Drivers of plant-associated invertebrate community structure in West-European coastal dunes


  • Shmida, A. & Wilson, M. V. Biological Determinants of Species Diversity. J. Biogeogr. 12, 1 (1985).


    Google Scholar
     

  • Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).


    Google Scholar
     

  • Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: Taking the long view of nature’s laboratories. Science https://doi.org/10.1126/science.aam8326 (2017).

  • Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).


    Google Scholar
     

  • McGill, B. J. Matters of scale. Science 328, 575–576 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Patrick, C. J. & Swan, C. M. Reconstructing the assembly of a stream-insect metacommunity. J. North Am. Benthol. Soc. 30, 259–272 (2011).


    Google Scholar
     

  • De Araujo, L. I., Karsten, M. & Terblanche, J. S. Flight-reproduction trade-offs are weak in a field cage experiment across multiple Drosophila species. Curr. Res. Insect Sci. 3, 100060 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

    PubMed 

    Google Scholar
     

  • Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V. & Prinzing, A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29, 600–614 (2015).


    Google Scholar
     

  • Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996).


    Google Scholar
     

  • Mertens, D., Bouwmeester, K. & Poelman, E. H. Intraspecific variation in plant-associated herbivore communities is phylogenetically structured in Brassicaceae. Ecol. Lett. 24, 2314–2327 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bezemer, T. M. & van Dam, N. M. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20, 617–624 (2005).

    PubMed 

    Google Scholar
     

  • Leimu, R. & Koricheva, J. A meta-analysis of genetic correlations between plant resistances to multiple enemies. Am. Nat. 168. https://doi.org/10.1086/505766 (2006).

  • Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Ritchie, M. E. & Olff, H. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400, 557–560 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Leibold, M. A. et al. The internal structure of metacommunities. Oikos 2022, (2022).

  • Harvey, E. & MacDougall, A. S. Trophic island biogeography drives spatial divergence of community establishment. Ecology 95, 2870–2878 (2014).


    Google Scholar
     

  • Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    PubMed 

    Google Scholar
     

  • Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M. & Kadmon, R. Area–heterogeneity tradeoff and the diversity of ecological communities. in. Proc. Natl. Acad. Sci. 109, 17495–17500 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 

    Google Scholar
     

  • Wong, M. K. L., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022 (2019).

    PubMed 

    Google Scholar
     

  • Gravel, D., Poisot, T., Albouy, C., Velez, L. & Mouillot, D. Inferring food web structure from predator-prey body size relationships. Methods Ecol. Evol. 4, 1083–1090 (2013).


    Google Scholar
     

  • Hillaert, J., Hovestadt, T., Vandegehuchte, M. L. & Bonte, D. Size-dependent movement explains why bigger is better in fragmented landscapes. Ecol. Evol. 8, 10754–10767 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pincebourde, S., Dillon, M. E. & Woods, H. A. Body size determines the thermal coupling between insects and plant surfaces. Funct. Ecol. 35, 1424–1436 (2021).

    CAS 

    Google Scholar
     

  • Logghe, G. et al. Unravelling arthropod movement in natural landscapes: small-scale effects of body size and weather conditions. J. Anim. Ecol. 93, 1365–1379 (2024).

  • Futuyma, D. & Kirkpatrick, M. Evolution. (Oxford University Press, 2018).

  • Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 326, 119–157 (1989).

    CAS 

    Google Scholar
     

  • Bonte, D. et al. Biomorphogenic Feedbacks and the Spatial Organization of a Dominant Grass Steer Dune Development. Front. Ecol. Evol. 9, 761336 (2021).


    Google Scholar
     

  • Huiskens, A. H. L. Ammophila Arenaria (L.) Link (Psamma Arenaria (L.) Roem. et Schult.; Calamgrostis Arenaria (L.) Roth). J. Ecol. 67, 363–382 (1979).


