & Hille Ris Lambers, J. Animal-mediated plant niche tracking in a changing climate. Trends Ecol. Evol. 38, 654–665 (2023).
Gill, N. S. et al. Limitations to propagule dispersal will constrain postfire recovery of plants and fungi in western coniferous forests. BioScience 72, 347–364 (2022).
Beckman, N. G. & Rogers, H. S. Consequences of seed dispersal for plant recruitment in tropical forests: interactions within the seedscape. Biotropica 45, 666–681 (2013).
Keddy, P. A. & Laughlin, D. C. A Framework for Community Ecology: Species Pools, Filters and Traits (Cambridge Univ. Press, 2021).
Vellend, M. The Theory of Ecological Communities (MPB-57) (Princeton Univ. Press, 2016).
Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).
Forget, P.-M. & Milleron, T. Evidence for secondary seed dispersal by rodents in Panama. Oecologia 87, 596–599 (1991).
Hirsch, B. T., Kays, R., Pereira, V. E. & Jansen, P. A. Directed seed dispersal towards areas with low conspecific tree density by a scatter‐hoarding rodent. Ecol. Lett. 15, 1423–1429 (2012).
Sorensen, A. E. Seed dispersal by adhesion. Annu. Rev. Ecol. Syst. 17, 443–463 (1986).
Jin, M.-F., Cai, X.-H. & Chen, G. Seed dispersal by deception: a game between mimetic seeds and their bird dispersers. Plant Divers. https://doi.org/10.1016/j.pld.2024.07.006 (2024).
Janzen, D. H. Dispersal of small seeds by big herbivores: foliage is the fruit. Am. Nat. 123, 338–353 (1984).
Vargas, P., Heleno, R. & Costa, J. EuDiS — a comprehensive database of the seed dispersal syndromes of the European flora. Br. Dent. J. 11, e104079 (2023).
González‐Varo, J. P. et al. Overlooked seed‐dispersal modes and underestimated distances. Glob. Ecol. Biogeogr. 33, e13835 (2024).
Green, A. J., Baltzinger, C. & Lovas‐Kiss, Á. Plant dispersal syndromes are unreliable, especially for predicting zoochory and long‐distance dispersal. Oikos 2022, oik.08327 (2022).
Draper, J. P., Young, J. K., Schupp, E. W., Beckman, N. G. & Atwood, T. B. Frugivory and seed dispersal by carnivorans. Front. Ecol. Evol. 10, 864864 (2022).
Albert, A. et al. Seed dispersal by ungulates as an ecological filter: a trait‐based meta‐analysis. Oikos 124, 1109–1120 (2015).
Witmer, M. C. & Cheke, A. S. The dodo and the tambalacoque tree: an obligate mutualism reconsidered. Oikos 61, 133 (1991).
Spiegel, O. & Nathan, R. Incorporating dispersal distance into the disperser effectiveness framework: frugivorous birds provide complementary dispersal to plants in a patchy environment. Ecol. Lett. 10, 718–728 (2007).
González‐Varo, J. P., López‐Bao, J. V. & Guitián, J. Functional diversity among seed dispersal kernels generated by carnivorous mammals. J. Anim. Ecol. 82, 562–571 (2013).
Schleuning, M., Fründ, J. & García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait‐based concepts to plant–animal interactions. Ecography 38, 380–392 (2015).
Aslan, C. et al. Employing plant functional groups to advance seed dispersal ecology and conservation. AoB PLANTS 11, plz006 (2019).
Ruxton, G. D. & Schaefer, H. M. The conservation physiology of seed dispersal. Philos. Trans. R. Soc. B 367, 1708–1718 (2012).
Lindstedt, S. L., Miller, B. J. & Buskirk, S. W. Home range, time, and body size in mammals. Ecology 67, 413–418 (1986).
Bracho‐Estévanez, C. A., Cuadrado, M., Sánchez, I., Onrubia, A. & González‐Varo, J. P. Plant traits determine seed retention times in frugivorous birds: implications for long‐distance seed dispersal. Funct. Ecol. 38, 2247–2260 (2024).
