Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
Edwards, D. P. et al. Conservation of tropical forests in the Anthropocene. Curr. Biol. 29, R1008–R1020 (2019).
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).
Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).
Ondo, I. et al. Plant diversity darkspots for global collection priorities. N. Phytol. 244, 719–733 (2024).
Ong, X. R., Tan, B., Chang, C. H., Puniamoorthy, N. & Slade, E. M. Identifying the knowledge and capacity gaps in Southeast Asian insect conservation. Ecol. Lett. 28, e70038 (2025).
Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).
Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).
Struebig, M. J. et al. Safeguarding imperiled biodiversity and evolutionary processes in the Wallacea center of endemism. BioScience 72, 1118–1130 (2022).
Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prisms Extinction 2, e5 (2024).
McConkey, K. R., Aldy, F., Ong, L., Sutisna, D. J. & Campos‐Arceiz, A. Lost mutualisms: seed dispersal by Sumatran rhinos, the world’s most threatened megafauna. Biotropica 54, 346–357 (2022).
Hughes, A. C. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8, e01624 (2017).
Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 28, 531–540 (2013).
Yang, C. et al. Human expansion-induced biodiversity crisis over Asia from 2000 to 2020. Research 6, 0226 (2023).
Coleman, J. L. et al. Top 100 research questions for biodiversity conservation in Southeast Asia. Biol. Conserv. 234, 211–220 (2019).
Botterill-James, T., Yates, L. A., Buettel, J. C. & Brook, B. W. The future of Southeast Asia’s biodiversity: a crisis with a hopeful alternative. Biol. Conserv. 296, 110641 (2024).
Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Phil. Trans. R. Soc. B 375, 20190126 (2020).
Pringle, S. et al. Identifying the opportunities and challenges for monitoring terrestrial biodiversity in the robotics age. Nat. Ecol. Evol. 9, 1031–1042 (2025).
Swinfield, T., Shrikanth, S., Bull, J. W., Madhavapeddy, A. & Zu Ermgassen, S. O. S. E. Nature-based credit markets at a crossroads. Nat. Sustain. 7, 1217–1220 (2024).
Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).
Koh, L. P., Zeng, Y., Sarira, T. V. & Siman, K. Carbon prospecting in tropical forests for climate change mitigation. Nat. Commun. 12, 1271 (2021).
Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).
Raven, P. H. et al. The distribution of biodiversity richness in the tropics. Sci. Adv. 6, eabc6228 (2020).
Brook, B., Sodhi, N. & Bradshaw, C. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).
França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Phil. Trans. R. Soc. B 375, 20190116 (2020).
Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).
Jamaludin, J., De Alban, J. D. T., Carrasco, L. R. & Webb, E. L. Spatiotemporal analysis of deforestation patterns and drivers reveals emergent threats to tropical forest landscapes. Environ. Res. Lett. 17, 054046 (2022).
Austin, K. G., González-Roglich, M., Schaffer-Smith, D., Schwantes, A. M. & Swenson, J. J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 12, 054009 (2017).
Gaveau, D. L. A. et al. Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices. PLoS ONE 17, e0266178 (2022).
Gevaña, D. T., Camacho, L. D. & Pulhin, J. M. in Threats to Mangrove Forests Vol. 25 (eds Makowski, C. & Finkl, C. W.) 579–588 (Springer International, 2018).
Sasmito, S. D. et al. Half of land use carbon emissions in Southeast Asia can be mitigated through peat swamp forest and mangrove conservation and restoration. Nat. Commun. 16, 740 (2025).
He, X. et al. Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth 6, 303–315 (2023).
Chen, Y., Fuller, R. A., Lee, T. M. & Hua, F. Disproportionate low-elevation forest loss in over 65% of the world’s mountains calls for targeted conservation. One Earth 7, 1833–1845 (2024).
Mitchell, S. L. et al. Severity of deforestation mediates biotic homogenisation in an island archipelago. Ecography 2022, e05990 (2022).
Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).
Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).
Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).
Mu, H. et al. A global record of annual terrestrial human footprint dataset from 2000 to 2018. Sci. Data 9, 176 (2022).
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
FAOSTAT. Food and agricultural data. Food and Agriculture Organization of the United Nations https://www.fao.org/faostat/en/#home (2024).
Drescher, J. et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Phil. Trans. R. Soc. B 371, 20150275 (2016).
Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).
Zemp, D. C. et al. Tree islands enhance biodiversity and functioning in oil palm landscapes. Nature 618, 316–321 (2023).
Wang, Y. et al. High-resolution maps show that rubber causes substantial deforestation. Nature 623, 340–346 (2023).
Meyfroidt, P., Vu, T. P. & Hoang, V. A. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the central highlands of Vietnam. Glob. Environ. Change 23, 1187–1198 (2013).
Khoo, G. C. Durian matters. Continuum 39, 211–217 (2024).
Meijaard, E., Abrams, J. F., Juffe-Bignoli, D., Voigt, M. & Sheil, D. Coconut oil, conservation and the conscientious consumer. Curr. Biol. 30, R757–R758 (2020).
