Drivers and impacts of global seed disperser decline


  • Schupp, E. W., Jordano, P. & Gómez, J. M. Seed dispersal effectiveness revisited: a conceptual review. N. Phytol. 188, 333–353 (2010).

    Article 

    Google Scholar
     

  • Beckman, N. G. & Sullivan, L. L. The causes and consequences of seed dispersal. Annu. Rev. Ecol. Evol. Syst. 54, 403–427 (2023).

    Article 

    Google Scholar
     

  • Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).

    Article 

    Google Scholar
     

  • Traveset, A. Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspect. Plant Ecol. Evol. Syst. 1, 151–190 (1998).

    Article 

    Google Scholar
     

  • Cain, M. L., Milligan, B. G. & Strand, A. E. Long‐distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Levin, S. A., Muller-Landau, H. C., Nathan, R. & Chave, J. The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Ecol. Evol. Syst. 34, 575–604 (2003).

    Article 

    Google Scholar
     

  • Myers, J. A. & Harms, K. E. Seed arrival, ecological filters, and plant species richness: a meta‐analysis. Ecol. Lett. 12, 1250–1260 (2009).

    Article 

    Google Scholar
     

  • Clark, J. S. et al. Reid’s paradox of rapid plant migration. BioScience 48, 13–24 (1998).

    Article 

    Google Scholar
     

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tucker, M. A., Busana, M., Huijbregts, M. A. J. & Ford, A. T. Human‐induced reduction in mammalian movements impacts seed dispersal in the tropics. Ecography 44, 897–906 (2021).

    Article 

    Google Scholar
     

  • Markl, J. S. et al. Meta‐analysis of the effects of human disturbance on seed dispersal by animals. Conserv. Biol. 26, 1072–1081 (2012).

    Article 

    Google Scholar
     

  • Cazetta, E. & Fahrig, L. The effects of human‐altered habitat spatial pattern on frugivory and seed dispersal: a global meta‐analysis. Oikos 2022, oik.08288 (2022).

    Article 

    Google Scholar
     

  • Bello, C. et al. Frugivores enhance potential carbon recovery in fragmented landscapes. Nat. Clim. Change 14, 636–643 (2024).

    Article 

    Google Scholar
     

  • Benedicto‐Royuela, J. et al. What is the value of biotic seed dispersal in post‐fire forest regeneration? Conserv. Lett. https://doi.org/10.1111/conl.12990 (2023).

  • Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fleming, T. H. & John Kress, W. A brief history of fruits and frugivores. Acta Oecol. 37, 521–530 (2011).

    Article 

    Google Scholar
     

  • Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS ONE 8, e66993 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rogers, H. S., Donoso, I., Traveset, A. & Fricke, E. C. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52, 641–666 (2021).

    Article 

    Google Scholar
     

  • Jordano, P. in Seeds: The Ecology of Regeneration in Plant Communities (ed. Fenner, M.) 125–165 (CABI, 2000).

  • Mendes, S. B. et al. Evidence of a European seed dispersal crisis. Science 386, 206–211 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Corlett, R. T. Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: an update. Glob. Ecol. Conserv. 11, 1–22 (2017).


    Google Scholar
     

  • Falcón, W., Moll, D. & Hansen, D. M. Frugivory and seed dispersal by chelonians: a review and synthesis. Biol. Rev. 95, 142–166 (2020).

    Article 

    Google Scholar
     

  • Valido, A. & Olesen, J. M. Frugivory and seed dispersal by lizards: a global review. Front. Ecol. Evol. 7, 49 (2019).

    Article 

    Google Scholar
     

  • Horn, M. H. et al. Seed dispersal by fishes in tropical and temperate fresh waters: the growing evidence. Acta Oecol. 37, 561–577 (2011).

    Article 

    Google Scholar
     

  • Gómez, J. M., Schupp, E. W. & Jordano, P. Synzoochory: the ecological and evolutionary relevance of a dual interaction. Biol. Rev. 94, 874–902 (2019).

    Article 

    Google Scholar
     

  • Comita, L. S. et al. Testing predictions of the Janzen–Connell hypothesis: a meta‐analysis of experimental evidence for distance‐ and density‐dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).

    Article 

    Google Scholar
     

  • Bialozyt, R., Ziegenhagen, B. & Petit, R. J. Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J. Evol. Biol. 19, 12–20 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Fricke, E. C. et al. When condition trumps location: seed consumption by fruit‐eating birds removes pathogens and predator attractants. Ecol. Lett. 16, 1031–1036 (2013).

    Article 

    Google Scholar
     

  • Fricke, E. C., Bender, J., Rehm, E. M. & Rogers, H. S. Functional outcomes of mutualistic network interactions: a community‐scale study of frugivore gut passage on germination. J. Ecol. 107, 757–767 (2019).

    Article 

    Google Scholar
     

  • Steyaert, S. M. J. G. et al. Special delivery: scavengers direct seed dispersal towards ungulate carcasses. Biol. Lett. 14, 20180388 (2018).