Rehm, E., Fricke, E., Bender, J., Savidge, J. & Rogers, H. Animal movement drives variation in seed dispersal distance in a plant–animal network. Proc. R. Soc. B 286, 20182007 (2019).
Green, A. J. & Wilkinson, D. M. Darwin’s digestion myth: historical and modern perspectives on our understanding of seed dispersal by waterbirds. Seeds 3, 505–527 (2024).
Wright, S. J. et al. The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39, 289–291 (2007).
McConkey, K. R. et al. Seed dispersal in changing landscapes. Biol. Conserv. 146, 1–13 (2012).
Medici, E. P., Fernandes-Santos, R. C., Testa-José, C., Godinho, A. F. & Brand, A.-F. Lowland tapir exposure to pesticides and metals in the Brazilian Cerrado. Wildl. Res. 48, 393–403 (2021).
Torquetti, C. G., Guimarães, A. T. B. & Soto-Blanco, B. Exposure to pesticides in bats. Sci. Total Environ. 755, 142509 (2021).
Tompkins, D. M., Dunn, A. M., Smith, M. J. & Telfer, S. Wildlife diseases: from individuals to ecosystems: ecology of wildlife diseases. J. Anim. Ecol. 80, 19–38 (2011).
Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).
Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).
Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).
Magioli, M. et al. Land-use changes lead to functional loss of terrestrial mammals in a neotropical rainforest. Perspect. Ecol. Conserv. 19, 161–170 (2021).
Bonfim, F. C. G. et al. Land‐use homogenization reduces the occurrence and diversity of frugivorous birds in a tropical biodiversity hotspot. Ecol. Appl. 34, e2980 (2024).
Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).
Sales, L. P., Galetti, M. & Pires, M. M. Climate and land‐use change will lead to a faunal ‘savannization’ on tropical rainforests. Glob. Change Biol. 26, 7036–7044 (2020).
Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).
Newton, I. Population limitation in migrants. Ibis 146, 197–226 (2004).
McConkey, K. R., Aldy, F., Ong, L., Sutisna, D. J. & Campos‐Arceiz, A. Lost mutualisms: seed dispersal by Sumatran rhinos, the world’s most threatened megafauna. Biotropica 54, 346–357 (2022).
Nuñez‐Iturri, G. & Howe, H. F. Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in Western Amazonia. Biotropica 39, 348–354 (2007).
Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 3, 160498 (2016).
Wright, S. J. The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspect. Plant Ecol. Evol. Syst. 6, 73–86 (2003).
Svenning, J.-C. et al. The late-quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the anthropocene. Camb. Prism. Extinct. 2, e5 (2024).
Rozas‐Davila, A., Valencia, B. G. & Bush, M. B. The functional extinction of Andean megafauna. Ecology 97, 2533–2539 (2016).
Morton, O., Scheffers, B. R., Haugaasen, T. & Edwards, D. P. Impacts of wildlife trade on terrestrial biodiversity. Nat. Ecol. Evol. 5, 540–548 (2021).
Roy, H. E., Pauchard, A., Stoett, P. & Renard Truong, T. IPBES Invasive Alien Species Assessment: Full Report (IPBES secretariat, 2024).
Rogers, H. S. et al. Effects of an invasive predator cascade to plants via mutualism disruption. Nat. Commun. 8, 14557 (2017).
Warner, R. E. The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70, 101–120 (1968).
Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. USA 113, 11261–11265 (2016).
Rodriguez-Cabal, M. A., Stuble, K. L., Guénard, B., Dunn, R. R. & Sanders, N. J. Disruption of ant-seed dispersal mutualisms by the invasive Asian needle ant (Pachycondyla chinensis). Biol. Invasions 14, 557–565 (2012).
Moura, M. R., Oliveira, G. A., Paglia, A. P., Pires, M. M. & Santos, B. A. Climate change should drive mammal defaunation in tropical dry forests. Glob. Change Biol. 29, 6931–6944 (2023).
