Drivers of plant-associated invertebrate community structure in West-European coastal dunes


  • Shmida, A. & Wilson, M. V. Biological Determinants of Species Diversity. J. Biogeogr. 12, 1 (1985).


    Google Scholar
     

  • Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).


    Google Scholar
     

  • Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: Taking the long view of nature’s laboratories. Science https://doi.org/10.1126/science.aam8326 (2017).

  • Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).


    Google Scholar
     

  • McGill, B. J. Matters of scale. Science 328, 575–576 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Patrick, C. J. & Swan, C. M. Reconstructing the assembly of a stream-insect metacommunity. J. North Am. Benthol. Soc. 30, 259–272 (2011).


    Google Scholar
     

  • De Araujo, L. I., Karsten, M. & Terblanche, J. S. Flight-reproduction trade-offs are weak in a field cage experiment across multiple Drosophila species. Curr. Res. Insect Sci. 3, 100060 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

    PubMed 

    Google Scholar
     

  • Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V. & Prinzing, A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29, 600–614 (2015).


    Google Scholar
     

  • Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996).


    Google Scholar
     

  • Mertens, D., Bouwmeester, K. & Poelman, E. H. Intraspecific variation in plant-associated herbivore communities is phylogenetically structured in Brassicaceae. Ecol. Lett. 24, 2314–2327 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bezemer, T. M. & van Dam, N. M. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20, 617–624 (2005).

    PubMed 

    Google Scholar
     

  • Leimu, R. & Koricheva, J. A meta-analysis of genetic correlations between plant resistances to multiple enemies. Am. Nat. 168. https://doi.org/10.1086/505766 (2006).

  • Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Ritchie, M. E. & Olff, H. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400, 557–560 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Leibold, M. A. et al. The internal structure of metacommunities. Oikos 2022, (2022).

  • Harvey, E. & MacDougall, A. S. Trophic island biogeography drives spatial divergence of community establishment. Ecology 95, 2870–2878 (2014).


    Google Scholar
     

  • Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    PubMed 

    Google Scholar
     

  • Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M. & Kadmon, R. Area–heterogeneity tradeoff and the diversity of ecological communities. in. Proc. Natl. Acad. Sci. 109, 17495–17500 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 

    Google Scholar
     

  • Wong, M. K. L., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022 (2019).

    PubMed 

    Google Scholar
     

  • Gravel, D., Poisot, T., Albouy, C., Velez, L. & Mouillot, D. Inferring food web structure from predator-prey body size relationships. Methods Ecol. Evol. 4, 1083–1090 (2013).


    Google Scholar
     

  • Hillaert, J., Hovestadt, T., Vandegehuchte, M. L. & Bonte, D. Size-dependent movement explains why bigger is better in fragmented landscapes. Ecol. Evol. 8, 10754–10767 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pincebourde, S., Dillon, M. E. & Woods, H. A. Body size determines the thermal coupling between insects and plant surfaces. Funct. Ecol. 35, 1424–1436 (2021).

    CAS 

    Google Scholar
     

  • Logghe, G. et al. Unravelling arthropod movement in natural landscapes: small-scale effects of body size and weather conditions. J. Anim. Ecol. 93, 1365–1379 (2024).

  • Futuyma, D. & Kirkpatrick, M. Evolution. (Oxford University Press, 2018).

  • Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 326, 119–157 (1989).

    CAS 

    Google Scholar
     

  • Bonte, D. et al. Biomorphogenic Feedbacks and the Spatial Organization of a Dominant Grass Steer Dune Development. Front. Ecol. Evol. 9, 761336 (2021).


    Google Scholar
     

  • Huiskens, A. H. L. Ammophila Arenaria (L.) Link (Psamma Arenaria (L.) Roem. et Schult.; Calamgrostis Arenaria (L.) Roth). J. Ecol. 67, 363–382 (1979).


    Google Scholar
     

  • van der Putten, W. H. & Troelstra, S. Harmful soil organisms in coastal foredunes involved in degeneration of Ammophila arenaria and Calammophila baltica. Can. J. Bot. 68, 1560–1568 (1990).


    Google Scholar
     

  • McLachlan, A. Ecology of coastal dune fauna. J. Arid Environ. 21, 229–243 (1991).


    Google Scholar
     

  • Maes, D. & Bonte, D. Using distribution patterns of five threatened invertebrates in a highly fragmented dune landscape to develop a multispecies conservation approach. Biol. Conserv. 133, 490–499 (2006).


    Google Scholar
     

  • Bonte, D., Criel, P., Thournout, I. & Maelfait, J.-P. Regional and local variation of spider assemblages (Araneae) from coastal grey dunes along the North Sea. J. Biogeogr. 30, 901–911 (2003).


    Google Scholar
     

  • Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).

    PubMed 

    Google Scholar
     

  • Clark, J. S., Gelfand, A. E., Woodall, C. W. & Zhu, K. More than the sum of the parts: forest climate response from joint species distribution models. Ecol. Appl. 24, 990–999 (2014).

    PubMed 

    Google Scholar
     

  • Thorson, J. T. et al. Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring. Glob. Ecol. Biogeogr. 25, 1144–1158 (2016).


    Google Scholar
     

  • Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).

    PubMed 

    Google Scholar
     

  • Provoost, S. & Bonte, D. Levende duinen, Een overzicht van de biodiversiteit aan de Vlaamse kust. 416 (2004).

  • Forey, E. et al. The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. J. Veg. Sci. 19, 493–502 (2008).