    Article 

    Google Scholar
     

  • Wenny, D. G. & Levey, D. J. Directed seed dispersal by bellbirds in a tropical cloud forest. Proc. Natl Acad. Sci. USA 95, 6204–6207 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Nuñez, T. A., Prugh, L. R. & Hille Ris Lambers, J. Animal-mediated plant niche tracking in a changing climate. Trends Ecol. Evol. 38, 654–665 (2023).

    Article 

    Google Scholar
     

  • Gill, N. S. et al. Limitations to propagule dispersal will constrain postfire recovery of plants and fungi in western coniferous forests. BioScience 72, 347–364 (2022).

    Article 

    Google Scholar
     

  • Beckman, N. G. & Rogers, H. S. Consequences of seed dispersal for plant recruitment in tropical forests: interactions within the seedscape. Biotropica 45, 666–681 (2013).

    Article 

    Google Scholar
     

  • Keddy, P. A. & Laughlin, D. C. A Framework for Community Ecology: Species Pools, Filters and Traits (Cambridge Univ. Press, 2021).

  • Vellend, M. The Theory of Ecological Communities (MPB-57) (Princeton Univ. Press, 2016).

  • Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).

    Article 

    Google Scholar
     

  • Forget, P.-M. & Milleron, T. Evidence for secondary seed dispersal by rodents in Panama. Oecologia 87, 596–599 (1991).

    Article 

    Google Scholar
     

  • Hirsch, B. T., Kays, R., Pereira, V. E. & Jansen, P. A. Directed seed dispersal towards areas with low conspecific tree density by a scatter‐hoarding rodent. Ecol. Lett. 15, 1423–1429 (2012).

    Article 

    Google Scholar
     

  • Sorensen, A. E. Seed dispersal by adhesion. Annu. Rev. Ecol. Syst. 17, 443–463 (1986).

    Article 

    Google Scholar
     

  • Jin, M.-F., Cai, X.-H. & Chen, G. Seed dispersal by deception: a game between mimetic seeds and their bird dispersers. Plant Divers. https://doi.org/10.1016/j.pld.2024.07.006 (2024).

  • Janzen, D. H. Dispersal of small seeds by big herbivores: foliage is the fruit. Am. Nat. 123, 338–353 (1984).

    Article 

    Google Scholar
     

  • Vargas, P., Heleno, R. & Costa, J. EuDiS — a comprehensive database of the seed dispersal syndromes of the European flora. Br. Dent. J. 11, e104079 (2023).


    Google Scholar
     

  • González‐Varo, J. P. et al. Overlooked seed‐dispersal modes and underestimated distances. Glob. Ecol. Biogeogr. 33, e13835 (2024).

    Article 

    Google Scholar
     

  • Green, A. J., Baltzinger, C. & Lovas‐Kiss, Á. Plant dispersal syndromes are unreliable, especially for predicting zoochory and long‐distance dispersal. Oikos 2022, oik.08327 (2022).

    Article 

    Google Scholar
     

  • Draper, J. P., Young, J. K., Schupp, E. W., Beckman, N. G. & Atwood, T. B. Frugivory and seed dispersal by carnivorans. Front. Ecol. Evol. 10, 864864 (2022).

    Article 

    Google Scholar
     

  • Albert, A. et al. Seed dispersal by ungulates as an ecological filter: a trait‐based meta‐analysis. Oikos 124, 1109–1120 (2015).

    Article 

    Google Scholar
     

  • Witmer, M. C. & Cheke, A. S. The dodo and the tambalacoque tree: an obligate mutualism reconsidered. Oikos 61, 133 (1991).

    Article 

    Google Scholar
     

  • Spiegel, O. & Nathan, R. Incorporating dispersal distance into the disperser effectiveness framework: frugivorous birds provide complementary dispersal to plants in a patchy environment. Ecol. Lett. 10, 718–728 (2007).

    Article 

    Google Scholar
     

  • González‐Varo, J. P., López‐Bao, J. V. & Guitián, J. Functional diversity among seed dispersal kernels generated by carnivorous mammals. J. Anim. Ecol. 82, 562–571 (2013).

    Article 

    Google Scholar
     

  • Schleuning, M., Fründ, J. & García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait‐based concepts to plant–animal interactions. Ecography 38, 380–392 (2015).

    Article 

    Google Scholar
     

  • Aslan, C. et al. Employing plant functional groups to advance seed dispersal ecology and conservation. AoB PLANTS 11, plz006 (2019).

    Article 

    Google Scholar
     

  • Ruxton, G. D. & Schaefer, H. M. The conservation physiology of seed dispersal. Philos. Trans. R. Soc. B 367, 1708–1718 (2012).

    Article 

    Google Scholar
     

  • Lindstedt, S. L., Miller, B. J. & Buskirk, S. W. Home range, time, and body size in mammals. Ecology 67, 413–418 (1986).