Jezkova, T. & Wiens, J. J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. B 283, 20162104 (2016).
McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. USA 113, 7195–7200 (2016).
Mokany, K., Prasad, S. & Westcott, D. A. Loss of frugivore seed dispersal services under climate change. Nat. Commun. 5, 3971 (2014).
Sales, L., Culot, L. & Pires, M. M. Climate niche mismatch and the collapse of primate seed dispersal services in the Amazon. Biol. Conserv. 247, 108628 (2020).
Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).
Sayol, F. et al. AVOTREX: a global dataset of extinct birds and their traits. Glob. Ecol. Biogeogr. 33, e13927 (2024).
Tucker, M. A. et al. Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).
IUCN. The IUCN Red List of Threatened Species, version 2024-2 (IUCN, 2024).
Nieto, A. et al. European Red List of Bees (Publication Office of the European Union, 2014).
van Swaay, C. et al. European Red List of Butterflies (Publication Office of the European Union, 2010).
Vujić, A. et al. European Red List of Hoverflies (European Commission, 2022).
Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).
Wood, J. R. et al. Island extinctions: processes, patterns, and potential for ecosystem restoration. Environ. Conserv. 44, 348–358 (2017).
Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).
Brodie, J. F., Helmy, O. E., Brockelman, W. Y. & Maron, J. L. Bushmeat poaching reduces the seed dispersal and population growth rate of a mammal‐dispersed tree. Ecol. Appl. 19, 854–863 (2009).
Wandrag, E. M., Dunham, A. E., Duncan, R. P. & Rogers, H. S. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings. Proc. Natl Acad. Sci. USA 114, 10689–10694 (2017).
Asquith, N. M., Terborgh, J., Arnold, A. E. & Riveros, C. M. The fruits the agouti ate: Hymenaea courbaril seed fate when its disperser is absent. J. Trop. Ecol. 15, 229–235 (1999).
Beaune, D., Fruth, B., Bollache, L., Hohmann, G. & Bretagnolle, F. Doom of the elephant-dependent trees in a Congo tropical forest. For. Ecol. Manag. 295, 109–117 (2013).
Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 24820 (2016).
Cordeiro, N. J. & Howe, H. F. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl Acad. Sci. USA 100, 14052–14056 (2003).
Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network. Glob. Change Biol. 24, e190–e200 (2018).
Galetti, M., Donatti, C. I., Pires, A. S., Guimarães, P. R. & Jordano, P. Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Bot. J. Linn. Soc. 151, 141–149 (2006).
Traveset, A., González-Varo, J. P. & Valido, A. Long-term demographic consequences of a seed dispersal disruption. Proc. R. Soc. B 279, 3298–3303 (2012).
Sethi, P. & Howe, H. F. Recruitment of Hornbill‐dispersed trees in hunted and logged forests of the Indian Eastern Himalaya. Conserv. Biol. 23, 710–718 (2009).
Pires, M. M. et al. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia 175, 1247–1256 (2014).
Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography 41, 153–163 (2018).
Jansen, P. A. et al. Thieving rodents as substitute dispersers of megafaunal seeds. Proc. Natl Acad. Sci. USA 109, 12610–12615 (2012).
Doughty, C. E. et al. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39, 194–203 (2016).
McConkey, K. R. & O’Farrill, G. Loss of seed dispersal before the loss of seed dispersers. Biol. Conserv. 201, 38–49 (2016).
Costa, J. M. et al. Rewiring of experimentally disturbed seed dispersal networks might lead to unexpected network configurations. Basic Appl. Ecol. 30, 11–22 (2018).
Vizentin‐Bugoni, J., Debastiani, V. J., Bastazini, V. A. G., Maruyama, P. K. & Sperry, J. H. Including rewiring in the estimation of the robustness of mutualistic networks. Methods Ecol. Evol. 11, 106–116 (2020).
