Ectomycorrhizal fungal community varies across broadleaf species and developmental stages


  • Cairney, J. W. G. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol. Biochem. 47, 198–208 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Clasen, B. et al. Characterization of ectomycorrhizal species through molecular biology tools and morphotyping. Scientia Agricola. 75(3), 246–254 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Mitra, D. et al. Impacts of arbuscular mycorrhizal fungi on rice growth, development, and stress management with a particular emphasis on strigolactone effects on root development. Commun. Soil Sci. Plant Anal. 52(14), 1591–1621 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Bosso, L. et al. Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a Mediterranean landscape. Acta Oecol. 78, 1–6 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lundberg-Felten, J., Martin, F. & Legue, V. Signalling in ectomycorrhizal symbiosis. Signal. Communication Plants. 11, 123–142 (2011).

    Article 

    Google Scholar
     

  • Landeweert, R. et al. Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 16(5), 248–254 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. H., Dai, Y., Kong, W. L., Zhu, M. L. & Wu, X. Q. Improvement of sphaeropsis shoot blight disease resistance by applying the ectomycorrhizal fungus Hymenochaete sp. Rl and mycorrhizal helper bacterium Bacillus pumilus HR10 to Pinus thunbergii. Phytopathology 112(6), 1226–1234 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishida, T. A., Nara, K. & Hogetsu, T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol. 174(2), 430–440 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Ectomycorrhizal fungal communities of Quercus liaotungensis along different successional stands on the Loess Plateau, China. J. For. Res. 19(4), 395–403 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rosinger, C., Sandén, H., Matthews, B., Mayer, M. & Godbold, D. L. Patterns in ectomycorrhizal diversity, community composition, and exploration types in European beech, pine, and spruce forests. Forests 9(8), 445 (2018).

    Article 

    Google Scholar
     

  • Odriozola et al. Stand age affects fungal community composition in a central European temperate forest. Fungal Ecol. 48, 100985 (2020).

  • Birch, J. D., Lutz, J. A., Turner, B. L. & Karst, J. Divergent, age-associated fungal communities of Pinus flexilis and Pinus longaeva. For. Ecol. Manag. 494, 119277 (2021).

    Article 

    Google Scholar
     

  • Jevon, F. V. et al. Experimental and observational evidence of negative conspecific density dependence in temperate ectomycorrhizal trees. Ecology 103(11), e3808 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, B. L. et al. Differences in density dependence among tree mycorrhizal types affect tree species diversity and relative growth rates. Plants 11(18), 2340 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Twieg, B. D., Durall, D. M. & Simard, S. W. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol. 176(2), 437–447 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Boeraeve, M., Honnay, O. & Jacquemyn, H. Effects of host species, environmental filtering and forest age on community assembly of ectomycorrhizal fungi in fragmented forests. Fungal Ecol. 36, 89–98 (2018).

    Article 

    Google Scholar
     

  • Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27(7), 849–864 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Beiler, K. J., Simard, S. W. & Durall, D. M. Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. J. Ecol. 103(3), 616–628 (2015).

    Article 

    Google Scholar
     

  • Guo, M. S. et al. Community composition of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica plantations of various ages in the Horqin Sandy Land. Ecol. Ind. 110, 105860 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Henkel, T. W. & Mayor, J. R. Implications of a long-term mast seeding cycle for climatic entrainment, seedling establishment, and persistent monodominance in a Neotropical, ectomycorrhizal canopy tree. Ecol. Res. 34(4), 472–484 (2019).

    Article 

    Google Scholar
     

  • Delevich, C. A., Koch, R. A., Aime, M. C. & Henkel, T. W. Ectomycorrhizal fungal community assembly on seedlings of a Neotropical monodominant tree. Biotropica 53(6), 1486–1497 (2021).

    Article 

    Google Scholar
     

  • Rudawska, M. & Leski, T. Ectomycorrhizal fungal assemblages of nursery-grown Scots pine are influenced by age of the seedlings. Forests 12(2), 134 (2021).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Fine-scale species co-occurrence patterns in an old-growth temperate forest. For. Ecol. Manag. 257(10), 2115–2120 (2009).

    Article 
    MATH 

    Google Scholar
     

  • Hao, Z. Q. et al. Natural secondary poplar-birch forest in Changbai Mountain: species composition and community structure. Chin. J. Plant. Ecol. 32(2), 251 (2008).

    MATH 

    Google Scholar
     

  • Nérée, O. & Kuyper, T. Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forests of south Cameroon. Mycorrhiza 12(1), 13–17 (2002).

    Article 

    Google Scholar
     

  • García de Jalón, L. et al. Microhabitat and ectomycorrhizal effects on the establishment, growth and survival of Quercus ilex L. seedlings under drought. Plos One 15(6), e0229807 (2020).

  • Hou, J., Mi, X., Liu, C. & Ma, K. Spatial patterns and associations in a QuercusBetula forest in northern China. J. Veg. Sci. 15(3), 407–414 (2004).


