Cairney, J. W. G. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol. Biochem. 47, 198–208 (2012).
Clasen, B. et al. Characterization of ectomycorrhizal species through molecular biology tools and morphotyping. Scientia Agricola. 75(3), 246–254 (2018).
Mitra, D. et al. Impacts of arbuscular mycorrhizal fungi on rice growth, development, and stress management with a particular emphasis on strigolactone effects on root development. Commun. Soil Sci. Plant Anal. 52(14), 1591–1621 (2021).
Bosso, L. et al. Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a Mediterranean landscape. Acta Oecol. 78, 1–6 (2017).
Lundberg-Felten, J., Martin, F. & Legue, V. Signalling in ectomycorrhizal symbiosis. Signal. Communication Plants. 11, 123–142 (2011).
Landeweert, R. et al. Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 16(5), 248–254 (2001).
Wang, Y. H., Dai, Y., Kong, W. L., Zhu, M. L. & Wu, X. Q. Improvement of sphaeropsis shoot blight disease resistance by applying the ectomycorrhizal fungus Hymenochaete sp. Rl and mycorrhizal helper bacterium Bacillus pumilus HR10 to Pinus thunbergii. Phytopathology 112(6), 1226–1234 (2022).
Ishida, T. A., Nara, K. & Hogetsu, T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol. 174(2), 430–440 (2007).
Zhang, J. et al. Ectomycorrhizal fungal communities of Quercus liaotungensis along different successional stands on the Loess Plateau, China. J. For. Res. 19(4), 395–403 (2014).
Rosinger, C., Sandén, H., Matthews, B., Mayer, M. & Godbold, D. L. Patterns in ectomycorrhizal diversity, community composition, and exploration types in European beech, pine, and spruce forests. Forests 9(8), 445 (2018).
Odriozola et al. Stand age affects fungal community composition in a central European temperate forest. Fungal Ecol. 48, 100985 (2020).
Birch, J. D., Lutz, J. A., Turner, B. L. & Karst, J. Divergent, age-associated fungal communities of Pinus flexilis and Pinus longaeva. For. Ecol. Manag. 494, 119277 (2021).
Jevon, F. V. et al. Experimental and observational evidence of negative conspecific density dependence in temperate ectomycorrhizal trees. Ecology 103(11), e3808 (2022).
Wei, B. L. et al. Differences in density dependence among tree mycorrhizal types affect tree species diversity and relative growth rates. Plants 11(18), 2340 (2022).
Twieg, B. D., Durall, D. M. & Simard, S. W. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol. 176(2), 437–447 (2007).
Boeraeve, M., Honnay, O. & Jacquemyn, H. Effects of host species, environmental filtering and forest age on community assembly of ectomycorrhizal fungi in fragmented forests. Fungal Ecol. 36, 89–98 (2018).
Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27(7), 849–864 (2018).
Beiler, K. J., Simard, S. W. & Durall, D. M. Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. J. Ecol. 103(3), 616–628 (2015).
Guo, M. S. et al. Community composition of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica plantations of various ages in the Horqin Sandy Land. Ecol. Ind. 110, 105860 (2020).
Henkel, T. W. & Mayor, J. R. Implications of a long-term mast seeding cycle for climatic entrainment, seedling establishment, and persistent monodominance in a Neotropical, ectomycorrhizal canopy tree. Ecol. Res. 34(4), 472–484 (2019).
Delevich, C. A., Koch, R. A., Aime, M. C. & Henkel, T. W. Ectomycorrhizal fungal community assembly on seedlings of a Neotropical monodominant tree. Biotropica 53(6), 1486–1497 (2021).
Rudawska, M. & Leski, T. Ectomycorrhizal fungal assemblages of nursery-grown Scots pine are influenced by age of the seedlings. Forests 12(2), 134 (2021).
Zhang, J. et al. Fine-scale species co-occurrence patterns in an old-growth temperate forest. For. Ecol. Manag. 257(10), 2115–2120 (2009).
Hao, Z. Q. et al. Natural secondary poplar-birch forest in Changbai Mountain: species composition and community structure. Chin. J. Plant. Ecol. 32(2), 251 (2008).
Nérée, O. & Kuyper, T. Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forests of south Cameroon. Mycorrhiza 12(1), 13–17 (2002).
García de Jalón, L. et al. Microhabitat and ectomycorrhizal effects on the establishment, growth and survival of Quercus ilex L. seedlings under drought. Plos One 15(6), e0229807 (2020).
Hou, J., Mi, X., Liu, C. & Ma, K. Spatial patterns and associations in a Quercus–Betula forest in northern China. J. Veg. Sci. 15(3), 407–414 (2004).
Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199(1), 41–51 (2013).
Kuang, J. et al. Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest. ISME Commun. 1(1), 65 (2021).
Selosse, M., Richard, F. & Simard, S. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21(11), 621–628 (2006).
Richard, F., Millot, S., Gardes, M. & Selosse, M. A. Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol. 166(3), 1011–1023 (2005).
Pec, G. J., Simard, S. W., Cahill, J. F. Jr & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 30(2–3), 173–183 (2020).
Kennedy, P. G., Mielke, L. A. & Nguyen, N. H. Ecological responses to forest age, habitat, and host vary by mycorrhizal type in boreal peatlands. Mycorrhiza 28(3), 315–328 (2018).