    Google Scholar
     

  • van der Putten, W. H. & Troelstra, S. Harmful soil organisms in coastal foredunes involved in degeneration of Ammophila arenaria and Calammophila baltica. Can. J. Bot. 68, 1560–1568 (1990).


    Google Scholar
     

  • McLachlan, A. Ecology of coastal dune fauna. J. Arid Environ. 21, 229–243 (1991).


    Google Scholar
     

  • Maes, D. & Bonte, D. Using distribution patterns of five threatened invertebrates in a highly fragmented dune landscape to develop a multispecies conservation approach. Biol. Conserv. 133, 490–499 (2006).


    Google Scholar
     

  • Bonte, D., Criel, P., Thournout, I. & Maelfait, J.-P. Regional and local variation of spider assemblages (Araneae) from coastal grey dunes along the North Sea. J. Biogeogr. 30, 901–911 (2003).


    Google Scholar
     

  • Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).

    PubMed 

    Google Scholar
     

  • Clark, J. S., Gelfand, A. E., Woodall, C. W. & Zhu, K. More than the sum of the parts: forest climate response from joint species distribution models. Ecol. Appl. 24, 990–999 (2014).

    PubMed 

    Google Scholar
     

  • Thorson, J. T. et al. Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring. Glob. Ecol. Biogeogr. 25, 1144–1158 (2016).


    Google Scholar
     

  • Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).

    PubMed 

    Google Scholar
     

  • Provoost, S. & Bonte, D. Levende duinen, Een overzicht van de biodiversiteit aan de Vlaamse kust. 416 (2004).

  • Forey, E. et al. The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. J. Veg. Sci. 19, 493–502 (2008).


    Google Scholar
     

  • Graveland, J. & Wal, R. Decline in snail abundance due to soil acidification causes eggshell defects in forest passerines. Oecologia 105, 351–360 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Bonte, D., Vandenbroecke, N., Lens, L. & Maelfait, J.-P. Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc. Biol. Sci. 270, 1601–1607 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonte, D., Baert, L., Lens, L. & Maelfait, J. Effects of aerial dispersal, habitat specialisation, and landscape structure on spider distribution across fragmented grey dunes. ECOGRAPHY 27, 343–349 (2004).


    Google Scholar
     

  • Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).


    Google Scholar
     

  • Bonte, D., Lens, L. & Maelfait, J. P. Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders. J. Appl. Ecol. 43, 735–747 (2006).


    Google Scholar
     

  • MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. (Princeton University Press, Princeton, https://doi.org/10.1515/9781400881376 (1967).

  • Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).

    PubMed 

    Google Scholar
     

  • Van De Walle, R. et al. Arthropod food webs predicted from body size ratios are improved by incorporating prey defensive properties. J. Anim. Ecol. 92, 913–924 (2023).

    PubMed 

    Google Scholar
     

  • Poggiato, G. et al. On the Interpretations of Joint Modeling in Community Ecology. Trends Ecol. Evol. 36, 391–401 (2021).

    PubMed 

    Google Scholar
     

  • Vandegehuchte, M. L. M. L., de la Peña, E. & Bonte, D. Interactions between root and shoot herbivores of Ammophila arenaria in the laboratory do not translate into correlated abundances in the field. Oikos 119, 1011–1019 (2010).


    Google Scholar
     

  • Nickel, H. The Leafhoppers and Planthoppers of Germany (Hemiptera, Auchenorrhyncha): Patterns and Strategies in a Highly Diverse Group of Phytophagous Insects. (Pensoft Publishers, 2009).

  • Nartshuk, E. P. & Andersson, H. The Frit Flies (Chloropidae, Diptera) of Fennoscandia and Denmark. (Brill, 2013).

  • Chase, J. M. Community assembly: When should history matter? Oecologia 136, 489–498 (2003).

    PubMed 

    Google Scholar
     

  • Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol., Evol. Syst. 46, 1–23 (2015).


    Google Scholar
     

  • Kaplan, I. et al. Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivory. Ecol. Lett. 11, 841–851 (2008).

