Drivers and solutions to Southeast Asia’s biodiversity crisis


  • Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    CAS 

    Google Scholar
     

  • Edwards, D. P. et al. Conservation of tropical forests in the Anthropocene. Curr. Biol. 29, R1008–R1020 (2019).

    CAS 

    Google Scholar
     

  • Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).


    Google Scholar
     

  • Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).

    CAS 

    Google Scholar
     

  • Ondo, I. et al. Plant diversity darkspots for global collection priorities. N. Phytol. 244, 719–733 (2024).


    Google Scholar
     

  • Ong, X. R., Tan, B., Chang, C. H., Puniamoorthy, N. & Slade, E. M. Identifying the knowledge and capacity gaps in Southeast Asian insect conservation. Ecol. Lett. 28, e70038 (2025).


    Google Scholar
     

  • Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).


    Google Scholar
     

  • Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).


    Google Scholar
     

  • Struebig, M. J. et al. Safeguarding imperiled biodiversity and evolutionary processes in the Wallacea center of endemism. BioScience 72, 1118–1130 (2022).


    Google Scholar
     

  • Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prisms Extinction 2, e5 (2024).


    Google Scholar
     

  • McConkey, K. R., Aldy, F., Ong, L., Sutisna, D. J. & Campos‐Arceiz, A. Lost mutualisms: seed dispersal by Sumatran rhinos, the world’s most threatened megafauna. Biotropica 54, 346–357 (2022).


    Google Scholar
     

  • Hughes, A. C. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8, e01624 (2017).


    Google Scholar
     

  • Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 28, 531–540 (2013).


    Google Scholar
     

  • Yang, C. et al. Human expansion-induced biodiversity crisis over Asia from 2000 to 2020. Research 6, 0226 (2023).


    Google Scholar
     

  • Coleman, J. L. et al. Top 100 research questions for biodiversity conservation in Southeast Asia. Biol. Conserv. 234, 211–220 (2019).


    Google Scholar
     

  • Botterill-James, T., Yates, L. A., Buettel, J. C. & Brook, B. W. The future of Southeast Asia’s biodiversity: a crisis with a hopeful alternative. Biol. Conserv. 296, 110641 (2024).


    Google Scholar
     

  • Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Phil. Trans. R. Soc. B 375, 20190126 (2020).

    CAS 

    Google Scholar
     

  • Pringle, S. et al. Identifying the opportunities and challenges for monitoring terrestrial biodiversity in the robotics age. Nat. Ecol. Evol. 9, 1031–1042 (2025).


    Google Scholar
     

  • Swinfield, T., Shrikanth, S., Bull, J. W., Madhavapeddy, A. & Zu Ermgassen, S. O. S. E. Nature-based credit markets at a crossroads. Nat. Sustain. 7, 1217–1220 (2024).


    Google Scholar
     

  • Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).


    Google Scholar
     

  • Koh, L. P., Zeng, Y., Sarira, T. V. & Siman, K. Carbon prospecting in tropical forests for climate change mitigation. Nat. Commun. 12, 1271 (2021).

    CAS 

    Google Scholar
     

  • Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).


    Google Scholar
     

  • Raven, P. H. et al. The distribution of biodiversity richness in the tropics. Sci. Adv. 6, eabc6228 (2020).


    Google Scholar
     

  • Brook, B., Sodhi, N. & Bradshaw, C. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).


    Google Scholar
     

  • França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Phil. Trans. R. Soc. B 375, 20190116 (2020).


    Google Scholar
     

  • Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).


    Google Scholar
     

  • Jamaludin, J., De Alban, J. D. T., Carrasco, L. R. & Webb, E. L. Spatiotemporal analysis of deforestation patterns and drivers reveals emergent threats to tropical forest landscapes. Environ. Res. Lett. 17, 054046 (2022).


    Google Scholar
     

  • Austin, K. G., González-Roglich, M., Schaffer-Smith, D., Schwantes, A. M. & Swenson, J. J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 12, 054009 (2017).


    Google Scholar
     

  • Gaveau, D. L. A. et al. Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices. PLoS ONE 17, e0266178 (2022).

    CAS 

    Google Scholar
     

  • Gevaña, D. T., Camacho, L. D. & Pulhin, J. M. in Threats to Mangrove Forests Vol. 25 (eds Makowski, C. & Finkl, C. W.) 579–588 (Springer International, 2018).

  • Sasmito, S. D. et al. Half of land use carbon emissions in Southeast Asia can be mitigated through peat swamp forest and mangrove conservation and restoration. Nat. Commun. 16, 740 (2025).

    CAS 

    Google Scholar
     

  • He, X. et al. Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth 6, 303–315 (2023).


    Google Scholar
     

  • Chen, Y., Fuller, R. A., Lee, T. M. & Hua, F. Disproportionate low-elevation forest loss in over 65% of the world’s mountains calls for targeted conservation. One Earth 7, 1833–1845 (2024).


    Google Scholar
     

  • Mitchell, S. L. et al. Severity of deforestation mediates biotic homogenisation in an island archipelago. Ecography 2022, e05990 (2022).


    Google Scholar
     

  • Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).


    Google Scholar
     

  • Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    CAS 

    Google Scholar
     

  • Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

    CAS 

    Google Scholar
     

  • Mu, H. et al. A global record of annual terrestrial human footprint dataset from 2000 to 2018. Sci. Data 9, 176 (2022).


    Google Scholar
     

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS 

    Google Scholar
     

  • FAOSTAT. Food and agricultural data. Food and Agriculture Organization of the United Nations https://www.fao.org/faostat/en/#home (2024).

  • Drescher, J. et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Phil. Trans. R. Soc. B 371, 20150275 (2016).


    Google Scholar
     

  • Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).

    CAS 

    Google Scholar
     

  • Zemp, D. C. et al. Tree islands enhance biodiversity and functioning in oil palm landscapes. Nature 618, 316–321 (2023).

    CAS 

    Google Scholar
     

  • Wang, Y. et al. High-resolution maps show that rubber causes substantial deforestation. Nature 623, 340–346 (2023).

    CAS 

    Google Scholar
     

  • Meyfroidt, P., Vu, T. P. & Hoang, V. A. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the central highlands of Vietnam. Glob. Environ. Change 23, 1187–1198 (2013).