    Article 

    Google Scholar
     

  • Bracho‐Estévanez, C. A., Cuadrado, M., Sánchez, I., Onrubia, A. & González‐Varo, J. P. Plant traits determine seed retention times in frugivorous birds: implications for long‐distance seed dispersal. Funct. Ecol. 38, 2247–2260 (2024).

    Article 

    Google Scholar
     

  • Rehm, E., Fricke, E., Bender, J., Savidge, J. & Rogers, H. Animal movement drives variation in seed dispersal distance in a plant–animal network. Proc. R. Soc. B 286, 20182007 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Green, A. J. & Wilkinson, D. M. Darwin’s digestion myth: historical and modern perspectives on our understanding of seed dispersal by waterbirds. Seeds 3, 505–527 (2024).

    Article 

    Google Scholar
     

  • Wright, S. J. et al. The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39, 289–291 (2007).

    Article 

    Google Scholar
     

  • McConkey, K. R. et al. Seed dispersal in changing landscapes. Biol. Conserv. 146, 1–13 (2012).

    Article 

    Google Scholar
     

  • Medici, E. P., Fernandes-Santos, R. C., Testa-José, C., Godinho, A. F. & Brand, A.-F. Lowland tapir exposure to pesticides and metals in the Brazilian Cerrado. Wildl. Res. 48, 393–403 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Torquetti, C. G., Guimarães, A. T. B. & Soto-Blanco, B. Exposure to pesticides in bats. Sci. Total Environ. 755, 142509 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tompkins, D. M., Dunn, A. M., Smith, M. J. & Telfer, S. Wildlife diseases: from individuals to ecosystems: ecology of wildlife diseases. J. Anim. Ecol. 80, 19–38 (2011).

    Article 

    Google Scholar
     

  • Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).

    Article 

    Google Scholar
     

  • Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).

    Article 

    Google Scholar
     

  • Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).

    Article 

    Google Scholar
     

  • Magioli, M. et al. Land-use changes lead to functional loss of terrestrial mammals in a neotropical rainforest. Perspect. Ecol. Conserv. 19, 161–170 (2021).


    Google Scholar
     

  • Bonfim, F. C. G. et al. Land‐use homogenization reduces the occurrence and diversity of frugivorous birds in a tropical biodiversity hotspot. Ecol. Appl. 34, e2980 (2024).

    Article 

    Google Scholar
     

  • Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    Article 

    Google Scholar
     

  • Sales, L. P., Galetti, M. & Pires, M. M. Climate and land‐use change will lead to a faunal ‘savannization’ on tropical rainforests. Glob. Change Biol. 26, 7036–7044 (2020).

    Article 

    Google Scholar
     

  • Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).

    Article 

    Google Scholar
     

  • Newton, I. Population limitation in migrants. Ibis 146, 197–226 (2004).

    Article 

    Google Scholar
     

  • McConkey, K. R., Aldy, F., Ong, L., Sutisna, D. J. & Campos‐Arceiz, A. Lost mutualisms: seed dispersal by Sumatran rhinos, the world’s most threatened megafauna. Biotropica 54, 346–357 (2022).

    Article 

    Google Scholar
     

  • Nuñez‐Iturri, G. & Howe, H. F. Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in Western Amazonia. Biotropica 39, 348–354 (2007).

    Article 

    Google Scholar
     

  • Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 3, 160498 (2016).

    Article 

    Google Scholar
     

  • Wright, S. J. The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspect. Plant Ecol. Evol. Syst. 6, 73–86 (2003).

    Article 

    Google Scholar
     

  • Svenning, J.-C. et al. The late-quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the anthropocene. Camb. Prism. Extinct. 2, e5 (2024).

    Article 

    Google Scholar
     

  • Rozas‐Davila, A., Valencia, B. G. & Bush, M. B. The functional extinction of Andean megafauna. Ecology 97, 2533–2539 (2016).

    Article 

    Google Scholar
     

  • Morton, O., Scheffers, B. R., Haugaasen, T. & Edwards, D. P. Impacts of wildlife trade on terrestrial biodiversity. Nat. Ecol. Evol. 5, 540–548 (2021).

    Article 

    Google Scholar
     

  • Roy, H. E., Pauchard, A., Stoett, P. & Renard Truong, T. IPBES Invasive Alien Species Assessment: Full Report (IPBES secretariat, 2024).

  • Rogers, H. S. et al. Effects of an invasive predator cascade to plants via mutualism disruption. Nat. Commun. 8, 14557 (2017).

    Article 

    Google Scholar
     

  • Warner, R. E. The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70, 101–120 (1968).

    Article 

    Google Scholar
     

  • Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. USA 113, 11261–11265 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rodriguez-Cabal, M. A., Stuble, K. L., Guénard, B., Dunn, R. R. & Sanders, N. J. Disruption of ant-seed dispersal mutualisms by the invasive Asian needle ant (Pachycondyla chinensis). Biol. Invasions 14, 557–565 (2012).