Fricke, E. C. & Svenning, J.-C. Accelerating homogenization of the global plant–frugivore meta-network. Nature 585, 74–78 (2020).
Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).
Case, S. B. & Tarwater, C. E. Functional traits of avian frugivores have shifted following species extinction and introduction in the Hawaiian islands. Funct. Ecol. 34, 2467–2476 (2020).
Heinen, J. H. et al. Novel plant–frugivore network on Mauritius is unlikely to compensate for the extinction of seed dispersers. Nat. Commun. 14, 1019 (2023).
Heleno, R. H. et al. The upsizing of the São Tomé seed dispersal network by introduced animals. Oikos 2022, oik.08279 (2022).
Sayol, F. et al. Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions. Sci. Adv. 7, eabj5790 (2021).
García, D., Martínez, D., Stouffer, D. B. & Tylianakis, J. M. Exotic birds increase generalization and compensate for native bird decline in plant–frugivore assemblages. J. Anim. Ecol. 83, 1441–1450 (2014).
Gawel, A. M., Fricke, E., Colton, A. & Rogers, H. S. Non‐native mammals are weak candidates to substitute ecological function of native avian seed dispersers in an island ecosystem. Biotropica 55, 1148–1158 (2023).
Pedrosa, F., Bercê, W., Levi, T., Pires, M. & Galetti, M. Seed dispersal effectiveness by a large‐bodied invasive species in defaunated landscapes. Biotropica 51, 862–873 (2019).
Celedón-Neghme, C., Traveset, A. & Calviño-Cancela, M. Contrasting patterns of seed dispersal between alien mammals and native lizards in a declining plant species. Plant Ecol. 214, 657–667 (2013).
Christian, C. E. Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature 413, 635–639 (2001).
Lundgren, E. J. et al. Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities. Science 383, 531–537 (2024).
Hansen, D. M. On the use of taxon substitutes in rewilding projects on islands. Isl. Evol. 19, 111–146 (2010).
Cordeiro, N. J. & Howe, H. F. Low recruitment of trees dispersed by animals in African forest fragments. Conserv. Biol. 15, 1733–1741 (2001).
Bagchi, R. et al. Defaunation increases the spatial clustering of lowland Western Amazonian tree communities. J. Ecol. 106, 1470–1482 (2018).
Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).
Fricke, E. C. & Wright, S. J. Measuring the demographic impact of conspecific negative density dependence. Oecologia 184, 259–266 (2017).
Caughlin, T. T. et al. Loss of animal seed dispersal increases extinction risk in a tropical tree species due to pervasive negative density dependence across life stages. Proc. R. Soc. B 282, 20142095 (2015).
Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 16, 222–230 (2018).
Albert, S., Flores, O. & Strasberg, D. Collapse of dispersal trait diversity across a long‐term chronosequence reveals a strong negative impact of frugivore extinctions on forest resilience. J. Ecol. 108, 1386–1397 (2020).
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
Muller-Landau, H. C. The tolerance–fecundity trade-off and the maintenance of diversity in seed size. Proc. Natl Acad. Sci. USA 107, 4242–4247 (2010).
Fricke, E. C., Tewksbury, J. J., Wandrag, E. M. & Rogers, H. S. Mutualistic strategies minimize coextinction in plant–disperser networks. Proc. R. Soc. B 284, 20162302 (2017).
Pärtel, M. et al. Global impoverishment of natural vegetation revealed by dark diversity. Nature https://doi.org/10.1038/s41586-025-08814-5 (2025).
De Thoisy, B. et al. Rapid evaluation of threats to biodiversity: human footprint score and large vertebrate species responses in French Guiana. Biodivers. Conserv. 19, 1567–1584 (2010).
Timmers, R. et al. Conservation of birds in fragmented landscapes requires protected areas. Front. Ecol. Environ. 20, 361–369 (2022).
Freitas, C. G., Dambros, C. & Camargo, J. L. C. Changes in seed rain across Atlantic forest fragments in Northeast Brazil. Acta Oecol. 53, 49–55 (2013).