    PubMed 

    Google Scholar
     

  • Van De Walle, R., Massol, F., Vandegehuchte, M. L. & Bonte, D. The distribution and impact of an invasive plant species (Senecio inaequidens) on a dune building engineer (Calamagrostis arenaria). NeoBiota 72, 1–23 (2022).


    Google Scholar
     

  • Vandegehuchte, M. L. M. L., De La Peña, E. & Bonte, D. Contrasting covariation of above and belowground invertebrate species across plant genotypes. J. Anim. Ecol. 80, 148–158 (2011).

    PubMed 

    Google Scholar
     

  • van der Putten, W. H. et al. Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161, 1–14 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolet, C., Van, P. M., Suomalainen, J., Limpens, J. & Riksen, M. UAV-imaging to model growth response of marram grass to sand burial: Implications for coastal dune development. Aeolian Res. 31, 50–61 (2018).


    Google Scholar
     

  • Reijers, V. C. et al. Sediment availability provokes a shift from Brownian to Lévy-like clonal expansion in a dune building grass. Ecol. Lett. 24, 258–268 (2021).

    PubMed 

    Google Scholar
     

  • Strypsteen, G., Bonte, D., Taelman, C., Derijckere, J. & Rauwoens, P. Three years of morphological dune development after planting marram grass on a beach. Earth Surfa. Processes Landforms 49, https://doi.org/10.1002/esp.5870 (2024).

  • van der Meulen, F., IJff, S. & van Zetten, R. Nature-based solutions for coastal adaptation management, concepts and scope, an overview. Nord. J. Bot. 2023, e03290 (2023).


    Google Scholar
     

  • Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37, 17 (1950).

    CAS 
    PubMed 

    Google Scholar
     

  • Bivand, R. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. 716–748 https://doi.org/10.1007/s11749-018-0599-x (2018).

  • Michonneau, F., Brown, J. W. & Winter, D. J. an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).


    Google Scholar
     

  • OpenTreeOfLife, B. R. et al. Open Tree of Life Synthetic Tree (12.3). Zenodo. https://doi.org/10.5281/zenodo.3937741 (2019).

  • Paradis, E. Klaus Schliep, ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling: With Applications in R. (Cambridge University Press, https://doi.org/10.1017/9781108591720 2020).

  • Tikhonov, G. et al. Joint species distribution modelling with the R-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tikhonov, G. et al. Computationally efficient joint species distribution modeling of big spatial data. Ecology 101, 1–8 (2020).


    Google Scholar
     

  • Bjornstad, O. N. ncf: Spatial Covariance Functions. 1.3-2 https://doi.org/10.32614/CRAN.package.ncf (2022).

  • Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).


    Google Scholar
     

  • Bürkner, P., Gabry, J., Kay, M. & Vehtari, A. posterior: Tools for Working with Posterior Distributions. https://mc-stan.org/posterior/ (2025).

  • Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R. N. 6, 7–11 (2006).


    Google Scholar
     

  • Vehtari, A., Gelman, A., Simpson, D. & Carpenter, B. Paul-Christian Bürkner “Rank-Normalization, Folding, and Localization: An Improved ˆR for Assessing Convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).

  • Tjur, T. Coefficients of determination in logistic regression models – A new proposal: The coefficient of discrimination. Am. Stat. 63, 366–372 (2009).


    Google Scholar
     

  • Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision-recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10, 565–577 (2019).


    Google Scholar
     

  • Poisot, T. Guidelines for the prediction of species interactions through binary classification. Methods Ecol. Evol. 14, 1333–1345 (2023).


    Google Scholar
     



  • Source link

    More From Forest Beat

    Airborne imaging spectroscopy surveys of Arctic and boreal Alaska and northwestern...

    Miller, C. E. et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys, Earth Syst. Sci. Data 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024 (2024).Article  ...
    Biodiversity
    8
    minutes

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes
    spot_imgspot_img