    Article 

    Google Scholar
     

  • Moura, M. R., Oliveira, G. A., Paglia, A. P., Pires, M. M. & Santos, B. A. Climate change should drive mammal defaunation in tropical dry forests. Glob. Change Biol. 29, 6931–6944 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jezkova, T. & Wiens, J. J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. B 283, 20162104 (2016).

    Article 

    Google Scholar
     

  • McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. USA 113, 7195–7200 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mokany, K., Prasad, S. & Westcott, D. A. Loss of frugivore seed dispersal services under climate change. Nat. Commun. 5, 3971 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sales, L., Culot, L. & Pires, M. M. Climate niche mismatch and the collapse of primate seed dispersal services in the Amazon. Biol. Conserv. 247, 108628 (2020).

    Article 

    Google Scholar
     

  • Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).

    Article 

    Google Scholar
     

  • Sayol, F. et al. AVOTREX: a global dataset of extinct birds and their traits. Glob. Ecol. Biogeogr. 33, e13927 (2024).

    Article 

    Google Scholar
     

  • Tucker, M. A. et al. Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    Article 
    CAS 

    Google Scholar
     

  • McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).

    Article 

    Google Scholar
     

  • IUCN. The IUCN Red List of Threatened Species, version 2024-2 (IUCN, 2024).

  • Nieto, A. et al. European Red List of Bees (Publication Office of the European Union, 2014).

  • van Swaay, C. et al. European Red List of Butterflies (Publication Office of the European Union, 2010).

  • Vujić, A. et al. European Red List of Hoverflies (European Commission, 2022).

  • Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wood, J. R. et al. Island extinctions: processes, patterns, and potential for ecosystem restoration. Environ. Conserv. 44, 348–358 (2017).

    Article 

    Google Scholar
     

  • Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).

    Article 

    Google Scholar
     

  • Brodie, J. F., Helmy, O. E., Brockelman, W. Y. & Maron, J. L. Bushmeat poaching reduces the seed dispersal and population growth rate of a mammal‐dispersed tree. Ecol. Appl. 19, 854–863 (2009).

    Article 

    Google Scholar
     

  • Wandrag, E. M., Dunham, A. E., Duncan, R. P. & Rogers, H. S. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings. Proc. Natl Acad. Sci. USA 114, 10689–10694 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Asquith, N. M., Terborgh, J., Arnold, A. E. & Riveros, C. M. The fruits the agouti ate: Hymenaea courbaril seed fate when its disperser is absent. J. Trop. Ecol. 15, 229–235 (1999).

    Article 

    Google Scholar
     

  • Beaune, D., Fruth, B., Bollache, L., Hohmann, G. & Bretagnolle, F. Doom of the elephant-dependent trees in a Congo tropical forest. For. Ecol. Manag. 295, 109–117 (2013).

    Article 

    Google Scholar
     

  • Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 24820 (2016).

    Article 

    Google Scholar
     

  • Cordeiro, N. J. & Howe, H. F. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl Acad. Sci. USA 100, 14052–14056 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network. Glob. Change Biol. 24, e190–e200 (2018).

    Article 

    Google Scholar
     

  • Galetti, M., Donatti, C. I., Pires, A. S., Guimarães, P. R. & Jordano, P. Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Bot. J. Linn. Soc. 151, 141–149 (2006).

    Article 

    Google Scholar
     

  • Traveset, A., González-Varo, J. P. & Valido, A. Long-term demographic consequences of a seed dispersal disruption. Proc. R. Soc. B 279, 3298–3303 (2012).

    Article 

    Google Scholar
     

  • Sethi, P. & Howe, H. F. Recruitment of Hornbill‐dispersed trees in hunted and logged forests of the Indian Eastern Himalaya. Conserv. Biol. 23, 710–718 (2009).

    Article 

    Google Scholar
     

  • Pires, M. M. et al. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia 175, 1247–1256 (2014).

    Article 

    Google Scholar
     

  • Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography 41, 153–163 (2018).

    Article 

    Google Scholar
     

  • Jansen, P. A. et al. Thieving rodents as substitute dispersers of megafaunal seeds. Proc. Natl Acad. Sci. USA 109, 12610–12615 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Doughty, C. E. et al. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39, 194–203 (2016).

    Article 

    Google Scholar
     

  • McConkey, K. R. & O’Farrill, G. Loss of seed dispersal before the loss of seed dispersers. Biol. Conserv. 201, 38–49 (2016).

    Article 

    Google Scholar
     

  • Costa, J. M. et al. Rewiring of experimentally disturbed seed dispersal networks might lead to unexpected network configurations. Basic Appl. Ecol. 30, 11–22 (2018).

    Article 

    Google Scholar
     

  • Vizentin‐Bugoni, J., Debastiani, V. J., Bastazini, V. A. G., Maruyama, P. K. & Sperry, J. H. Including rewiring in the estimation of the robustness of mutualistic networks. Methods Ecol. Evol. 11, 106–116 (2020).