    Google Scholar
     

  • Graveland, J. & Wal, R. Decline in snail abundance due to soil acidification causes eggshell defects in forest passerines. Oecologia 105, 351–360 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Bonte, D., Vandenbroecke, N., Lens, L. & Maelfait, J.-P. Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc. Biol. Sci. 270, 1601–1607 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonte, D., Baert, L., Lens, L. & Maelfait, J. Effects of aerial dispersal, habitat specialisation, and landscape structure on spider distribution across fragmented grey dunes. ECOGRAPHY 27, 343–349 (2004).


    Google Scholar
     

  • Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).


    Google Scholar
     

  • Bonte, D., Lens, L. & Maelfait, J. P. Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders. J. Appl. Ecol. 43, 735–747 (2006).


    Google Scholar
     

  • MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. (Princeton University Press, Princeton, https://doi.org/10.1515/9781400881376 (1967).

  • Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).

    PubMed 

    Google Scholar
     

  • Van De Walle, R. et al. Arthropod food webs predicted from body size ratios are improved by incorporating prey defensive properties. J. Anim. Ecol. 92, 913–924 (2023).

    PubMed 

    Google Scholar
     

  • Poggiato, G. et al. On the Interpretations of Joint Modeling in Community Ecology. Trends Ecol. Evol. 36, 391–401 (2021).

    PubMed 

    Google Scholar
     

  • Vandegehuchte, M. L. M. L., de la Peña, E. & Bonte, D. Interactions between root and shoot herbivores of Ammophila arenaria in the laboratory do not translate into correlated abundances in the field. Oikos 119, 1011–1019 (2010).


    Google Scholar
     

  • Nickel, H. The Leafhoppers and Planthoppers of Germany (Hemiptera, Auchenorrhyncha): Patterns and Strategies in a Highly Diverse Group of Phytophagous Insects. (Pensoft Publishers, 2009).

  • Nartshuk, E. P. & Andersson, H. The Frit Flies (Chloropidae, Diptera) of Fennoscandia and Denmark. (Brill, 2013).

  • Chase, J. M. Community assembly: When should history matter? Oecologia 136, 489–498 (2003).

    PubMed 

    Google Scholar
     

  • Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol., Evol. Syst. 46, 1–23 (2015).


    Google Scholar
     

  • Kaplan, I. et al. Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivory. Ecol. Lett. 11, 841–851 (2008).

    PubMed 

    Google Scholar
     

  • Van De Walle, R., Massol, F., Vandegehuchte, M. L. & Bonte, D. The distribution and impact of an invasive plant species (Senecio inaequidens) on a dune building engineer (Calamagrostis arenaria). NeoBiota 72, 1–23 (2022).


    Google Scholar
     

  • Vandegehuchte, M. L. M. L., De La Peña, E. & Bonte, D. Contrasting covariation of above and belowground invertebrate species across plant genotypes. J. Anim. Ecol. 80, 148–158 (2011).

    PubMed 

    Google Scholar
     

  • van der Putten, W. H. et al. Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161, 1–14 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolet, C., Van, P. M., Suomalainen, J., Limpens, J. & Riksen, M. UAV-imaging to model growth response of marram grass to sand burial: Implications for coastal dune development. Aeolian Res. 31, 50–61 (2018).


    Google Scholar
     

  • Reijers, V. C. et al. Sediment availability provokes a shift from Brownian to Lévy-like clonal expansion in a dune building grass. Ecol. Lett. 24, 258–268 (2021).

    PubMed 

    Google Scholar
     

  • Strypsteen, G., Bonte, D., Taelman, C., Derijckere, J. & Rauwoens, P. Three years of morphological dune development after planting marram grass on a beach. Earth Surfa. Processes Landforms 49, https://doi.org/10.1002/esp.5870 (2024).

  • van der Meulen, F., IJff, S. & van Zetten, R. Nature-based solutions for coastal adaptation management, concepts and scope, an overview. Nord. J. Bot. 2023, e03290 (2023).


    Google Scholar
     

  • Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37, 17 (1950).

    CAS 
    PubMed 

    Google Scholar
     

  • Bivand, R. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. 716–748 https://doi.org/10.1007/s11749-018-0599-x (2018).

  • Michonneau, F., Brown, J. W. & Winter, D. J. an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).


    Google Scholar
     

  • OpenTreeOfLife, B. R. et al. Open Tree of Life Synthetic Tree (12.3). Zenodo. https://doi.org/10.5281/zenodo.3937741 (2019).

  • Paradis, E. Klaus Schliep, ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling: With Applications in R. (Cambridge University Press, https://doi.org/10.1017/9781108591720 2020).

  • Tikhonov, G. et al. Joint species distribution modelling with the R-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tikhonov, G. et al. Computationally efficient joint species distribution modeling of big spatial data. Ecology 101, 1–8 (2020).


    Google Scholar
     

  • Bjornstad, O. N. ncf: Spatial Covariance Functions. 1.3-2 https://doi.org/10.32614/CRAN.package.ncf (2022).

  • Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).


    Google Scholar
     

  • Bürkner, P., Gabry, J., Kay, M. & Vehtari, A. posterior: Tools for Working with Posterior Distributions. https://mc-stan.org/posterior/ (2025).

  • Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R. N. 6, 7–11 (2006).


    Google Scholar
     

  • Vehtari, A., Gelman, A., Simpson, D. & Carpenter, B. Paul-Christian Bürkner “Rank-Normalization, Folding, and Localization: An Improved ˆR for Assessing Convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).

  • Tjur, T. Coefficients of determination in logistic regression models – A new proposal: The coefficient of discrimination. Am. Stat. 63, 366–372 (2009).


    Google Scholar
     

  • Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision-recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10, 565–577 (2019).


    Google Scholar
     

  • Poisot, T. Guidelines for the prediction of species interactions through binary classification. Methods Ecol. Evol. 14, 1333–1345 (2023).


    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img