Propper, C. R. et al. Balancing food security, vertebrate biodiversity, and healthy rice agroecosystems in Southeast Asia. Crop. Environ. 3, 43–50 (2024).
Yuan, S. et al. Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nat. Food 3, 217–226 (2022).
Wyckhuys, K. A. G. et al. Biological control of an agricultural pest protects tropical forests. Commun. Biol. 2, 10 (2019).
Rege, A. & Lee, J. S. H. The socio-environmental impacts of tropical crop expansion on a global scale: a case study in cashew. Biol. Conserv. 280, 109961 (2023).
Meijaard, E. et al. The environmental impacts of palm oil in context. Nat. Plants 6, 1418–1426 (2020).
Oakley, J. L. & Bicknell, J. E. The impacts of tropical agriculture on biodiversity: a meta‐analysis. J. Appl. Ecol. 59, 3072–3082 (2022).
Manson, S., Nekaris, K. A. I., Nijman, V. & Campera, M. Effect of shade on biodiversity within coffee farms: a meta-analysis. Sci. Total Environ. 914, 169882 (2024).
Kelley, L. C., Evans, S. G. & Potts, M. D. Richer histories for more relevant policies: 42 years of tree cover loss and gain in southeast Sulawesi, Indonesia. Glob. Change Biol. 23, 830–839 (2017).
Rigg, J., Salamanca, A. & Thompson, E. C. The puzzle of east and Southeast Asia’s persistent smallholder. J. Rural. Stud. 43, 118–133 (2016).
Higham, C. F. Early Mainland Southeast Asia: From First Humans to Angkor (River Books, 2014).
Santika, T. et al. Does oil palm agriculture help alleviate poverty? A multidimensional counterfactual assessment of oil palm development in Indonesia. World Dev. 120, 105–117 (2019).
Li, P. & Nath, A. J. The history and revival of swidden agriculture research in the tropics. CABI Agric. Biosci. 5, 84 (2024).
Schoneveld, G. C., Ekowati, D., Andrianto, A. & Van Der Haar, S. Modeling peat- and forestland conversion by oil palm smallholders in Indonesian Borneo. Environ. Res. Lett. 14, 014006 (2019).
Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Van Wees, D. et al. The role of fire in global forest loss dynamics. Glob. Change Biol. 27, 2377–2391 (2021).
Voigt, M. et al. Deforestation projections imply range-wide population decline for critically endangered Bornean orangutan. Persp. Ecol. Conserv. 20, 240–248 (2022).
Kiely, L. et al. Assessing costs of Indonesian fires and the benefits of restoring peatland. Nat. Commun. 12, 7044 (2021).
Santika, T. et al. Deterioration of respiratory health following changes to land cover and climate in Indonesia. One Earth 6, 290–302 (2023).
Santika, T. et al. Interannual climate variation, land type and village livelihood effects on fires in Kalimantan, Indonesia. Glob. Environ. Change 64, 102129 (2020).
He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).
Pausas, J. G. & Keeley, J. E. Wildfires and global change. Front. Ecol. Environ. 19, 387–395 (2021).
Harrison, M. E. et al. Impacts of fire and prospects for recovery in a tropical peat forest ecosystem. Proc. Natl Acad. Sci. USA 121, e2307216121 (2024).
Khor, N. et al. World Cities Report 2022: envisaging the future of cities. UN Habitat https://unhabitat.org/world-cities-report-2022-envisaging-the-future-of-cities (2022).
Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).
Ng, L. S. et al. The scale of biodiversity impacts of the belt and road initiative in Southeast Asia. Biol. Conserv. 248, 108691 (2020).
Engert, J. E. et al. Ghost roads and the destruction of Asia-Pacific tropical forests. Nature 629, 370–375 (2024).
Cho, M. S. & Qi, J. Characterization of the impacts of hydro-dams on wetland inundations in Southeast Asia. Sci. Total Environ. 864, 160941 (2023).
Orr, S., Pittock, J., Chapagain, A. & Dumaresq, D. Dams on the Mekong River: lost fish protein and the implications for land and water resources. Glob. Environ. Change 22, 925–932 (2012).
He, F. et al. Freshwater megafauna diversity: patterns, status and threats. Divers. Distrib. 24, 1395–1404 (2018).
Chisholm, R. A. et al. Two centuries of biodiversity discovery and loss in Singapore. Proc. Natl Acad. Sci. USA 120, e2309034120 (2023).
Tan, P. Y. & Abdul Hamid, A. R. B. Urban ecological research in Singapore and its relevance to the advancement of urban ecology and sustainability. Landsc. Urban. Plan. 125, 271–289 (2014).
Ahmed, M. et al. An overview of Asian cement industry: environmental impacts, research methodologies and mitigation measures. Sustain. Prod. Consum. 28, 1018–1039 (2021).
Clements, R., Sodhi, N. S., Schilthuizen, M. & Ng, P. K. L. Limestone karsts of Southeast Asia: imperiled arks of biodiversity. BioScience 56, 733 (2006).