    Article 

    Google Scholar
     

  • Fricke, E. C. & Svenning, J.-C. Accelerating homogenization of the global plant–frugivore meta-network. Nature 585, 74–78 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Case, S. B. & Tarwater, C. E. Functional traits of avian frugivores have shifted following species extinction and introduction in the Hawaiian islands. Funct. Ecol. 34, 2467–2476 (2020).

    Article 

    Google Scholar
     

  • Heinen, J. H. et al. Novel plant–frugivore network on Mauritius is unlikely to compensate for the extinction of seed dispersers. Nat. Commun. 14, 1019 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Heleno, R. H. et al. The upsizing of the São Tomé seed dispersal network by introduced animals. Oikos 2022, oik.08279 (2022).

    Article 

    Google Scholar
     

  • Sayol, F. et al. Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions. Sci. Adv. 7, eabj5790 (2021).

    Article 

    Google Scholar
     

  • García, D., Martínez, D., Stouffer, D. B. & Tylianakis, J. M. Exotic birds increase generalization and compensate for native bird decline in plant–frugivore assemblages. J. Anim. Ecol. 83, 1441–1450 (2014).

    Article 

    Google Scholar
     

  • Gawel, A. M., Fricke, E., Colton, A. & Rogers, H. S. Non‐native mammals are weak candidates to substitute ecological function of native avian seed dispersers in an island ecosystem. Biotropica 55, 1148–1158 (2023).

    Article 

    Google Scholar
     

  • Pedrosa, F., Bercê, W., Levi, T., Pires, M. & Galetti, M. Seed dispersal effectiveness by a large‐bodied invasive species in defaunated landscapes. Biotropica 51, 862–873 (2019).

    Article 

    Google Scholar
     

  • Celedón-Neghme, C., Traveset, A. & Calviño-Cancela, M. Contrasting patterns of seed dispersal between alien mammals and native lizards in a declining plant species. Plant Ecol. 214, 657–667 (2013).

    Article 

    Google Scholar
     

  • Christian, C. E. Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature 413, 635–639 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Lundgren, E. J. et al. Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities. Science 383, 531–537 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hansen, D. M. On the use of taxon substitutes in rewilding projects on islands. Isl. Evol. 19, 111–146 (2010).


    Google Scholar
     

  • Cordeiro, N. J. & Howe, H. F. Low recruitment of trees dispersed by animals in African forest fragments. Conserv. Biol. 15, 1733–1741 (2001).

    Article 

    Google Scholar
     

  • Bagchi, R. et al. Defaunation increases the spatial clustering of lowland Western Amazonian tree communities. J. Ecol. 106, 1470–1482 (2018).

    Article 

    Google Scholar
     

  • Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).

    Article 

    Google Scholar
     

  • Fricke, E. C. & Wright, S. J. Measuring the demographic impact of conspecific negative density dependence. Oecologia 184, 259–266 (2017).

    Article 

    Google Scholar
     

  • Caughlin, T. T. et al. Loss of animal seed dispersal increases extinction risk in a tropical tree species due to pervasive negative density dependence across life stages. Proc. R. Soc. B 282, 20142095 (2015).

    Article 

    Google Scholar
     

  • Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 16, 222–230 (2018).

    Article 

    Google Scholar
     

  • Albert, S., Flores, O. & Strasberg, D. Collapse of dispersal trait diversity across a long‐term chronosequence reveals a strong negative impact of frugivore extinctions on forest resilience. J. Ecol. 108, 1386–1397 (2020).

    Article 

    Google Scholar
     

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article 

    Google Scholar
     

  • Muller-Landau, H. C. The tolerance–fecundity trade-off and the maintenance of diversity in seed size. Proc. Natl Acad. Sci. USA 107, 4242–4247 (2010).

    Article 

    Google Scholar
     

  • Fricke, E. C., Tewksbury, J. J., Wandrag, E. M. & Rogers, H. S. Mutualistic strategies minimize coextinction in plant–disperser networks. Proc. R. Soc. B 284, 20162302 (2017).

    Article 

    Google Scholar
     

  • Pärtel, M. et al. Global impoverishment of natural vegetation revealed by dark diversity. Nature https://doi.org/10.1038/s41586-025-08814-5 (2025).

  • De Thoisy, B. et al. Rapid evaluation of threats to biodiversity: human footprint score and large vertebrate species responses in French Guiana. Biodivers. Conserv. 19, 1567–1584 (2010).

    Article 

    Google Scholar
     

  • Timmers, R. et al. Conservation of birds in fragmented landscapes requires protected areas. Front. Ecol. Environ. 20, 361–369 (2022).

    Article 

    Google Scholar
     

  • Freitas, C. G., Dambros, C. & Camargo, J. L. C. Changes in seed rain across Atlantic forest fragments in Northeast Brazil. Acta Oecol. 53, 49–55 (2013).

    Article 

    Google Scholar
     

  • Kurten, E. L., Wright, S. J. & Carson, W. P. Hunting alters seedling functional trait composition in a neotropical forest. Ecology 96, 1923–1932 (2015).