    Google Scholar
     

  • Khoo, G. C. Durian matters. Continuum 39, 211–217 (2024).


    Google Scholar
     

  • Meijaard, E., Abrams, J. F., Juffe-Bignoli, D., Voigt, M. & Sheil, D. Coconut oil, conservation and the conscientious consumer. Curr. Biol. 30, R757–R758 (2020).

    CAS 

    Google Scholar
     

  • Propper, C. R. et al. Balancing food security, vertebrate biodiversity, and healthy rice agroecosystems in Southeast Asia. Crop. Environ. 3, 43–50 (2024).


    Google Scholar
     

  • Yuan, S. et al. Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nat. Food 3, 217–226 (2022).


    Google Scholar
     

  • Wyckhuys, K. A. G. et al. Biological control of an agricultural pest protects tropical forests. Commun. Biol. 2, 10 (2019).

    CAS 

    Google Scholar
     

  • Rege, A. & Lee, J. S. H. The socio-environmental impacts of tropical crop expansion on a global scale: a case study in cashew. Biol. Conserv. 280, 109961 (2023).


    Google Scholar
     

  • Meijaard, E. et al. The environmental impacts of palm oil in context. Nat. Plants 6, 1418–1426 (2020).


    Google Scholar
     

  • Oakley, J. L. & Bicknell, J. E. The impacts of tropical agriculture on biodiversity: a meta‐analysis. J. Appl. Ecol. 59, 3072–3082 (2022).


    Google Scholar
     

  • Manson, S., Nekaris, K. A. I., Nijman, V. & Campera, M. Effect of shade on biodiversity within coffee farms: a meta-analysis. Sci. Total Environ. 914, 169882 (2024).

    CAS 

    Google Scholar
     

  • Kelley, L. C., Evans, S. G. & Potts, M. D. Richer histories for more relevant policies: 42 years of tree cover loss and gain in southeast Sulawesi, Indonesia. Glob. Change Biol. 23, 830–839 (2017).


    Google Scholar
     

  • Rigg, J., Salamanca, A. & Thompson, E. C. The puzzle of east and Southeast Asia’s persistent smallholder. J. Rural. Stud. 43, 118–133 (2016).


    Google Scholar
     

  • Higham, C. F. Early Mainland Southeast Asia: From First Humans to Angkor (River Books, 2014).

  • Santika, T. et al. Does oil palm agriculture help alleviate poverty? A multidimensional counterfactual assessment of oil palm development in Indonesia. World Dev. 120, 105–117 (2019).


    Google Scholar
     

  • Li, P. & Nath, A. J. The history and revival of swidden agriculture research in the tropics. CABI Agric. Biosci. 5, 84 (2024).


    Google Scholar
     

  • Schoneveld, G. C., Ekowati, D., Andrianto, A. & Van Der Haar, S. Modeling peat- and forestland conversion by oil palm smallholders in Indonesian Borneo. Environ. Res. Lett. 14, 014006 (2019).


    Google Scholar
     

  • Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).


    Google Scholar
     

  • Van Wees, D. et al. The role of fire in global forest loss dynamics. Glob. Change Biol. 27, 2377–2391 (2021).


    Google Scholar
     

  • Voigt, M. et al. Deforestation projections imply range-wide population decline for critically endangered Bornean orangutan. Persp. Ecol. Conserv. 20, 240–248 (2022).


    Google Scholar
     

  • Kiely, L. et al. Assessing costs of Indonesian fires and the benefits of restoring peatland. Nat. Commun. 12, 7044 (2021).

    CAS 

    Google Scholar
     

  • Santika, T. et al. Deterioration of respiratory health following changes to land cover and climate in Indonesia. One Earth 6, 290–302 (2023).


    Google Scholar
     

  • Santika, T. et al. Interannual climate variation, land type and village livelihood effects on fires in Kalimantan, Indonesia. Glob. Environ. Change 64, 102129 (2020).


    Google Scholar
     

  • He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).


    Google Scholar
     

  • Pausas, J. G. & Keeley, J. E. Wildfires and global change. Front. Ecol. Environ. 19, 387–395 (2021).


    Google Scholar
     

  • Harrison, M. E. et al. Impacts of fire and prospects for recovery in a tropical peat forest ecosystem. Proc. Natl Acad. Sci. USA 121, e2307216121 (2024).

    CAS 

    Google Scholar
     

  • Khor, N. et al. World Cities Report 2022: envisaging the future of cities. UN Habitat https://unhabitat.org/world-cities-report-2022-envisaging-the-future-of-cities (2022).

  • Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS 

    Google Scholar
     

  • Ng, L. S. et al. The scale of biodiversity impacts of the belt and road initiative in Southeast Asia. Biol. Conserv. 248, 108691 (2020).


    Google Scholar
     

  • Engert, J. E. et al. Ghost roads and the destruction of Asia-Pacific tropical forests. Nature 629, 370–375 (2024).

    CAS 

    Google Scholar
     

  • Cho, M. S. & Qi, J. Characterization of the impacts of hydro-dams on wetland inundations in Southeast Asia. Sci. Total Environ. 864, 160941 (2023).

    CAS 

    Google Scholar
     

  • Orr, S., Pittock, J., Chapagain, A. & Dumaresq, D. Dams on the Mekong River: lost fish protein and the implications for land and water resources. Glob. Environ. Change 22, 925–932 (2012).


    Google Scholar
     

  • He, F. et al. Freshwater megafauna diversity: patterns, status and threats. Divers. Distrib. 24, 1395–1404 (2018).


    Google Scholar
     

  • Chisholm, R. A. et al. Two centuries of biodiversity discovery and loss in Singapore. Proc. Natl Acad. Sci. USA 120, e2309034120 (2023).

    CAS 

    Google Scholar
     

  • Tan, P. Y. & Abdul Hamid, A. R. B. Urban ecological research in Singapore and its relevance to the advancement of urban ecology and sustainability. Landsc. Urban. Plan. 125, 271–289 (2014).


    Google Scholar
     

  • Ahmed, M. et al. An overview of Asian cement industry: environmental impacts, research methodologies and mitigation measures. Sustain. Prod. Consum. 28, 1018–1039 (2021).