Werner, T. T. et al. Patterns of infringement, risk, and impact driven by coal mining permits in Indonesia. Ambio 53, 242–256 (2024).
Dethier, E. N. et al. A global rise in alluvial mining increases sediment load in tropical rivers. Nature 620, 787–793 (2023).
Timsina, S. et al. Tropical surface gold mining: a review of ecological impacts and restoration strategies. Land. Degrad. Dev. 33, 3661–3674 (2022).
Maus, V. & Werner, T. T. Impacts for half of the world’s mining areas are undocumented. Nature 625, 27–29 (2024).
IEA. Global Critical Minerals Outlook 2024. International Energy Agency https://www.iea.org/reports/global-critical-minerals-outlook-2024 (2024).
Lo, M. et al. Nickel mining reduced forest cover in Indonesia but had mixed outcomes for well-being. One Earth 7, 2019–2033 (2024).
Ingram, D. J. et al. Wild meat is still on the menu: progress in wild meat research, policy, and practice from 2002 to 2020. Annu. Rev. Environ. Resour. 46, 221–254 (2021).
Mazor, T. et al. Global mismatch of policy and research on drivers of biodiversity loss. Nat. Ecol. Evol. 2, 1071–1074 (2018).
Harrison, R. D. et al. Impacts of hunting on tropical forests in Southeast Asia. Conserv. Biol. 30, 972–981 (2016).
Lees, A. C. & Yuda, P. The Asian songbird crisis. Curr. Biol. 32, R1063–R1064 (2022).
McEvoy, J. F. et al. Two sides of the same coin — wildmeat consumption and illegal wildlife trade at the crossroads of Asia. Biol. Conserv. 238, 108197 (2019).
Lee, T. M., Sigouin, A., Pinedo-Vasquez, M. & Nasi, R. The harvest of wildlife for bushmeat and traditional medicine in East, South and Southeast Asia: current knowledge base, challenges, opportunities and areas for future research. Center for International Forestry Research (CIFOR) https://www.cifor-icraf.org/knowledge/publication/5135/ (2014).
Pangau‐Adam, M., Flassy, M., Trei, J., Waltert, M. & Soofi, M. The role of the introduced rusa deer Cervus timorensis for wildlife hunting in West Papua, Indonesia. Ecol. Sol. Evid. 3, e12118 (2022).
Gray, T. N. E. et al. The wildlife snaring crisis: an insidious and pervasive threat to biodiversity in Southeast Asia. Biodivers. Conserv. 27, 1031–1037 (2018).
Nuttall, M. N. et al. Long‐term monitoring of wildlife populations for protected area management in Southeast Asia. Conserv. Sci. Pract. 4, e614 (2022).
Wong, J. T. et al. Factors influencing animal-source food consumption in Timor-Leste. Food Secur. 10, 741–762 (2018).
Loke, V. P. W., Lim, T. & Campos-Arceiz, A. Hunting practices of the Jahai indigenous community in northern peninsular Malaysia. Glob. Ecol. Conserv. 21, e00815 (2020).
Reyes-García, V. & Pyhälä, A. (eds) Hunter-Gatherers in a Changing World (Springer, 2017).
Singh, S. Appetites and aspirations: consuming wildlife in Laos. Aust. J. Anthropol. 21, 315–331 (2010).
Wells, G. J. et al. Hundreds of millions of people in the tropics need both wild harvests and other forms of economic development for their well-being. One Earth 7, 311–324 (2024).
Spencer, K. L. et al. Wild meat consumption in changing rural landscapes of Indonesian Borneo. People Nat. (in the press).
Coad, L., Lim, S. & Nuon, L. Wildlife and livelihoods in the Cardamom Mountains, Cambodia. Front. Ecol. Evol. 7, 296 (2019).
Nguyen, M. & Jones, T. E. Predictors of support for biodiversity loss countermeasure and bushmeat consumption among Vietnamese urban residents. Conserv. Sci. Pract. 4, e12822 (2022).
Pattiselanno, F., Lloyd, J. K. F., Sayer, J., Boedhihartono, A. K. & Arobaya, A. Y. S. Wild meat trade chain on the Bird’s Head peninsula of West Papua province, Indonesia. J. Ethnobiol. 40, 202–217 (2020).
Phoyduangsy, S. et al. The determinants of bushmeat consumption in urban areas in Laos. Ann. Environ. Sci. Toxicol. 6, 063–068 (2022).
Sandalj, M., Treydte, A. C. & Ziegler, S. Is wild meat luxury? Quantifying wild meat demand and availability in Hue, Vietnam. Biol. Conserv. 194, 105–112 (2016).
Olmedo, A., Veríssimo, D., Challender, D. W. S., Dao, H. T. T. & Milner‐Gulland, E. J. Who eats wild meat? Profiling consumers in Ho Chi Minh City, Vietnam. People Nat. 3, 700–710 (2021).