    Article 

    Google Scholar
     

  • Liu, J. et al. Larger fragments have more late‐successional species of woody plants than smaller fragments after 50 years of secondary succession. J. Ecol. 107, 582–594 (2019).

    Article 

    Google Scholar
     

  • Emer, C. et al. Seed dispersal networks in tropical forest fragments: area effects, remnant species, and interaction diversity. Biotropica 52, 81–89 (2020).

    Article 

    Google Scholar
     

  • Rocha‐Santos, L. et al. The loss of functional diversity: a detrimental influence of landscape‐scale deforestation on tree reproductive traits. J. Ecol. 108, 212–223 (2020).

    Article 

    Google Scholar
     

  • Nunez-Iturri, G., Olsson, O. & Howe, H. F. Hunting reduces recruitment of primate-dispersed trees in Amazonian Peru. Biol. Conserv. 141, 1536–1546 (2008).

    Article 

    Google Scholar
     

  • De Lima, R. A. F. et al. The erosion of biodiversity and biomass in the Atlantic forest biodiversity hotspot. Nat. Commun. 11, 6347 (2020).

    Article 

    Google Scholar
     

  • Culot, L., Bello, C., Batista, J. L. F., Do Couto, H. T. Z. & Galetti, M. Synergistic effects of seed disperser and predator loss on recruitment success and long-term consequences for carbon stocks in tropical rainforests. Sci. Rep. 7, 7662 (2017).

    Article 

    Google Scholar
     

  • Poulsen, J. R., Clark, C. J. & Palmer, T. M. Ecological erosion of an Afrotropical forest and potential consequences for tree recruitment and forest biomass. Biol. Conserv. 163, 122–130 (2013).

    Article 

    Google Scholar
     

  • Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

    Article 

    Google Scholar
     

  • Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chanthorn, W. et al. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9, 10015 (2019).

    Article 

    Google Scholar
     

  • Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl Acad. Sci. USA 113, 892–897 (2016).

    Article 
    CAS 

    Google Scholar
     

  • De Paula Mateus, D. et al. Defaunation impacts on seed survival and its effect on the biomass of future tropical forests. Oikos 127, 1526–1538 (2018).

    Article 

    Google Scholar
     

  • Fricke, E. C., Cook-Patton, S. C., Harvey, C. F. & Terrer, C. Seed dispersal disruption limits tropical forest regrowth. Preprint at bioRxiv https://doi.org/10.1101/2024.12.06.627256 (2024).

  • Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Schmitz, O. J. et al. Animals and the zoogeochemistry of the carbon cycle. Science 362, eaar3213 (2018).

    Article 

    Google Scholar
     

  • Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015 (2007).

    Article 

    Google Scholar
     

  • Queenborough, S. A. et al. Seed mass, abundance and breeding system among tropical forest species: do dioecious species exhibit compensatory reproduction or abundances? J. Ecol. 97, 555–566 (2009).

    Article 

    Google Scholar
     

  • Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D. & McCulloh, K. A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457–461 (2001).

    Article 

    Google Scholar
     

  • Hao, G.-Y. et al. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems. Oecologia 155, 405–415 (2008).

    Article 

    Google Scholar
     

  • Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).

    Article 

    Google Scholar
     

  • Gleason, S. M. et al. Weak tradeoff between xylem safety and xylem‐specific hydraulic efficiency across the world’s woody plant species. N. Phytol. 209, 123–136 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pratt, R. B. & Jacobsen, A. L. Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant Cell Environ. 40, 897–913 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rosner, S. Wood density as a proxy for vulnerability to cavitation: size matters. J. Plant Hydraul. 4, e001 (2017).

    Article 

    Google Scholar
     

  • Egerer, M. H., Fricke, E. C. & Rogers, H. S. Seed dispersal as an ecosystem service: frugivore loss leads to decline of a socially valued plant, Capsicum frutescens. Ecol. Appl. 28, 655–667 (2018).

    Article 

    Google Scholar
     

  • Hougner, C., Colding, J. & Söderqvist, T. Economic valuation of a seed dispersal service in the Stockholm National Urban Park, Sweden. Ecol. Econ. 59, 364–374 (2006).

    Article 

    Google Scholar
     

  • Bello, C., Culot, L., Ruiz Agudelo, C. A. & Galetti, M. Valuing the economic impacts of seed dispersal loss on voluntary carbon markets. Ecosyst. Serv. 52, 101362 (2021).

    Article 

    Google Scholar
     

  • FAO. The State of the World’s Forests 2024 (FAO, 2024).

  • Mattalia, G. et al. Cultural keystone species as a tool for biocultural stewardship. A global review. People Nat. https://doi.org/10.1002/pan3.10653 (2024).

  • Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    Article 

    Google Scholar
     

  • González-Varo, J. P. et al. Limited potential for bird migration to disperse plants to cooler latitudes. Nature 595, 75–79 (2021).

    Article 

    Google Scholar
     

  • Naoe, S. et al. Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal. Curr. Biol. 26, R315–R316 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Naoe, S. et al. Downhill seed dispersal by temperate mammals: a potential threat to plant escape from global warming. Sci. Rep. 9, 14932 (2019).