    Google Scholar
     

  • Clements, R., Sodhi, N. S., Schilthuizen, M. & Ng, P. K. L. Limestone karsts of Southeast Asia: imperiled arks of biodiversity. BioScience 56, 733 (2006).


    Google Scholar
     

  • Werner, T. T. et al. Patterns of infringement, risk, and impact driven by coal mining permits in Indonesia. Ambio 53, 242–256 (2024).


    Google Scholar
     

  • Dethier, E. N. et al. A global rise in alluvial mining increases sediment load in tropical rivers. Nature 620, 787–793 (2023).

    CAS 

    Google Scholar
     

  • Timsina, S. et al. Tropical surface gold mining: a review of ecological impacts and restoration strategies. Land. Degrad. Dev. 33, 3661–3674 (2022).


    Google Scholar
     

  • Maus, V. & Werner, T. T. Impacts for half of the world’s mining areas are undocumented. Nature 625, 27–29 (2024).


    Google Scholar
     

  • IEA. Global Critical Minerals Outlook 2024. International Energy Agency https://www.iea.org/reports/global-critical-minerals-outlook-2024 (2024).

  • Lo, M. et al. Nickel mining reduced forest cover in Indonesia but had mixed outcomes for well-being. One Earth 7, 2019–2033 (2024).


    Google Scholar
     

  • Ingram, D. J. et al. Wild meat is still on the menu: progress in wild meat research, policy, and practice from 2002 to 2020. Annu. Rev. Environ. Resour. 46, 221–254 (2021).


    Google Scholar
     

  • Mazor, T. et al. Global mismatch of policy and research on drivers of biodiversity loss. Nat. Ecol. Evol. 2, 1071–1074 (2018).


    Google Scholar
     

  • Harrison, R. D. et al. Impacts of hunting on tropical forests in Southeast Asia. Conserv. Biol. 30, 972–981 (2016).


    Google Scholar
     

  • Lees, A. C. & Yuda, P. The Asian songbird crisis. Curr. Biol. 32, R1063–R1064 (2022).

    CAS 

    Google Scholar
     

  • McEvoy, J. F. et al. Two sides of the same coin — wildmeat consumption and illegal wildlife trade at the crossroads of Asia. Biol. Conserv. 238, 108197 (2019).


    Google Scholar
     

  • Lee, T. M., Sigouin, A., Pinedo-Vasquez, M. & Nasi, R. The harvest of wildlife for bushmeat and traditional medicine in East, South and Southeast Asia: current knowledge base, challenges, opportunities and areas for future research. Center for International Forestry Research (CIFOR) https://www.cifor-icraf.org/knowledge/publication/5135/ (2014).

  • Pangau‐Adam, M., Flassy, M., Trei, J., Waltert, M. & Soofi, M. The role of the introduced rusa deer Cervus timorensis for wildlife hunting in West Papua, Indonesia. Ecol. Sol. Evid. 3, e12118 (2022).


    Google Scholar
     

  • Gray, T. N. E. et al. The wildlife snaring crisis: an insidious and pervasive threat to biodiversity in Southeast Asia. Biodivers. Conserv. 27, 1031–1037 (2018).


    Google Scholar
     

  • Nuttall, M. N. et al. Long‐term monitoring of wildlife populations for protected area management in Southeast Asia. Conserv. Sci. Pract. 4, e614 (2022).


    Google Scholar
     

  • Wong, J. T. et al. Factors influencing animal-source food consumption in Timor-Leste. Food Secur. 10, 741–762 (2018).


    Google Scholar
     

  • Loke, V. P. W., Lim, T. & Campos-Arceiz, A. Hunting practices of the Jahai indigenous community in northern peninsular Malaysia. Glob. Ecol. Conserv. 21, e00815 (2020).


    Google Scholar
     

  • Reyes-García, V. & Pyhälä, A. (eds) Hunter-Gatherers in a Changing World (Springer, 2017).

  • Singh, S. Appetites and aspirations: consuming wildlife in Laos. Aust. J. Anthropol. 21, 315–331 (2010).


    Google Scholar
     

  • Wells, G. J. et al. Hundreds of millions of people in the tropics need both wild harvests and other forms of economic development for their well-being. One Earth 7, 311–324 (2024).


    Google Scholar
     

  • Spencer, K. L. et al. Wild meat consumption in changing rural landscapes of Indonesian Borneo. People Nat. (in the press).

  • Coad, L., Lim, S. & Nuon, L. Wildlife and livelihoods in the Cardamom Mountains, Cambodia. Front. Ecol. Evol. 7, 296 (2019).


    Google Scholar
     

  • Nguyen, M. & Jones, T. E. Predictors of support for biodiversity loss countermeasure and bushmeat consumption among Vietnamese urban residents. Conserv. Sci. Pract. 4, e12822 (2022).


    Google Scholar
     

  • Pattiselanno, F., Lloyd, J. K. F., Sayer, J., Boedhihartono, A. K. & Arobaya, A. Y. S. Wild meat trade chain on the Bird’s Head peninsula of West Papua province, Indonesia. J. Ethnobiol. 40, 202–217 (2020).


    Google Scholar
     

  • Phoyduangsy, S. et al. The determinants of bushmeat consumption in urban areas in Laos. Ann. Environ. Sci. Toxicol. 6, 063–068 (2022).


    Google Scholar
     

  • Sandalj, M., Treydte, A. C. & Ziegler, S. Is wild meat luxury? Quantifying wild meat demand and availability in Hue, Vietnam. Biol. Conserv. 194, 105–112 (2016).


    Google Scholar
     

  • Olmedo, A., Veríssimo, D., Challender, D. W. S., Dao, H. T. T. & Milner‐Gulland, E. J. Who eats wild meat? Profiling consumers in Ho Chi Minh City, Vietnam. People Nat. 3, 700–710 (2021).


    Google Scholar
     

  • Jiao, Y., Yeophantong, P. & Lee, T. M. Strengthening international legal cooperation to combat the illegal wildlife trade between Southeast Asia and China. Front. Ecol. Evol. 9, 645427 (2021).