Jiao, Y., Yeophantong, P. & Lee, T. M. Strengthening international legal cooperation to combat the illegal wildlife trade between Southeast Asia and China. Front. Ecol. Evol. 9, 645427 (2021).
Nguyen, T. & Roberts, D. L. Exploring the Africa–Asia trade nexus for endangered wildlife used in traditional Asian medicine: interviews with traders in South Africa and Vietnam. Trop. Conserv. Sci. 13, 194008292097925 (2020).
Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17, e3000247 (2019).
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evol. 7, 1060–1071 (2023).
Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat. Ecol. Evol. 8, 1216–1223 (2024).
Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).
Deere, N. J. et al. Maximizing the value of forest restoration for tropical mammals by detecting three-dimensional habitat associations. Proc. Natl Acad. Sci. 117, 26254–26262 (2020).
Struebig, M. J. et al. Addressing human–tiger conflict using socio-ecological information on tolerance and risk. Nat. Commun. 9, 3455 (2018).
Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).
Haubrock, P. J. et al. Biological invasions in Singapore and Southeast Asia: data gaps fail to mask potentially massive economic costs. NeoBiota 67, 131–152 (2021).
Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).
Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).
Trew, B. T. et al. Novel temperatures are already widespread beneath the world’s tropical forest canopies. Nat. Clim. Change 14, 753–759 (2024).
Santos, E. G. et al. Structural changes caused by selective logging undermine the thermal buffering capacity of tropical forests. Agric. For. Meteorol. 348, 109912 (2024).
Siyum, Z. G. Tropical dry forest dynamics in the context of climate change: syntheses of drivers, gaps, and management perspectives. Ecol. Process. 9, 25 (2020).
Lohberger, S., Stängel, M., Atwood, E. C. & Siegert, F. Spatial evaluation of Indonesia’s 2015 fire‐affected area and estimated carbon emissions using Sentinel‐1. Glob. Change Biol. 24, 644–654 (2018).
Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Mata‐Guel, E. O. et al. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol. Rev. 98, 1200–1224 (2023).
Harris, J. B. C. et al. Rapid deforestation threatens mid‐elevational endemic birds but climate change is most important at higher elevations. Divers. Distrib. 20, 773–785 (2014).
Senior, R. A., Hill, J. K. & Edwards, D. P. Global loss of climate connectivity in tropical forests. Nat. Clim. Change 9, 623–626 (2019).
Crompton, O., Corrêa, D., Duncan, J. & Thompson, S. Deforestation-induced surface warming is influenced by the fragmentation and spatial extent of forest loss in maritime Southeast Asia. Environ. Res. Lett. 16, 114018 (2021).
Abrahms, B. et al. Climate change as a global amplifier of human–wildlife conflict. Nat. Clim. Change 13, 224–234 (2023).
Farhadinia, M. S. et al. Current trends suggest most Asian countries are unlikely to meet future biodiversity targets on protected areas. Commun. Biol. 5, 1221 (2022).
Singh, M., Griaud, C. & Collins, C. M. An evaluation of the effectiveness of protected areas in Thailand. Ecol. Indic. 125, 107536 (2021).
Dwiyahreni, A. A. et al. Changes in the human footprint in and around Indonesia’s terrestrial national parks between 2012 and 2017. Sci. Rep. 11, 4510 (2021).
Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA. 116, 23209–23215 (2019).
Graham, V. et al. Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas. Sci. Rep. 11, 23760 (2021).
Brodie, J. F. et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 620, 807–812 (2023).
Sreekar, R. et al. Conservation opportunities through improved management of recently established protected areas in Southeast Asia. Curr. Biol. 34, 3830–3835.e3 (2024).
Ford, S. A. et al. Deforestation leakage undermines conservation value of tropical and subtropical forest protected areas. Glob. Ecol. Biogeogr. 29, 2014–2024 (2020).
Morgans, C. L. et al. Improving well‐being and reducing deforestation in Indonesia’s protected areas. Conserv. Lett. 17, e13010 (2024).
Clements, T., Suon, S., Wilkie, D. S. & Milner-Gulland, E. J. Impacts of protected areas on local livelihoods in Cambodia. World Dev. 64, S125–S134 (2014).
Nuttall, M. et al. Protected area downgrading, downsizing, and degazettement in Cambodia: enabling conditions and opportunities for intervention. Conserv. Sci. Pract. 5, e12912 (2023).
Mallari, N. A. D., Collar, N. J., McGowan, P. J. K. & Marsden, S. J. Philippine protected areas are not meeting the biodiversity coverage and management effectiveness requirements of Aichi Target 11. Ambio 45, 313–322 (2016).
Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).
Clements, T. et al. Larger than tigers: inputs for a strategic approach to biodiversity conservation in Asia. Publications Office of the European Union https://op.europa.eu/en/publication-detail/-/publication/ba5fe255-93cf-11e9-9369-01aa75ed71a1 (2019).
Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in Southeast Asian protected areas. Biol. Conserv. 253, 108875 (2021).
Mckinnon, M. C. et al. What are the effects of nature conservation on human well-being? A systematic map of empirical evidence from developing countries. Environ. Evid. 5, 8 (2016).