    Article 

    Google Scholar
     

  • González‐Varo, J. P., López‐Bao, J. V. & Guitián, J. Seed dispersers help plants to escape global warming. Oikos 126, 1600–1606 (2017).

    Article 

    Google Scholar
     

  • Lenoir, J. & Svenning, J. ‐C. Climate‐related range shifts — a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Article 

    Google Scholar
     

  • Feeley, K. J., Rehm, E. M. & Machovina, B. Perspective: the responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Front. Biogeogr. 4, 69–84 (2012).

    Article 

    Google Scholar
     

  • Browne, L. & Karubian, J. Habitat loss and fragmentation reduce effective gene flow by disrupting seed dispersal in a neotropical palm. Mol. Ecol. 27, 3055–3069 (2018).

    Article 

    Google Scholar
     

  • Browne, L., Ottewell, K. & Karubian, J. Short-term genetic consequences of habitat loss and fragmentation for the neotropical palm Oenocarpus bataua. Heredity 115, 389–395 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Giombini, M. I., Bravo, S. P., Sica, Y. V. & Tosto, D. S. Early genetic consequences of defaunation in a large-seeded vertebrate-dispersed palm (Syagrus romanzoffiana). Heredity 118, 568–577 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Carvalho, C. S., Galetti, M., Colevatti, R. G. & Jordano, P. Defaunation leads to microevolutionary changes in a tropical palm. Sci. Rep. 6, 31957 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, J. S. et al. Rapid changes in seed dispersal traits may modify plant responses to global change. AoB PLANTS 11, plz020 (2019).

    Article 

    Google Scholar
     

  • Emer, C., Galetti, M., Pizo, M. A., Jordano, P. & Verdú, M. Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. Sci. Adv. 5, eaav6699 (2019).

    Article 

    Google Scholar
     

  • Dent, D. H. & Estrada-Villegas, S. Uniting niche differentiation and dispersal limitation predicts tropical forest succession. Trends Ecol. Evol. 36, 700–708 (2021).

    Article 

    Google Scholar
     

  • Holl, K. D., Loik, M. E., Lin, E. H. V. & Samuels, I. A. Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor. Ecol. 8, 339–349 (2000).

    Article 

    Google Scholar
     

  • Wunderle, J. M. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. For. Ecol. Manag. 99, 223–235 (1997).

    Article 

    Google Scholar
     

  • De La Peña-Domene, M., Martínez-Garza, C., Palmas-Pérez, S., Rivas-Alonso, E. & Howe, H. F. Roles of birds and bats in early tropical-forest restoration. PLoS ONE 9, e104656 (2014).

    Article 

    Google Scholar
     

  • Estrada-Villegas, S. et al. Animal seed dispersal recovery during passive restoration in a forested landscape. Philos. Trans. R. Soc. B 378, 20210076 (2023).

    Article 

    Google Scholar
     

  • Parejo, S. H., Ceia, R. S., Ramos, J. A., Sampaio, H. L. & Heleno, R. H. Tiptoeing between restoration and invasion: seed rain into natural gaps within a highly invaded relic forest in the Azores. Eur. J. For. Res. 133, 383–390 (2014).

    Article 

    Google Scholar
     

  • Pesendorfer, M. B., Sillett, T. S., Koenig, W. D. & Morrison, S. A. Scatter-hoarding corvids as seed dispersers for oaks and pines: a review of a widely distributed mutualism and its utility to habitat restoration. Condor 118, 215–237 (2016).

    Article 

    Google Scholar
     

  • García, D., Martínez, D., Herrera, J. M. & Morales, J. M. Functional heterogeneity in a plant–frugivore assemblage enhances seed dispersal resilience to habitat loss. Ecography 36, 197–208 (2013).

    Article 

    Google Scholar
     

  • González-Varo, J. P. et al. Frugivore-mediated seed dispersal in fragmented landscapes: compositional and functional turnover from forest to matrix. Proc. Natl Acad. Sci. USA 120, e2302440120 (2023).

    Article 

    Google Scholar
     

  • González‐Varo, J. P., Carvalho, C. S., Arroyo, J. M. & Jordano, P. Unravelling seed dispersal through fragmented landscapes: frugivore species operate unevenly as mobile links. Mol. Ecol. 26, 4309–4321 (2017).

    Article 

    Google Scholar
     

  • Razafindratsima, O. H. et al. Simplified communities of seed-dispersers limit the composition and flow of seeds in edge habitats. Front. Ecol. Evol. 9, 655441 (2021).

    Article 

    Google Scholar
     

  • Camargo, P. H. S. A., Pizo, M. A., Brancalion, P. H. S. & Carlo, T. A. Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: implications for restoration. J. Appl. Ecol. 57, 2329–2339 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Reid, J. L. et al. Multi‐scale habitat selection of key frugivores predicts large‐seeded tree recruitment in tropical forest restoration. Ecosphere 12, e03868 (2021).