    Google Scholar
     

  • Nguyen, T. & Roberts, D. L. Exploring the Africa–Asia trade nexus for endangered wildlife used in traditional Asian medicine: interviews with traders in South Africa and Vietnam. Trop. Conserv. Sci. 13, 194008292097925 (2020).


    Google Scholar
     

  • Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17, e3000247 (2019).


    Google Scholar
     

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS 

    Google Scholar
     

  • Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evol. 7, 1060–1071 (2023).


    Google Scholar
     

  • Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat. Ecol. Evol. 8, 1216–1223 (2024).


    Google Scholar
     

  • Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).

    CAS 

    Google Scholar
     

  • Deere, N. J. et al. Maximizing the value of forest restoration for tropical mammals by detecting three-dimensional habitat associations. Proc. Natl Acad. Sci. 117, 26254–26262 (2020).

    CAS 

    Google Scholar
     

  • Struebig, M. J. et al. Addressing human–tiger conflict using socio-ecological information on tolerance and risk. Nat. Commun. 9, 3455 (2018).


    Google Scholar
     

  • Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).


    Google Scholar
     

  • Haubrock, P. J. et al. Biological invasions in Singapore and Southeast Asia: data gaps fail to mask potentially massive economic costs. NeoBiota 67, 131–152 (2021).


    Google Scholar
     

  • Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).


    Google Scholar
     

  • Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).

    CAS 

    Google Scholar
     

  • Trew, B. T. et al. Novel temperatures are already widespread beneath the world’s tropical forest canopies. Nat. Clim. Change 14, 753–759 (2024).


    Google Scholar
     

  • Santos, E. G. et al. Structural changes caused by selective logging undermine the thermal buffering capacity of tropical forests. Agric. For. Meteorol. 348, 109912 (2024).


    Google Scholar
     

  • Siyum, Z. G. Tropical dry forest dynamics in the context of climate change: syntheses of drivers, gaps, and management perspectives. Ecol. Process. 9, 25 (2020).


    Google Scholar
     

  • Lohberger, S., Stängel, M., Atwood, E. C. & Siegert, F. Spatial evaluation of Indonesia’s 2015 fire‐affected area and estimated carbon emissions using Sentinel‐1. Glob. Change Biol. 24, 644–654 (2018).


    Google Scholar
     

  • Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).

    CAS 

    Google Scholar
     

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS 

    Google Scholar
     

  • Mata‐Guel, E. O. et al. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol. Rev. 98, 1200–1224 (2023).


    Google Scholar
     

  • Harris, J. B. C. et al. Rapid deforestation threatens mid‐elevational endemic birds but climate change is most important at higher elevations. Divers. Distrib. 20, 773–785 (2014).


    Google Scholar
     

  • Senior, R. A., Hill, J. K. & Edwards, D. P. Global loss of climate connectivity in tropical forests. Nat. Clim. Change 9, 623–626 (2019).


    Google Scholar
     

  • Crompton, O., Corrêa, D., Duncan, J. & Thompson, S. Deforestation-induced surface warming is influenced by the fragmentation and spatial extent of forest loss in maritime Southeast Asia. Environ. Res. Lett. 16, 114018 (2021).


    Google Scholar
     

  • Abrahms, B. et al. Climate change as a global amplifier of human–wildlife conflict. Nat. Clim. Change 13, 224–234 (2023).


    Google Scholar
     

  • Farhadinia, M. S. et al. Current trends suggest most Asian countries are unlikely to meet future biodiversity targets on protected areas. Commun. Biol. 5, 1221 (2022).


    Google Scholar
     

  • Singh, M., Griaud, C. & Collins, C. M. An evaluation of the effectiveness of protected areas in Thailand. Ecol. Indic. 125, 107536 (2021).


    Google Scholar
     

  • Dwiyahreni, A. A. et al. Changes in the human footprint in and around Indonesia’s terrestrial national parks between 2012 and 2017. Sci. Rep. 11, 4510 (2021).

    CAS 

    Google Scholar
     

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA. 116, 23209–23215 (2019).

    CAS 

    Google Scholar
     

  • Graham, V. et al. Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas. Sci. Rep. 11, 23760 (2021).

    CAS 

    Google Scholar
     

  • Brodie, J. F. et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 620, 807–812 (2023).

    CAS 

    Google Scholar
     

  • Sreekar, R. et al. Conservation opportunities through improved management of recently established protected areas in Southeast Asia. Curr. Biol. 34, 3830–3835.e3 (2024).

    CAS 

    Google Scholar
     

  • Ford, S. A. et al. Deforestation leakage undermines conservation value of tropical and subtropical forest protected areas. Glob. Ecol. Biogeogr. 29, 2014–2024 (2020).


    Google Scholar
     

  • Morgans, C. L. et al. Improving well‐being and reducing deforestation in Indonesia’s protected areas. Conserv. Lett. 17, e13010 (2024).


    Google Scholar
     

  • Clements, T., Suon, S., Wilkie, D. S. & Milner-Gulland, E. J. Impacts of protected areas on local livelihoods in Cambodia. World Dev. 64, S125–S134 (2014).


    Google Scholar
     

  • Nuttall, M. et al. Protected area downgrading, downsizing, and degazettement in Cambodia: enabling conditions and opportunities for intervention. Conserv. Sci. Pract. 5, e12912 (2023).


    Google Scholar
     

  • Mallari, N. A. D., Collar, N. J., McGowan, P. J. K. & Marsden, S. J. Philippine protected areas are not meeting the biodiversity coverage and management effectiveness requirements of Aichi Target 11. Ambio 45, 313–322 (2016).


    Google Scholar
     

  • Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).


    Google Scholar
     

  • Clements, T. et al. Larger than tigers: inputs for a strategic approach to biodiversity conservation in Asia. Publications Office of the European Union https://op.europa.eu/en/publication-detail/-/publication/ba5fe255-93cf-11e9-9369-01aa75ed71a1 (2019).

  • Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in Southeast Asian protected areas. Biol. Conserv. 253, 108875 (2021).


    Google Scholar
     

  • Mckinnon, M. C. et al. What are the effects of nature conservation on human well-being? A systematic map of empirical evidence from developing countries. Environ. Evid. 5, 8 (2016).