Farhadinia, M. S. et al. Economics of conservation law enforcement by rangers across Asia. Conserv. Lett. 16, e12943 (2023).
Gray, T. N. E., Belecky, M., Singh, R., Moreto, W. D. & Chapman, S. Insufficient numbers and poor working conditions for rangers protecting tigers. Conserv. Sci. Pract. 6, e13157 (2024).
Ibbett, H. et al. Improving compliance around protected areas through fair administration of rules. Conserv. Biol. 39, e14332 (2024).
Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).
Porras, I. & Paul, S. Making the Market Work for Nature — How Biocredits Can Protect Biodiversity and Reduce Poverty (International Institute for Environment and Development, London, 2020).
RER 2023 progress report. Restorasi Ekosistem Riau https://www.rekoforest.org/reports-publications/rer-2023-progress-report/ (2023).
Harrison, R. D. et al. Restoration concessions: a second lease on life for beleaguered tropical forests? Front. Ecol. Environ. 18, 567–575 (2020).
Engert, J. E., Ishida, F. Y. & Laurance, W. F. Rerouting a major Indonesian mining road to spare nature and reduce development costs. Conserv. Sci. Pract. 3, e521 (2021).
ten Kate, A., Kuepper, B. & Piotrowski, M. NDPE policies cover 83% of palm oil refineries; implementation at 78%. Chain Reaction Research https://chainreactionresearch.com/report/ndpe-policies-cover-83-of-palm-oil-refineries-implementation-at-75/ (2020).
Understanding commitments to No Deforestation, No Peat and No Exploitation (NDPE). Proforest https://www.proforest.net/fileadmin/uploads/proforest/Documents/Publications/infonote_04_introndpe.pdf (2020).
Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).
Lee, J. S. H., Miteva, D. A., Carlson, K. M., Heilmayr, R. & Saif, O. Does oil palm certification create trade-offs between environment and development in Indonesia? Environ. Res. Lett. 15, 124064 (2020).
Santika, T. et al. Impact of palm oil sustainability certification on village well-being and poverty in Indonesia. Nat. Sustain. 4, 109–119 (2021).
Deere, N. J. et al. Implications of zero-deforestation commitments: forest quality and hunting pressure limit mammal persistence in fragmented tropical landscapes. Conserv. Lett. 13, e12701 (2020).
Lucey, J. M. et al. Reframing the evidence base for policy‐relevance to increase impact: a case study on forest fragmentation in the oil palm sector. J. Appl. Ecol. 54, 731–736 (2017).
Ng, C. K.-C., Payne, J. & Oram, F. Small habitat matrix: how does it work? Ambio 50, 601–614 (2021).
Deere, N. J. et al. Riparian buffers can help mitigate biodiversity declines in oil palm agriculture. Front. Ecol. Environ. 20, 459–466 (2022).
Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).
Scriven, S. A. et al. Testing the benefits of conservation set‐asides for improved habitat connectivity in tropical agricultural landscapes. J. Appl. Ecol. 56, 2274–2285 (2019).
Bicknell, J. E. et al. Enhancing the ecological value of oil palm agriculture through set-asides. Nat. Sustain. 6, 513–525 (2023).
Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).
Lyons-White, J., Pollard, E. H. B., Catalano, A. S. & Knight, A. T. Rethinking zero deforestation beyond 2020 to more equitably and effectively conserve tropical forests. One Earth 3, 714–726 (2020).
Sarkar, S. et al. Developing an objectives hierarchy for multicriteria decisions on land use options, with a case study of biodiversity conservation and forestry production from Papua, Indonesia. Environ. Plan. B 44, 464–485 (2017).
Sze, J. S. et al. Indigenous peoples’ lands are critical for safeguarding vertebrate diversity across the tropics. Glob. Change Biol. 30, e16981 (2024).
Sze, J. S., Childs, D. Z., Carrasco, L. R. & Edwards, D. P. Indigenous lands in protected areas have high forest integrity across the tropics. Curr. Biol. 32, 4949–4956.e3 (2022).
Communities are improving lives and landscapes in Southeast Asia through social forestry. RECOFTC https://www.recoftc.org/special-report/communities-improve-landscapes-southeast-asia (2020).
Wong, G. et al. Social forestry in Southeast Asia: evolving interests, discourses and the many notions of equity. Geoforum 117, 246–258 (2020).
Rakatama, A. & Pandit, R. Reviewing social forestry schemes in Indonesia: opportunities and challenges. For. Policy Econ. 111, 102052 (2020).
Meijaard, E. et al. Toward improved impact evaluation of community forest management in Indonesia. Conserv. Sci. Pract. 3, e189 (2021).
Pulhin, J. M. et al. Contextualizing sustainable forest management and social justice in community-based forest management (CBFM) program in the Philippines. Trees For. People 16, 100589 (2024).
Recognising territories and areas conserved by Indigenous Peoples and Local Communities (ICCAs) overlapped by protected areas. International Union for Conservation of Nature (IUCN) https://doi.org/10.2305/RSLY2962 (2024).