    Article 

    Google Scholar
     

  • Guidetti, B. Y., Amico, G. C., Dardanelli, S. & Rodriguez-Cabal, M. A. Artificial perches promote vegetation restoration. Plant Ecol. 217, 935–942 (2016).

    Article 

    Google Scholar
     

  • Holl, K. D., Luong, J. C. & Brancalion, P. H. S. Overcoming biotic homogenization in ecological restoration. Trends Ecol. Evol. 37, 777–788 (2022).

    Article 

    Google Scholar
     

  • Holl, K. D., Joyce, F. H. & Reid, J. L. Alluring restoration strategies to attract seed‐dispersing animals need more rigorous testing. J. Appl. Ecol. 59, 649–652 (2022).

    Article 

    Google Scholar
     

  • Brancalion, P. H. S. et al. Maximizing biodiversity conservation and carbon stocking in restored tropical forests. Conserv. Lett. 11, e12454 (2018).

    Article 

    Google Scholar
     

  • De Almeida, C., Reid, J. L., Ferreira De Lima, R. A., Pinto, L. F. G. & Viani, R. A. G. Restoration plantings in the Atlantic forest use a small, biased, and homogeneous set of tree species. For. Ecol. Manag. 553, 121628 (2024).

    Article 

    Google Scholar
     

  • Landim, A. R., Guimarães, P. R., Fernandez, F. A. S. & Dias, A. T. C. A framework for the restoration of seed dispersal and pollination. Restor. Ecol. 32, e14151 (2024).

    Article 

    Google Scholar
     

  • Correia, M., Timóteo, S., Rodríguez-Echeverría, S., Mazars-Simon, A. & Heleno, R. Refaunation and the reinstatement of the seed-dispersal function in Gorongosa National Park: refaunation and seed-dispersal function. Conserv. Biol. 31, 76–85 (2017).

    Article 

    Google Scholar
     

  • Genes, L. et al. Effects of howler monkey reintroduction on ecological interactions and processes. Conserv. Biol. 33, 88–98 (2019).

    Article 

    Google Scholar
     

  • Mittelman, P., Kreischer, C., Pires, A. S. & Fernandez, F. A. S. Agouti reintroduction recovers seed dispersal of a large‐seeded tropical tree. Biotropica 52, 766–774 (2020).

    Article 

    Google Scholar
     

  • Sobral-Souza, T. et al. Rewilding defaunated Atlantic forests with tortoises to restore lost seed dispersal functions. Perspect. Ecol. Conserv. 15, 300–307 (2017).


    Google Scholar
     

  • Rey, P. J. et al. Persistence of seed dispersal in agroecosystems: effects of landscape modification and intensive soil management practices in avian frugivores, frugivory and seed deposition in olive croplands. Front. Ecol. Evol. 9, 782462 (2021).

    Article 

    Google Scholar
     

  • Kaiser-Bunbury, C. N. & Blüthgen, N. Integrating network ecology with applied conservation: a synthesis and guide to implementation. AoB PLANTS 7, plv076 (2015).

    Article 

    Google Scholar
     

  • Carver, S. et al. Guiding principles for rewilding. Conserv. Biol. 35, 1882–1893 (2021).

    Article 

    Google Scholar
     

  • Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Convention on Biological Diversity. Kunming–Montreal Global Biodiversity Framework (CBD, 2022).

  • Chaplin-Kramer, R. et al. Wildlife’s contributions to people. Nat. Rev. Biodivers. 2, 68–81 (2025).

    Article 

    Google Scholar
     

  • Beckman, N. G. et al. Advancing an interdisciplinary framework to study seed dispersal ecology. AoB PLANTS 12, plz048 (2020).

    Article 

    Google Scholar
     

  • Rodríguez-Cabal, M. A., Aizen, M. A. & Novaro, A. J. Habitat fragmentation disrupts a plant–disperser mutualism in the temperate forest of South America. Biol. Conserv. 139, 195–202 (2007).

    Article 

    Google Scholar
     

  • Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    Article 

    Google Scholar
     

  • IPBES. Summary for Policymakers. of the Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).



  • Source link

    More From Forest Beat

    A weird group of boronias puzzled botanists for decades. Now we’ve...

    Boronias, known for their showy flowers and strong scent, are a quintessential part of the Australian bush. They led...
    Biodiversity
    4
    minutes

    Biodiversity change under human depopulation in Japan

    Study areaAlongside other countries, over the past 100 years, significant loss of natural and semi-natural habitat has occurred in Japan, mainly because of...
    Biodiversity
    13
    minutes

    Status of endangered large prey predators following civil unrest in a...

    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, 1400253 (2015).ADS  ...
    Biodiversity
    8
    minutes

    Ancient fossils show how the last mass extinction forever scrambled the...

    About 66 million years ago – perhaps on a downright unlucky day in May – an asteroid smashed into...
    Biodiversity
    6
    minutes
    spot_imgspot_img