    Google Scholar
     

  • Farhadinia, M. S. et al. Economics of conservation law enforcement by rangers across Asia. Conserv. Lett. 16, e12943 (2023).


    Google Scholar
     

  • Gray, T. N. E., Belecky, M., Singh, R., Moreto, W. D. & Chapman, S. Insufficient numbers and poor working conditions for rangers protecting tigers. Conserv. Sci. Pract. 6, e13157 (2024).


    Google Scholar
     

  • Ibbett, H. et al. Improving compliance around protected areas through fair administration of rules. Conserv. Biol. 39, e14332 (2024).


    Google Scholar
     

  • Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).

    CAS 

    Google Scholar
     

  • Porras, I. & Paul, S. Making the Market Work for Nature — How Biocredits Can Protect Biodiversity and Reduce Poverty (International Institute for Environment and Development, London, 2020).

  • RER 2023 progress report. Restorasi Ekosistem Riau https://www.rekoforest.org/reports-publications/rer-2023-progress-report/ (2023).

  • Harrison, R. D. et al. Restoration concessions: a second lease on life for beleaguered tropical forests? Front. Ecol. Environ. 18, 567–575 (2020).


    Google Scholar
     

  • Engert, J. E., Ishida, F. Y. & Laurance, W. F. Rerouting a major Indonesian mining road to spare nature and reduce development costs. Conserv. Sci. Pract. 3, e521 (2021).


    Google Scholar
     

  • ten Kate, A., Kuepper, B. & Piotrowski, M. NDPE policies cover 83% of palm oil refineries; implementation at 78%. Chain Reaction Research https://chainreactionresearch.com/report/ndpe-policies-cover-83-of-palm-oil-refineries-implementation-at-75/ (2020).

  • Understanding commitments to No Deforestation, No Peat and No Exploitation (NDPE). Proforest https://www.proforest.net/fileadmin/uploads/proforest/Documents/Publications/infonote_04_introndpe.pdf (2020).

  • Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).

    CAS 

    Google Scholar
     

  • Lee, J. S. H., Miteva, D. A., Carlson, K. M., Heilmayr, R. & Saif, O. Does oil palm certification create trade-offs between environment and development in Indonesia? Environ. Res. Lett. 15, 124064 (2020).


    Google Scholar
     

  • Santika, T. et al. Impact of palm oil sustainability certification on village well-being and poverty in Indonesia. Nat. Sustain. 4, 109–119 (2021).


    Google Scholar
     

  • Deere, N. J. et al. Implications of zero-deforestation commitments: forest quality and hunting pressure limit mammal persistence in fragmented tropical landscapes. Conserv. Lett. 13, e12701 (2020).


    Google Scholar
     

  • Lucey, J. M. et al. Reframing the evidence base for policy‐relevance to increase impact: a case study on forest fragmentation in the oil palm sector. J. Appl. Ecol. 54, 731–736 (2017).


    Google Scholar
     

  • Ng, C. K.-C., Payne, J. & Oram, F. Small habitat matrix: how does it work? Ambio 50, 601–614 (2021).


    Google Scholar
     

  • Deere, N. J. et al. Riparian buffers can help mitigate biodiversity declines in oil palm agriculture. Front. Ecol. Environ. 20, 459–466 (2022).


    Google Scholar
     

  • Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).


    Google Scholar
     

  • Scriven, S. A. et al. Testing the benefits of conservation set‐asides for improved habitat connectivity in tropical agricultural landscapes. J. Appl. Ecol. 56, 2274–2285 (2019).


    Google Scholar
     

  • Bicknell, J. E. et al. Enhancing the ecological value of oil palm agriculture through set-asides. Nat. Sustain. 6, 513–525 (2023).


    Google Scholar
     

  • Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).


    Google Scholar
     

  • Lyons-White, J., Pollard, E. H. B., Catalano, A. S. & Knight, A. T. Rethinking zero deforestation beyond 2020 to more equitably and effectively conserve tropical forests. One Earth 3, 714–726 (2020).


    Google Scholar
     

  • Sarkar, S. et al. Developing an objectives hierarchy for multicriteria decisions on land use options, with a case study of biodiversity conservation and forestry production from Papua, Indonesia. Environ. Plan. B 44, 464–485 (2017).


    Google Scholar
     

  • Sze, J. S. et al. Indigenous peoples’ lands are critical for safeguarding vertebrate diversity across the tropics. Glob. Change Biol. 30, e16981 (2024).


    Google Scholar
     

  • Sze, J. S., Childs, D. Z., Carrasco, L. R. & Edwards, D. P. Indigenous lands in protected areas have high forest integrity across the tropics. Curr. Biol. 32, 4949–4956.e3 (2022).

    CAS 

    Google Scholar
     

  • Communities are improving lives and landscapes in Southeast Asia through social forestry. RECOFTC https://www.recoftc.org/special-report/communities-improve-landscapes-southeast-asia (2020).

  • Wong, G. et al. Social forestry in Southeast Asia: evolving interests, discourses and the many notions of equity. Geoforum 117, 246–258 (2020).


    Google Scholar
     

  • Rakatama, A. & Pandit, R. Reviewing social forestry schemes in Indonesia: opportunities and challenges. For. Policy Econ. 111, 102052 (2020).


    Google Scholar
     

  • Meijaard, E. et al. Toward improved impact evaluation of community forest management in Indonesia. Conserv. Sci. Pract. 3, e189 (2021).


    Google Scholar
     

  • Pulhin, J. M. et al. Contextualizing sustainable forest management and social justice in community-based forest management (CBFM) program in the Philippines. Trees For. People 16, 100589 (2024).


    Google Scholar
     

  • Recognising territories and areas conserved by Indigenous Peoples and Local Communities (ICCAs) overlapped by protected areas. International Union for Conservation of Nature (IUCN) https://doi.org/10.2305/RSLY2962 (2024).

  • Ota, M. et al. Forest conservation effectiveness of community forests may decline in the future: evidence from Cambodia. PNAS Nexus 2, pgad320 (2023).


    Google Scholar
     

  • Agarwal, S., Sairorkham, B., Sakitram, P. & Lambin, E. F. Effectiveness of community forests for forest conservation in Nan province, Thailand. J. Land Use Sci. 17, 307–323 (2022).