Ota, M. et al. Forest conservation effectiveness of community forests may decline in the future: evidence from Cambodia. PNAS Nexus 2, pgad320 (2023).
Agarwal, S., Sairorkham, B., Sakitram, P. & Lambin, E. F. Effectiveness of community forests for forest conservation in Nan province, Thailand. J. Land Use Sci. 17, 307–323 (2022).
Santika, T. et al. Heterogeneous impacts of community forestry on forest conservation and poverty alleviation: evidence from Indonesia. People Nat. 1, 204–219 (2019).
Kraus, S., Liu, J., Koch, N. & Fuss, S. No aggregate deforestation reductions from rollout of community land titles in Indonesia yet. Proc. Natl Acad. Sci. USA 118, e2100741118 (2021).
Burivalova, Z., Hua, F., Koh, L. P., Garcia, C. & Putz, F. A critical comparison of conventional, certified, and community management of tropical forests for timber in terms of environmental, economic, and social variables. Conserv. Lett. 10, 4–14 (2017).
Santika, T. et al. Community forest management in Indonesia: avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Change 46, 60–71 (2017).
Andersson, K. P. et al. Wealth and the distribution of benefits from tropical forests: implications for REDD+. Land Use Policy 72, 510–522 (2018).
Novick, B. et al. Understanding the interactions between human well-being and environmental outcomes through a community-led integrated landscape initiative in Indonesia. Environ. Dev. 45, 100791 (2023).
Morcatty, T. Q., Feddema, K., Nekaris, K. A. I. & Nijman, V. Online trade in wildlife and the lack of response to COVID-19. Environ. Res. 193, 110439 (2021).
Willett, W. et al. Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
Risdianto, D. et al. Examining the shifting patterns of poaching from a long-term law enforcement intervention in Sumatra. Biol. Conserv. 204, 306–312 (2016).
Jones, I. J. et al. Improving rural health care reduces illegal logging and conserves carbon in a tropical forest. Proc. Natl Acad. Sci. USA 117, 28515–28524 (2020).
Wyatt, T. Wildlife Trafficking: Critical Criminological Perspectives (Palgrave Macmillan, 2022).
Sarira, T. V., Zeng, Y., Neugarten, R., Chaplin-Kramer, R. & Koh, L. P. Co-benefits of forest carbon projects in Southeast Asia. Nat. Sustain. 5, 393–396 (2022).
Mishra, S. et al. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. J. Appl. Ecol. 58, 1370–1387 (2021).
Guizar‐Coutiño, A., Jones, J. P. G., Balmford, A., Carmenta, R. & Coomes, D. A. A global evaluation of the effectiveness of voluntary REDD+ projects at reducing deforestation and degradation in the moist tropics. Conserv. Biol. 36, e13970 (2022).
Pauly, M., Crosse, W. & Tosteson, J. High deforestation trajectories in Cambodia slowly transformed through economic land concession restrictions and strategic execution of REDD+ protected areas. Sci. Rep. 12, 17102 (2022).
Ekawati, S., Subarudi, Budiningsih, K., Sari, G. K. & Muttaqin, M. Z. Policies affecting the implementation of REDD+ in Indonesia (cases in Papua, Riau and Central Kalimantan). For. Policy Econ. 108, 101939 (2019).
Gatto, A. & Sadik-Zada, E. R. REDD+ in Indonesia: an assessment of the international environmental program. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05368-w (2024).
Jong, H. N. Indonesia to receive $56m payment from Norway for reducing deforestation. Mongabay https://news.mongabay.com/2020/05/indonesia-norway-redd-payment-deforestation-carbon-emission-climate-change/ (2020).
West, T. A. P. et al. Action needed to make carbon offsets from forest conservation work for climate change mitigation. Science 381, 873–877 (2023).
Goetz, S. J. et al. Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ. Res. Lett. 10, 123001 (2015).
Salzman, J., Bennett, G., Carroll, N., Goldstein, A. & Jenkins, M. The global status and trends of payments for ecosystem services. Nat. Sustain. 1, 136–144 (2018).
Aryal, K. et al. Carbon emission reduction initiatives: lessons from the REDD+ process of the Asia and Pacific region. Land Use Policy 146, 107321 (2024).
Wunder, S., Börner, J., Ezzine-de-Blas, D., Feder, S. & Pagiola, S. Payments for environmental services: past performance and pending potentials. Annu. Rev. Resour. Econ. 12, 209–234 (2020).
Milson, C. E., Lim, J. Y., Ingram, D. J. & Edwards, D. P. The need for carbon finance schemes to tackle overexploitation of tropical forest wildlife. Conserv. Biol. 39, e14406 (2024).
Börner, J., Schulz, D., Wunder, S. & Pfaff, A. The effectiveness of forest conservation policies and programs. Annu. Rev. Resour. Econ. 12, 45–64 (2020).