Kurten, E. L., Wright, S. J. & Carson, W. P. Hunting alters seedling functional trait composition in a neotropical forest. Ecology 96, 1923–1932 (2015).
Liu, J. et al. Larger fragments have more late‐successional species of woody plants than smaller fragments after 50 years of secondary succession. J. Ecol. 107, 582–594 (2019).
Emer, C. et al. Seed dispersal networks in tropical forest fragments: area effects, remnant species, and interaction diversity. Biotropica 52, 81–89 (2020).
Rocha‐Santos, L. et al. The loss of functional diversity: a detrimental influence of landscape‐scale deforestation on tree reproductive traits. J. Ecol. 108, 212–223 (2020).
Nunez-Iturri, G., Olsson, O. & Howe, H. F. Hunting reduces recruitment of primate-dispersed trees in Amazonian Peru. Biol. Conserv. 141, 1536–1546 (2008).
De Lima, R. A. F. et al. The erosion of biodiversity and biomass in the Atlantic forest biodiversity hotspot. Nat. Commun. 11, 6347 (2020).
Culot, L., Bello, C., Batista, J. L. F., Do Couto, H. T. Z. & Galetti, M. Synergistic effects of seed disperser and predator loss on recruitment success and long-term consequences for carbon stocks in tropical rainforests. Sci. Rep. 7, 7662 (2017).
Poulsen, J. R., Clark, C. J. & Palmer, T. M. Ecological erosion of an Afrotropical forest and potential consequences for tree recruitment and forest biomass. Biol. Conserv. 163, 122–130 (2013).
Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).
Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).
Chanthorn, W. et al. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9, 10015 (2019).
Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl Acad. Sci. USA 113, 892–897 (2016).
De Paula Mateus, D. et al. Defaunation impacts on seed survival and its effect on the biomass of future tropical forests. Oikos 127, 1526–1538 (2018).
Fricke, E. C., Cook-Patton, S. C., Harvey, C. F. & Terrer, C. Seed dispersal disruption limits tropical forest regrowth. Preprint at bioRxiv https://doi.org/10.1101/2024.12.06.627256 (2024).
Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).
Schmitz, O. J. et al. Animals and the zoogeochemistry of the carbon cycle. Science 362, eaar3213 (2018).
Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015 (2007).
Queenborough, S. A. et al. Seed mass, abundance and breeding system among tropical forest species: do dioecious species exhibit compensatory reproduction or abundances? J. Ecol. 97, 555–566 (2009).
Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D. & McCulloh, K. A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457–461 (2001).
Hao, G.-Y. et al. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems. Oecologia 155, 405–415 (2008).
Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).
Gleason, S. M. et al. Weak tradeoff between xylem safety and xylem‐specific hydraulic efficiency across the world’s woody plant species. N. Phytol. 209, 123–136 (2016).
Pratt, R. B. & Jacobsen, A. L. Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant Cell Environ. 40, 897–913 (2017).
Rosner, S. Wood density as a proxy for vulnerability to cavitation: size matters. J. Plant Hydraul. 4, e001 (2017).
Egerer, M. H., Fricke, E. C. & Rogers, H. S. Seed dispersal as an ecosystem service: frugivore loss leads to decline of a socially valued plant, Capsicum frutescens. Ecol. Appl. 28, 655–667 (2018).
Hougner, C., Colding, J. & Söderqvist, T. Economic valuation of a seed dispersal service in the Stockholm National Urban Park, Sweden. Ecol. Econ. 59, 364–374 (2006).
Bello, C., Culot, L., Ruiz Agudelo, C. A. & Galetti, M. Valuing the economic impacts of seed dispersal loss on voluntary carbon markets. Ecosyst. Serv. 52, 101362 (2021).
FAO. The State of the World’s Forests 2024 (FAO, 2024).
Mattalia, G. et al. Cultural keystone species as a tool for biocultural stewardship. A global review. People Nat. https://doi.org/10.1002/pan3.10653 (2024).
Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).
González-Varo, J. P. et al. Limited potential for bird migration to disperse plants to cooler latitudes. Nature 595, 75–79 (2021).
Naoe, S. et al. Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal. Curr. Biol. 26, R315–R316 (2016).
Naoe, S. et al. Downhill seed dispersal by temperate mammals: a potential threat to plant escape from global warming. Sci. Rep. 9, 14932 (2019).
González‐Varo, J. P., López‐Bao, J. V. & Guitián, J. Seed dispersers help plants to escape global warming. Oikos 126, 1600–1606 (2017).
Lenoir, J. & Svenning, J. ‐C. Climate‐related range shifts — a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
Feeley, K. J., Rehm, E. M. & Machovina, B. Perspective: the responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Front. Biogeogr. 4, 69–84 (2012).
Browne, L. & Karubian, J. Habitat loss and fragmentation reduce effective gene flow by disrupting seed dispersal in a neotropical palm. Mol. Ecol. 27, 3055–3069 (2018).
Browne, L., Ottewell, K. & Karubian, J. Short-term genetic consequences of habitat loss and fragmentation for the neotropical palm Oenocarpus bataua. Heredity 115, 389–395 (2015).
Giombini, M. I., Bravo, S. P., Sica, Y. V. & Tosto, D. S. Early genetic consequences of defaunation in a large-seeded vertebrate-dispersed palm (Syagrus romanzoffiana). Heredity 118, 568–577 (2017).
Carvalho, C. S., Galetti, M., Colevatti, R. G. & Jordano, P. Defaunation leads to microevolutionary changes in a tropical palm. Sci. Rep. 6, 31957 (2016).
Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).
Johnson, J. S. et al. Rapid changes in seed dispersal traits may modify plant responses to global change. AoB PLANTS 11, plz020 (2019).
Emer, C., Galetti, M., Pizo, M. A., Jordano, P. & Verdú, M. Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. Sci. Adv. 5, eaav6699 (2019).
Dent, D. H. & Estrada-Villegas, S. Uniting niche differentiation and dispersal limitation predicts tropical forest succession. Trends Ecol. Evol. 36, 700–708 (2021).
Holl, K. D., Loik, M. E., Lin, E. H. V. & Samuels, I. A. Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor. Ecol. 8, 339–349 (2000).
Wunderle, J. M. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. For. Ecol. Manag. 99, 223–235 (1997).
De La Peña-Domene, M., Martínez-Garza, C., Palmas-Pérez, S., Rivas-Alonso, E. & Howe, H. F. Roles of birds and bats in early tropical-forest restoration. PLoS ONE 9, e104656 (2014).
Estrada-Villegas, S. et al. Animal seed dispersal recovery during passive restoration in a forested landscape. Philos. Trans. R. Soc. B 378, 20210076 (2023).
Parejo, S. H., Ceia, R. S., Ramos, J. A., Sampaio, H. L. & Heleno, R. H. Tiptoeing between restoration and invasion: seed rain into natural gaps within a highly invaded relic forest in the Azores. Eur. J. For. Res. 133, 383–390 (2014).
Pesendorfer, M. B., Sillett, T. S., Koenig, W. D. & Morrison, S. A. Scatter-hoarding corvids as seed dispersers for oaks and pines: a review of a widely distributed mutualism and its utility to habitat restoration. Condor 118, 215–237 (2016).
García, D., Martínez, D., Herrera, J. M. & Morales, J. M. Functional heterogeneity in a plant–frugivore assemblage enhances seed dispersal resilience to habitat loss. Ecography 36, 197–208 (2013).
González-Varo, J. P. et al. Frugivore-mediated seed dispersal in fragmented landscapes: compositional and functional turnover from forest to matrix. Proc. Natl Acad. Sci. USA 120, e2302440120 (2023).
González‐Varo, J. P., Carvalho, C. S., Arroyo, J. M. & Jordano, P. Unravelling seed dispersal through fragmented landscapes: frugivore species operate unevenly as mobile links. Mol. Ecol. 26, 4309–4321 (2017).