    Google Scholar
     

  • Santika, T. et al. Heterogeneous impacts of community forestry on forest conservation and poverty alleviation: evidence from Indonesia. People Nat. 1, 204–219 (2019).


    Google Scholar
     

  • Kraus, S., Liu, J., Koch, N. & Fuss, S. No aggregate deforestation reductions from rollout of community land titles in Indonesia yet. Proc. Natl Acad. Sci. USA 118, e2100741118 (2021).

    CAS 

    Google Scholar
     

  • Burivalova, Z., Hua, F., Koh, L. P., Garcia, C. & Putz, F. A critical comparison of conventional, certified, and community management of tropical forests for timber in terms of environmental, economic, and social variables. Conserv. Lett. 10, 4–14 (2017).


    Google Scholar
     

  • Santika, T. et al. Community forest management in Indonesia: avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Change 46, 60–71 (2017).


    Google Scholar
     

  • Andersson, K. P. et al. Wealth and the distribution of benefits from tropical forests: implications for REDD+. Land Use Policy 72, 510–522 (2018).


    Google Scholar
     

  • Novick, B. et al. Understanding the interactions between human well-being and environmental outcomes through a community-led integrated landscape initiative in Indonesia. Environ. Dev. 45, 100791 (2023).


    Google Scholar
     

  • Morcatty, T. Q., Feddema, K., Nekaris, K. A. I. & Nijman, V. Online trade in wildlife and the lack of response to COVID-19. Environ. Res. 193, 110439 (2021).

    CAS 

    Google Scholar
     

  • Willett, W. et al. Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).


    Google Scholar
     

  • Risdianto, D. et al. Examining the shifting patterns of poaching from a long-term law enforcement intervention in Sumatra. Biol. Conserv. 204, 306–312 (2016).


    Google Scholar
     

  • Jones, I. J. et al. Improving rural health care reduces illegal logging and conserves carbon in a tropical forest. Proc. Natl Acad. Sci. USA 117, 28515–28524 (2020).

    CAS 

    Google Scholar
     

  • Wyatt, T. Wildlife Trafficking: Critical Criminological Perspectives (Palgrave Macmillan, 2022).

  • Sarira, T. V., Zeng, Y., Neugarten, R., Chaplin-Kramer, R. & Koh, L. P. Co-benefits of forest carbon projects in Southeast Asia. Nat. Sustain. 5, 393–396 (2022).


    Google Scholar
     

  • Mishra, S. et al. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. J. Appl. Ecol. 58, 1370–1387 (2021).

    CAS 

    Google Scholar
     

  • Guizar‐Coutiño, A., Jones, J. P. G., Balmford, A., Carmenta, R. & Coomes, D. A. A global evaluation of the effectiveness of voluntary REDD+ projects at reducing deforestation and degradation in the moist tropics. Conserv. Biol. 36, e13970 (2022).


    Google Scholar
     

  • Pauly, M., Crosse, W. & Tosteson, J. High deforestation trajectories in Cambodia slowly transformed through economic land concession restrictions and strategic execution of REDD+ protected areas. Sci. Rep. 12, 17102 (2022).

    CAS 

    Google Scholar
     

  • Ekawati, S., Subarudi, Budiningsih, K., Sari, G. K. & Muttaqin, M. Z. Policies affecting the implementation of REDD+ in Indonesia (cases in Papua, Riau and Central Kalimantan). For. Policy Econ. 108, 101939 (2019).


    Google Scholar
     

  • Gatto, A. & Sadik-Zada, E. R. REDD+ in Indonesia: an assessment of the international environmental program. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05368-w (2024).


    Google Scholar
     

  • Jong, H. N. Indonesia to receive $56m payment from Norway for reducing deforestation. Mongabay https://news.mongabay.com/2020/05/indonesia-norway-redd-payment-deforestation-carbon-emission-climate-change/ (2020).

  • West, T. A. P. et al. Action needed to make carbon offsets from forest conservation work for climate change mitigation. Science 381, 873–877 (2023).

    CAS 

    Google Scholar
     

  • Goetz, S. J. et al. Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ. Res. Lett. 10, 123001 (2015).


    Google Scholar
     

  • Salzman, J., Bennett, G., Carroll, N., Goldstein, A. & Jenkins, M. The global status and trends of payments for ecosystem services. Nat. Sustain. 1, 136–144 (2018).


    Google Scholar
     

  • Aryal, K. et al. Carbon emission reduction initiatives: lessons from the REDD+ process of the Asia and Pacific region. Land Use Policy 146, 107321 (2024).


    Google Scholar
     

  • Wunder, S., Börner, J., Ezzine-de-Blas, D., Feder, S. & Pagiola, S. Payments for environmental services: past performance and pending potentials. Annu. Rev. Resour. Econ. 12, 209–234 (2020).


    Google Scholar
     

  • Milson, C. E., Lim, J. Y., Ingram, D. J. & Edwards, D. P. The need for carbon finance schemes to tackle overexploitation of tropical forest wildlife. Conserv. Biol. 39, e14406 (2024).


    Google Scholar
     

  • Börner, J., Schulz, D., Wunder, S. & Pfaff, A. The effectiveness of forest conservation policies and programs. Annu. Rev. Resour. Econ. 12, 45–64 (2020).


    Google Scholar
     

  • ASEAN Centre for Biodiversity. ASEAN Biodiversity Outlook 3. ASEAN https://environment.asean.org/fresources/detail/asean-biodiversity-outlook-3 (2023).

  • Han, X., Gill, M. J., Hamilton, H., Vergara, S. G. & Young, B. E. Progress on national biodiversity indicator reporting and prospects for filling indicator gaps in Southeast Asia. Environ. Sustain. Indic. 5, 100017 (2020).


    Google Scholar
     

  • Williams, D. R., Balmford, A. & Wilcove, D. S. The past and future role of conservation science in saving biodiversity. Conserv. Lett. 13, e12720 (2020).


    Google Scholar
     

  • Ducros, A. & Steele, P. Biocredits to Finance Nature and People: Emerging Lessons (International Institute for Environment and Development, 2022).