ASEAN Centre for Biodiversity. ASEAN Biodiversity Outlook 3. ASEAN https://environment.asean.org/fresources/detail/asean-biodiversity-outlook-3 (2023).
Han, X., Gill, M. J., Hamilton, H., Vergara, S. G. & Young, B. E. Progress on national biodiversity indicator reporting and prospects for filling indicator gaps in Southeast Asia. Environ. Sustain. Indic. 5, 100017 (2020).
Williams, D. R., Balmford, A. & Wilcove, D. S. The past and future role of conservation science in saving biodiversity. Conserv. Lett. 13, e12720 (2020).
Ducros, A. & Steele, P. Biocredits to Finance Nature and People: Emerging Lessons (International Institute for Environment and Development, 2022).
Wunder, S. et al. Biodiversity credits: learning lessons from other approaches to incentivize conservation. Preprint at OSFPreprints https://doi.org/10.31219/osf.io/qgwfc (2024).
Jones, J. P. G. et al. Net gain: seeking better outcomes for local people when mitigating biodiversity loss from development. One Earth 1, 195–201 (2019).
Orr, M. C. C., Ascher, J. S., Bai, M., Chesters, D. & Zhu, C.-D. Three questions: how can taxonomists survive and thrive worldwide? Megataxa https://doi.org/10.11646/megataxa.1.1.4 (2020).
Sandall, E. L. et al. A globally integrated structure of taxonomy to support biodiversity science and conservation. Trends Ecol. Evol. 38, 1143–1153 (2023).
Guenat, S. et al. Meeting sustainable development goals via robotics and autonomous systems. Nat. Commun. 13, 3559 (2022).
Tuia, D. et al. Perspectives in machine learning for wildlife conservation. Nat. Commun. 13, 792 (2022).
Parris-Piper, N., Dressler, W. H., Satizábal, P. & Fletcher, R. Automating violence? The anti-politics of ‘smart technology’ in biodiversity conservation. Biol. Conserv. 278, 109859 (2023).
Brittain, S. et al. Power to the people: analysis of occupancy models informed by local knowledge. Conserv. Sci. Pract. 4, e12753 (2022).
Ardiantiono et al. Improved cost-effectiveness of species monitoring programs through data integration. Curr. Biol. 35, 391–397.e3 (2025).
Burivalova, Z., Miteva, D., Salafsky, N., Butler, R. A. & Wilcove, D. S. Evidence types and trends in tropical forest conservation literature. Trends Ecol. Evol. 34, 669–679 (2019).
Devenish, K. et al. No evidence of increased forest loss from a mining rush in Madagascar’s eastern rainforests. Commun. Earth Environ. 5, 489 (2024).
Biodiversity and artificial intelligence, opportunities and recommendations. GPAI https://gpai.ai/projects/responsible-ai/environment/biodiversity-and-AI-opportunities-recommendations-for-action.pdf (2022).
Ocampo-Ariza, C. et al. Global South leadership towards inclusive tropical ecology and conservation. Persp. Ecol. Conserv. 21, 17–24 (2023).
Chao, N. et al. Strengthening capacity for species conservation in South-East Asia: a provisional assessment of needs and opportunities for the Asian species action partnership. Oryx 56, 760–763 (2022).
Asase, A., Mzumara‐Gawa, T. I., Owino, J. O., Peterson, A. T. & Saupe, E. Replacing “parachute science” with “global science” in ecology and conservation biology. Conserv. Sci. Pract. 4, e517 (2022).
Stefanoudis, P. V. et al. Turning the tide of parachute science. Curr. Biol. 31, R184–R185 (2021).
Valdez, J. et al. Strategies for advancing inclusive biodiversity research through equitable practices and collective responsibility. Conserv. Biol. 38, e14325 (2024).
James, R. et al. Conservation and natural resource management: where are all the women? Oryx 55, 860–867 (2021).
Lima, H. S. D. M. & Cunha, H. F. A. The role of women and the obstacles to biodiversity conservation in developed and developing countries. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05407-6 (2024).
Kreiken, B. E. & Arts, B. J. M. Disruptive data: How access and benefit-sharing discourses structured ideas and decisions during the Convention on Biological Diversity negotiations over digital sequence information from 2016 to 2022. Glob. Environ. Change 87, 102892 (2024).
Von Wettberg, E. & Khoury, C. K. Biodiversity data: the importance of access and the challenges regarding benefit sharing. Plants People Planet 4, 2–4 (2022).
Ewers, R. M. et al. Thresholds for adding degraded tropical forest to the conservation estate. Nature 631, 808–813 (2024).
Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520 (2014).
Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).
Marsh, C, J. et al. Tropical forest clearance impacts biodiversity and function, whereas logging changes structure. Science 387, 171–175 (2025).
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).
Burivalova, Z., Şekercioğlu, Ç. H. & Koh, L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014).
Edwards, D. P. et al. Selective‐logging and oil palm: multitaxon impacts, biodiversity indicators, and trade‐offs for conservation planning. Ecol. Appl. 24, 2029–2049 (2014).