Razafindratsima, O. H. et al. Simplified communities of seed-dispersers limit the composition and flow of seeds in edge habitats. Front. Ecol. Evol. 9, 655441 (2021).
Camargo, P. H. S. A., Pizo, M. A., Brancalion, P. H. S. & Carlo, T. A. Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: implications for restoration. J. Appl. Ecol. 57, 2329–2339 (2020).
Reid, J. L. et al. Multi‐scale habitat selection of key frugivores predicts large‐seeded tree recruitment in tropical forest restoration. Ecosphere 12, e03868 (2021).
Guidetti, B. Y., Amico, G. C., Dardanelli, S. & Rodriguez-Cabal, M. A. Artificial perches promote vegetation restoration. Plant Ecol. 217, 935–942 (2016).
Holl, K. D., Luong, J. C. & Brancalion, P. H. S. Overcoming biotic homogenization in ecological restoration. Trends Ecol. Evol. 37, 777–788 (2022).
Holl, K. D., Joyce, F. H. & Reid, J. L. Alluring restoration strategies to attract seed‐dispersing animals need more rigorous testing. J. Appl. Ecol. 59, 649–652 (2022).
Brancalion, P. H. S. et al. Maximizing biodiversity conservation and carbon stocking in restored tropical forests. Conserv. Lett. 11, e12454 (2018).
De Almeida, C., Reid, J. L., Ferreira De Lima, R. A., Pinto, L. F. G. & Viani, R. A. G. Restoration plantings in the Atlantic forest use a small, biased, and homogeneous set of tree species. For. Ecol. Manag. 553, 121628 (2024).
Landim, A. R., Guimarães, P. R., Fernandez, F. A. S. & Dias, A. T. C. A framework for the restoration of seed dispersal and pollination. Restor. Ecol. 32, e14151 (2024).
Correia, M., Timóteo, S., Rodríguez-Echeverría, S., Mazars-Simon, A. & Heleno, R. Refaunation and the reinstatement of the seed-dispersal function in Gorongosa National Park: refaunation and seed-dispersal function. Conserv. Biol. 31, 76–85 (2017).
Genes, L. et al. Effects of howler monkey reintroduction on ecological interactions and processes. Conserv. Biol. 33, 88–98 (2019).
Mittelman, P., Kreischer, C., Pires, A. S. & Fernandez, F. A. S. Agouti reintroduction recovers seed dispersal of a large‐seeded tropical tree. Biotropica 52, 766–774 (2020).
Sobral-Souza, T. et al. Rewilding defaunated Atlantic forests with tortoises to restore lost seed dispersal functions. Perspect. Ecol. Conserv. 15, 300–307 (2017).
Rey, P. J. et al. Persistence of seed dispersal in agroecosystems: effects of landscape modification and intensive soil management practices in avian frugivores, frugivory and seed deposition in olive croplands. Front. Ecol. Evol. 9, 782462 (2021).
Kaiser-Bunbury, C. N. & Blüthgen, N. Integrating network ecology with applied conservation: a synthesis and guide to implementation. AoB PLANTS 7, plv076 (2015).
Carver, S. et al. Guiding principles for rewilding. Conserv. Biol. 35, 1882–1893 (2021).
Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).
Convention on Biological Diversity. Kunming–Montreal Global Biodiversity Framework (CBD, 2022).
Chaplin-Kramer, R. et al. Wildlife’s contributions to people. Nat. Rev. Biodivers. 2, 68–81 (2025).
Beckman, N. G. et al. Advancing an interdisciplinary framework to study seed dispersal ecology. AoB PLANTS 12, plz048 (2020).
Rodríguez-Cabal, M. A., Aizen, M. A. & Novaro, A. J. Habitat fragmentation disrupts a plant–disperser mutualism in the temperate forest of South America. Biol. Conserv. 139, 195–202 (2007).
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).
IPBES. Summary for Policymakers. of the Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).