  • Wunder, S. et al. Biodiversity credits: learning lessons from other approaches to incentivize conservation. Preprint at OSFPreprints https://doi.org/10.31219/osf.io/qgwfc (2024).

  • Jones, J. P. G. et al. Net gain: seeking better outcomes for local people when mitigating biodiversity loss from development. One Earth 1, 195–201 (2019).


    Google Scholar
     

  • Orr, M. C. C., Ascher, J. S., Bai, M., Chesters, D. & Zhu, C.-D. Three questions: how can taxonomists survive and thrive worldwide? Megataxa https://doi.org/10.11646/megataxa.1.1.4 (2020).

  • Sandall, E. L. et al. A globally integrated structure of taxonomy to support biodiversity science and conservation. Trends Ecol. Evol. 38, 1143–1153 (2023).


    Google Scholar
     

  • Guenat, S. et al. Meeting sustainable development goals via robotics and autonomous systems. Nat. Commun. 13, 3559 (2022).

    CAS 

    Google Scholar
     

  • Tuia, D. et al. Perspectives in machine learning for wildlife conservation. Nat. Commun. 13, 792 (2022).

    CAS 

    Google Scholar
     

  • Parris-Piper, N., Dressler, W. H., Satizábal, P. & Fletcher, R. Automating violence? The anti-politics of ‘smart technology’ in biodiversity conservation. Biol. Conserv. 278, 109859 (2023).


    Google Scholar
     

  • Brittain, S. et al. Power to the people: analysis of occupancy models informed by local knowledge. Conserv. Sci. Pract. 4, e12753 (2022).


    Google Scholar
     

  • Ardiantiono et al. Improved cost-effectiveness of species monitoring programs through data integration. Curr. Biol. 35, 391–397.e3 (2025).

    CAS 

    Google Scholar
     

  • Burivalova, Z., Miteva, D., Salafsky, N., Butler, R. A. & Wilcove, D. S. Evidence types and trends in tropical forest conservation literature. Trends Ecol. Evol. 34, 669–679 (2019).

    CAS 

    Google Scholar
     

  • Devenish, K. et al. No evidence of increased forest loss from a mining rush in Madagascar’s eastern rainforests. Commun. Earth Environ. 5, 489 (2024).


    Google Scholar
     

  • Biodiversity and artificial intelligence, opportunities and recommendations. GPAI https://gpai.ai/projects/responsible-ai/environment/biodiversity-and-AI-opportunities-recommendations-for-action.pdf (2022).

  • Ocampo-Ariza, C. et al. Global South leadership towards inclusive tropical ecology and conservation. Persp. Ecol. Conserv. 21, 17–24 (2023).


    Google Scholar
     

  • Chao, N. et al. Strengthening capacity for species conservation in South-East Asia: a provisional assessment of needs and opportunities for the Asian species action partnership. Oryx 56, 760–763 (2022).


    Google Scholar
     

  • Asase, A., Mzumara‐Gawa, T. I., Owino, J. O., Peterson, A. T. & Saupe, E. Replacing “parachute science” with “global science” in ecology and conservation biology. Conserv. Sci. Pract. 4, e517 (2022).


    Google Scholar
     

  • Stefanoudis, P. V. et al. Turning the tide of parachute science. Curr. Biol. 31, R184–R185 (2021).

    CAS 

    Google Scholar
     

  • Valdez, J. et al. Strategies for advancing inclusive biodiversity research through equitable practices and collective responsibility. Conserv. Biol. 38, e14325 (2024).


    Google Scholar
     

  • James, R. et al. Conservation and natural resource management: where are all the women? Oryx 55, 860–867 (2021).


    Google Scholar
     

  • Lima, H. S. D. M. & Cunha, H. F. A. The role of women and the obstacles to biodiversity conservation in developed and developing countries. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05407-6 (2024).


    Google Scholar
     

  • Kreiken, B. E. & Arts, B. J. M. Disruptive data: How access and benefit-sharing discourses structured ideas and decisions during the Convention on Biological Diversity negotiations over digital sequence information from 2016 to 2022. Glob. Environ. Change 87, 102892 (2024).


    Google Scholar
     

  • Von Wettberg, E. & Khoury, C. K. Biodiversity data: the importance of access and the challenges regarding benefit sharing. Plants People Planet 4, 2–4 (2022).


    Google Scholar
     

  • Ewers, R. M. et al. Thresholds for adding degraded tropical forest to the conservation estate. Nature 631, 808–813 (2024).

    CAS 

    Google Scholar
     

  • Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520 (2014).


    Google Scholar
     

  • Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).


    Google Scholar
     

  • Marsh, C, J. et al. Tropical forest clearance impacts biodiversity and function, whereas logging changes structure. Science 387, 171–175 (2025).

    CAS 

    Google Scholar
     

  • Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS 

    Google Scholar
     

  • Burivalova, Z., Şekercioğlu, Ç. H. & Koh, L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014).

    CAS 

    Google Scholar
     

  • Edwards, D. P. et al. Selective‐logging and oil palm: multitaxon impacts, biodiversity indicators, and trade‐offs for conservation planning. Ecol. Appl. 24, 2029–2049 (2014).


    Google Scholar
     

  • Bicknell, J. E., Struebig, M. J., Edwards, D. P. & Davies, Z. G. Improved timber harvest techniques maintain biodiversity in tropical forests. Curr. Biol. 24, R1119–R1120 (2014).

    CAS 

    Google Scholar
     

  • Runting, R. K. et al. Larger gains from improved management over sparing–sharing for tropical forests. Nat. Sustain. 2, 53–61 (2019).


    Google Scholar
     

  • Miteva, D. A., Loucks, C. J. & Pattanayak, S. K. Social and environmental impacts of forest management certification in Indonesia. PLoS ONE 10, e0129675 (2015).


    Google Scholar
     

  • Burivalova, Z. et al. What works in tropical forest conservation, and what does not: effectiveness of four strategies in terms of environmental, social, and economic outcomes. Conserv. Sci. Pract. 1, e28 (2019).


    Google Scholar
     

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS 

    Google Scholar
     

  • Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).


    Google Scholar
     

  • Harrison, R. D. Emptying the forest: hunting and the extirpation of wildlife from tropical nature reserves. BioScience 61, 919–924 (2011).