Bicknell, J. E., Struebig, M. J., Edwards, D. P. & Davies, Z. G. Improved timber harvest techniques maintain biodiversity in tropical forests. Curr. Biol. 24, R1119–R1120 (2014).
Runting, R. K. et al. Larger gains from improved management over sparing–sharing for tropical forests. Nat. Sustain. 2, 53–61 (2019).
Miteva, D. A., Loucks, C. J. & Pattanayak, S. K. Social and environmental impacts of forest management certification in Indonesia. PLoS ONE 10, e0129675 (2015).
Burivalova, Z. et al. What works in tropical forest conservation, and what does not: effectiveness of four strategies in terms of environmental, social, and economic outcomes. Conserv. Sci. Pract. 1, e28 (2019).
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).
Harrison, R. D. Emptying the forest: hunting and the extirpation of wildlife from tropical nature reserves. BioScience 61, 919–924 (2011).
Bogoni, J. A., Percequillo, A. R., Ferraz, K. M. P. M. B. & Peres, C. A. The empty forest three decades later: lessons and prospects. Biotropica 55, 13–18 (2023).
Gardner, C. J., Bicknell, J. E., Balwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).
Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).
Brodie, J. F. et al. Defaunation impacts on the carbon balance of tropical forests. Conserv. Biol. 39, e14414 (2024).
Chanthorn, W. et al. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9, 10015 (2019).
Ferreiro‐Arias, I. et al. Drivers and spatial patterns of avian defaunation in tropical forests. Divers. Distrib. 31, e13855 (2024).
Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).
Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).
Adams, W. M. et al. Biodiversity conservation and the eradication of poverty. Science 306, 1146–1149 (2004).
Roe, D. et al. Which components or attributes of biodiversity influence which dimensions of poverty? Environ. Evid. 3, 3 (2014).
Tilker, A. et al. Habitat degradation and indiscriminate hunting differentially impact faunal communities in the Southeast Asian tropical biodiversity hotspot. Commun. Biol. 2, 396 (2019).
Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).
Cook, C. N. Progress developing the concept of other effective area‐based conservation measures. Conserv. Biol. 38, e14106 (2024).
IUCN WCPA Task Force on OECMs. Recognising and reporting other effective area-based conservation measures. International Union for Conservation of Nature (IUCN) https://doi.org/10.2305/IUCN.CH.2019.PATRS.3.en (2019).
COP15: Kunming–Montreal Global Biodiversity Framework. CBD/COP/15/L25. Convention on Biological Diversity (CBD) https://www.cbd.int/gbf (2022).
Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).
Parks, L. & Tsioumani, E. Transforming biodiversity governance? Indigenous Peoples’ contributions to the Convention on Biological Diversity. Biol. Conserv. 280, 109933 (2023).
Cook, C. N. Diverse approaches to protecting biodiversity: the different conservation measures discussed as possible other effective area‐based conservation measures. Conserv. Lett. 17, e13027 (2024).
Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).
Arneth, A. et al. Making protected areas effective for biodiversity, climate and food. Glob. Change Biol. 29, 3883–3894 (2023).
Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).
Kuempel, C. D., Adams, V. M., Possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2018).
Dunne, D., Greenfield, P., Viglione, G. & Quiroz, Y. Revealed: more than half of nations fail to protect 30% of land and sea in UN Nature Plans. CarbonBrief https://www.carbonbrief.org/revealed-more-than-half-of-nations-fail-to-protect-30-of-land-and-sea-in-un-nature-plans/ (2025).
Banin, L. F. et al. The road to recovery: a synthesis of outcomes from ecosystem restoration in tropical and sub-tropical Asian forests. Phil. Trans. R. Soc. B 378, 20210090 (2023).
Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).
Budiharta, S. et al. Restoring degraded tropical forests for carbon and biodiversity. Environ. Res. Lett. 9, 114020 (2014).
Bodin, B. et al. A standard framework for assessing the costs and benefits of restoration: introducing the economics of ecosystem restoration. Restor. Ecol. 30, e13515 (2022).
Budiharta, S. et al. Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Glob. Environ. Change 52, 152–161 (2018).
Löfqvist, S. & Ghazoul, J. Private funding is essential to leverage forest and landscape restoration at global scales. Nat. Ecol. Evol. 3, 1612–1615 (2019).
Zu Ermgassen, S. O. S. E. & Löfqvist, S. Financing ecosystem restoration. Curr. Biol. 34, R412–R417 (2024).
Edwards, D. P. et al. Upscaling tropical restoration to deliver environmental benefits and socially equitable outcomes. Curr. Biol. 31, R1326–R1341 (2021).
Scheidel, A. & Work, C. Forest plantations and climate change discourses: new powers of ‘green’ grabbing in Cambodia. Land Use Policy 77, 9–18 (2018).
Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).
Newing, H. An independent review of the RSPO Remediation and Compensation Procedure (RaCP) 2015. RSPO https://rspo.org/wp-content/uploads/rspo_racp_review_2020.pdf (2020).
Erbaugh, J. T. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).