Põlme, S. et al. Host preference and network properties in biotrophic plant–fungal associations. New Phytol. 217(3), 1230–1239 (2018).
Bono, L. M., Gensel, C. L., Pfennig, D. W. & Burch, C. L. Evolutionary rescue and the coexistence of generalist and specialist competitors: an experimental test. Proc. Royal Soc. B: Biol. Sci. 282(1821), 20151932 (2015).
Sun, W. et al. Ectomycorrhizal fungi enhance the tolerance of phytotoxicity and cadmium accumulation in oak (Quercus acutissima Carruth.) seedlings: modulation of growth properties and the antioxidant defense responses. Environ. Sci. Pollut. Res. 29(5), 6526–6537 (2022).
Zhang, R., Shi, X. F., Liu, P. G., Wilson, A. W. & Mueller, G. M. Host shift speciation of the ectomycorrhizal genus Suillus (Suillineae, Boletales) and biogeographic comparison with its host Pinaceae. Front. Microbiol. 13, 831450 (2022).
Ouvrard, D., Chalise, P. & Percy, D. M. Host-plant leaps versus host-plant shuffle: a global survey reveals contrasting patterns in an oligophagous insect group (Hemiptera, Psylloidea). Syst. Biodivers. 13(5), 434–454 (2015).
Lofgren, L., Nguyen, N. H. & Kennedy, P. G. Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations? New Phytol. 220(4), 1273–1284 (2018).
Smith, J. E., Molina, R., Huso, M. M. P. & Larsen, M. J. Occurrence of Piloderma fallax in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, USA. Can. J. Bot. 78(8), 995–1001 (2000).
Lilleskov, E., Hobbie, E. A. & Horton, T. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 4(2), 174–183 (2011).
Gilson, A. et al. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence. Tree Physiol. 34(7), 716–729 (2014).
Hutchison, L. J. & Piché, Y. J. Effects of exogenous glucose on mycorrhizal colonization in vitro by early-stage and late-stage ectomycorrhizal fungi. Can. J. Bot. 73(6), 898–904 (1995).
Petersen, P. M. The ecology of Danish soil inhabiting Pezizales with emphasis on edaphic conditions. Nord. J. Bot. 5(1), 98 (1985).
Song, Z., Liu, Y., Su, H. & Hou, J. N-P utilization of Acer mono leaves at different life history stages across altitudinal gradients. Ecol. Evol. 10(2), 851–862 (2019).
Hobbie, E. A. & Agerer, R. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant. Soil. 327, 71–83 (2010).
Kyaschenko, J., Clemmensen, K. E., Hagenbo, A., Karltun, E. & Lindahl, B. D. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 11(4), 863–874 (2017).
Põlme, S. et al. Fungaltraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105(1), 1–16 (2020).
Bai, Z. et al. Ectomycorrhizal fungus-associated determinants jointly reflect ecological processes in a temperature broad-leaved mixed forest. Sci. Total Environ. 703, 135475 (2020).
Yang, H. Distribution patterns of dominant tree species on northern slope of Changbai Mountain. Res. Ecosyst. 5, 1–14 (1985).
Yan, T. et al. Ectomycorrhizal fungi respiration quantification and drivers in three differently-aged larch plantations. Agric. For. Meteorol. 265, 245–251 (2019).
Romano, N., Lignola, G., Brigante, M., Bosso, L. & Chirico, G. Residual life and degradation assessment of wood elements used in soil bioengineering structures for slope protection. Ecol. Eng. 90, 498–509 (2016).
Smith, M. G., Miller, R. E., Arndt, S. K., Kasel, S. & Bennett, L. T. Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees. Tree Physiol. 38(4), 570–581 (2018).
Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1–43 (2015).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using Qiime 2. Nat. Biotechnol. 37(8), 852–857 (2019).
Callahan, B. J. et al. Dada2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13(7), 581–583 (2016).
Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22(21), 5271–5277 (2013).
Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15(3), 799–821 (2020).
Foster, Z. S., Sharpton, T. J., Grünwald, N. J. & Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13(2), e1005404 (2017).
Oksanen, J. et al. Vegan: community ecology package. R package version 2.5-7 (2020).
Kothe, E. et al. The ectomycorrhizal community of urban linden trees in Gdańsk, Poland. Plos One 16(4), e0237551 (2021).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex. Syst. 1695 (2006).
Zhang, B. G., Zhang, J., Liu, Y., Shi, P. & Wei, G. H. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol. Biochem. 118, 178–186 (2018).
Yang, Y. et al. Elevation-related climate trends dominate fungal co-occurrence network structure and the abundance of keystone taxa on Mt. Norikura, Japan. Sci. Total Environ. 799, 149368 (2021).
Ma, B. et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 10(8), 1891–1901 (2016).
Jiao, S. et al. Core microbiota in agricultural soils and their potential associations with nutrient cycling. Msystems 4(2), e00313–00318 (2019).
Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).
Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Int. AAAI Conf. Weblogs Social Media. 3(1), 361–362 (2009).
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, 1–18 (2011).
Blankenberg, D. et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. 19, 1–21 (2010).