    Google Scholar
     

  • Bogoni, J. A., Percequillo, A. R., Ferraz, K. M. P. M. B. & Peres, C. A. The empty forest three decades later: lessons and prospects. Biotropica 55, 13–18 (2023).


    Google Scholar
     

  • Gardner, C. J., Bicknell, J. E., Balwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).


    Google Scholar
     

  • Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).


    Google Scholar
     

  • Brodie, J. F. et al. Defaunation impacts on the carbon balance of tropical forests. Conserv. Biol. 39, e14414 (2024).


    Google Scholar
     

  • Chanthorn, W. et al. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9, 10015 (2019).


    Google Scholar
     

  • Ferreiro‐Arias, I. et al. Drivers and spatial patterns of avian defaunation in tropical forests. Divers. Distrib. 31, e13855 (2024).


    Google Scholar
     

  • Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    CAS 

    Google Scholar
     

  • Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    CAS 

    Google Scholar
     

  • Adams, W. M. et al. Biodiversity conservation and the eradication of poverty. Science 306, 1146–1149 (2004).

    CAS 

    Google Scholar
     

  • Roe, D. et al. Which components or attributes of biodiversity influence which dimensions of poverty? Environ. Evid. 3, 3 (2014).


    Google Scholar
     

  • Tilker, A. et al. Habitat degradation and indiscriminate hunting differentially impact faunal communities in the Southeast Asian tropical biodiversity hotspot. Commun. Biol. 2, 396 (2019).


    Google Scholar
     

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).


    Google Scholar
     

  • Cook, C. N. Progress developing the concept of other effective area‐based conservation measures. Conserv. Biol. 38, e14106 (2024).


    Google Scholar
     

  • IUCN WCPA Task Force on OECMs. Recognising and reporting other effective area-based conservation measures. International Union for Conservation of Nature (IUCN) https://doi.org/10.2305/IUCN.CH.2019.PATRS.3.en (2019).

  • COP15: Kunming–Montreal Global Biodiversity Framework. CBD/COP/15/L25. Convention on Biological Diversity (CBD) https://www.cbd.int/gbf (2022).

  • Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).

    CAS 

    Google Scholar
     

  • Parks, L. & Tsioumani, E. Transforming biodiversity governance? Indigenous Peoples’ contributions to the Convention on Biological Diversity. Biol. Conserv. 280, 109933 (2023).


    Google Scholar
     

  • Cook, C. N. Diverse approaches to protecting biodiversity: the different conservation measures discussed as possible other effective area‐based conservation measures. Conserv. Lett. 17, e13027 (2024).


    Google Scholar
     

  • Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).

    CAS 

    Google Scholar
     

  • Arneth, A. et al. Making protected areas effective for biodiversity, climate and food. Glob. Change Biol. 29, 3883–3894 (2023).

    CAS 

    Google Scholar
     

  • Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).


    Google Scholar
     

  • Kuempel, C. D., Adams, V. M., Possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2018).


    Google Scholar
     

  • Dunne, D., Greenfield, P., Viglione, G. & Quiroz, Y. Revealed: more than half of nations fail to protect 30% of land and sea in UN Nature Plans. CarbonBrief https://www.carbonbrief.org/revealed-more-than-half-of-nations-fail-to-protect-30-of-land-and-sea-in-un-nature-plans/ (2025).

  • Banin, L. F. et al. The road to recovery: a synthesis of outcomes from ecosystem restoration in tropical and sub-tropical Asian forests. Phil. Trans. R. Soc. B 378, 20210090 (2023).


    Google Scholar
     

  • Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    CAS 

    Google Scholar
     

  • Budiharta, S. et al. Restoring degraded tropical forests for carbon and biodiversity. Environ. Res. Lett. 9, 114020 (2014).


    Google Scholar
     

  • Bodin, B. et al. A standard framework for assessing the costs and benefits of restoration: introducing the economics of ecosystem restoration. Restor. Ecol. 30, e13515 (2022).


    Google Scholar
     

  • Budiharta, S. et al. Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Glob. Environ. Change 52, 152–161 (2018).


    Google Scholar
     

  • Löfqvist, S. & Ghazoul, J. Private funding is essential to leverage forest and landscape restoration at global scales. Nat. Ecol. Evol. 3, 1612–1615 (2019).


    Google Scholar
     

  • Zu Ermgassen, S. O. S. E. & Löfqvist, S. Financing ecosystem restoration. Curr. Biol. 34, R412–R417 (2024).

    CAS 

    Google Scholar
     

  • Edwards, D. P. et al. Upscaling tropical restoration to deliver environmental benefits and socially equitable outcomes. Curr. Biol. 31, R1326–R1341 (2021).

    CAS 

    Google Scholar
     

  • Scheidel, A. & Work, C. Forest plantations and climate change discourses: new powers of ‘green’ grabbing in Cambodia. Land Use Policy 77, 9–18 (2018).


    Google Scholar
     

  • Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).


    Google Scholar
     

  • Newing, H. An independent review of the RSPO Remediation and Compensation Procedure (RaCP) 2015. RSPO https://rspo.org/wp-content/uploads/rspo_racp_review_2020.pdf (2020).

  • Erbaugh, J. T. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).

    CAS 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Spatial distribution of exotic lumbricid earthworm Octolasion tyrtaeum in endangered Taxus...

    Pandit, M. K., Sodhi, N. S., Koh, L. P., Bhaskar, A. & Brook, B. W. Unreported yet massive deforestation driving loss of endemic...
    Biodiversity
    15
    minutes

    Unlocking the African bioeconomy and strengthening biodiversity conservation through genomics and...

    Ebenezer, T. E. et al. Africa: sequence 100,000 species to safeguard biodiversity. Nature 603, 388–392 (2022).CAS  ...
    Biodiversity
    19
    minutes

    Cryptobenthic crab assemblages are more distinct across a 90 m depth gradient...

    Graham, N. A. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013). ...
    Biodiversity
    13
    minutes

    Terrestrial land cover shapes fish diversity in a major subtropical river...

    The study was conducted in the Chao Phraya River catchment located in Northern and Central Thailand, covering rivers in both mountainous and plain...
    Biodiversity
    16
    minutes
    spot_imgspot_img