    Google Scholar
     

  • Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199(1), 41–51 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kuang, J. et al. Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest. ISME Commun. 1(1), 65 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Selosse, M., Richard, F. & Simard, S. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21(11), 621–628 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Richard, F., Millot, S., Gardes, M. & Selosse, M. A. Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol. 166(3), 1011–1023 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pec, G. J., Simard, S. W., Cahill, J. F. Jr & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 30(2–3), 173–183 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kennedy, P. G., Mielke, L. A. & Nguyen, N. H. Ecological responses to forest age, habitat, and host vary by mycorrhizal type in boreal peatlands. Mycorrhiza 28(3), 315–328 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Põlme, S. et al. Host preference and network properties in biotrophic plant–fungal associations. New Phytol. 217(3), 1230–1239 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Bono, L. M., Gensel, C. L., Pfennig, D. W. & Burch, C. L. Evolutionary rescue and the coexistence of generalist and specialist competitors: an experimental test. Proc. Royal Soc. B: Biol. Sci. 282(1821), 20151932 (2015).

    Article 

    Google Scholar
     

  • Sun, W. et al. Ectomycorrhizal fungi enhance the tolerance of phytotoxicity and cadmium accumulation in oak (Quercus acutissima Carruth.) seedlings: modulation of growth properties and the antioxidant defense responses. Environ. Sci. Pollut. Res. 29(5), 6526–6537 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, R., Shi, X. F., Liu, P. G., Wilson, A. W. & Mueller, G. M. Host shift speciation of the ectomycorrhizal genus Suillus (Suillineae, Boletales) and biogeographic comparison with its host Pinaceae. Front. Microbiol. 13, 831450 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouvrard, D., Chalise, P. & Percy, D. M. Host-plant leaps versus host-plant shuffle: a global survey reveals contrasting patterns in an oligophagous insect group (Hemiptera, Psylloidea). Syst. Biodivers. 13(5), 434–454 (2015).

    Article 

    Google Scholar
     

  • Lofgren, L., Nguyen, N. H. & Kennedy, P. G. Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations? New Phytol. 220(4), 1273–1284 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Smith, J. E., Molina, R., Huso, M. M. P. & Larsen, M. J. Occurrence of Piloderma fallax in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, USA. Can. J. Bot. 78(8), 995–1001 (2000).


    Google Scholar
     

  • Lilleskov, E., Hobbie, E. A. & Horton, T. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 4(2), 174–183 (2011).

    Article 

    Google Scholar
     

  • Gilson, A. et al. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence. Tree Physiol. 34(7), 716–729 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hutchison, L. J. & Piché, Y. J. Effects of exogenous glucose on mycorrhizal colonization in vitro by early-stage and late-stage ectomycorrhizal fungi. Can. J. Bot. 73(6), 898–904 (1995).

  • Petersen, P. M. The ecology of Danish soil inhabiting Pezizales with emphasis on edaphic conditions. Nord. J. Bot. 5(1), 98 (1985).

    Article 

    Google Scholar
     

  • Song, Z., Liu, Y., Su, H. & Hou, J. N-P utilization of Acer mono leaves at different life history stages across altitudinal gradients. Ecol. Evol. 10(2), 851–862 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hobbie, E. A. & Agerer, R. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant. Soil. 327, 71–83 (2010).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kyaschenko, J., Clemmensen, K. E., Hagenbo, A., Karltun, E. & Lindahl, B. D. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 11(4), 863–874 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Põlme, S. et al. Fungaltraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105(1), 1–16 (2020).

    Article 

    Google Scholar
     

  • Bai, Z. et al. Ectomycorrhizal fungus-associated determinants jointly reflect ecological processes in a temperature broad-leaved mixed forest. Sci. Total Environ. 703, 135475 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. Distribution patterns of dominant tree species on northern slope of Changbai Mountain. Res. Ecosyst. 5, 1–14 (1985).

    CAS 
    MATH 

    Google Scholar
     

  • Yan, T. et al. Ectomycorrhizal fungi respiration quantification and drivers in three differently-aged larch plantations. Agric. For. Meteorol. 265, 245–251 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Romano, N., Lignola, G., Brigante, M., Bosso, L. & Chirico, G. Residual life and degradation assessment of wood elements used in soil bioengineering structures for slope protection. Ecol. Eng. 90, 498–509 (2016).

    Article 

    Google Scholar
     

  • Smith, M. G., Miller, R. E., Arndt, S. K., Kasel, S. & Bennett, L. T. Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees. Tree Physiol. 38(4), 570–581 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1–43 (2015).

    Article 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using Qiime 2. Nat. Biotechnol. 37(8), 852–857 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Callahan, B. J. et al. Dada2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13(7), 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22(21), 5271–5277 (2013).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15(3), 799–821 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Foster, Z. S., Sharpton, T. J., Grünwald, N. J. & Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13(2), e1005404 (2017).

  • Oksanen, J. et al. Vegan: community ecology package. R package version 2.5-7 (2020).

  • Kothe, E. et al. The ectomycorrhizal community of urban linden trees in Gdańsk, Poland. Plos One 16(4), e0237551 (2021).

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex. Syst. 1695 (2006).

  • Zhang, B. G., Zhang, J., Liu, Y., Shi, P. & Wei, G. H. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol. Biochem. 118, 178–186 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Yang, Y. et al. Elevation-related climate trends dominate fungal co-occurrence network structure and the abundance of keystone taxa on Mt. Norikura, Japan. Sci. Total Environ. 799, 149368 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, B. et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 10(8), 1891–1901 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jiao, S. et al. Core microbiota in agricultural soils and their potential associations with nutrient cycling. Msystems 4(2), e00313–00318 (2019).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Int. AAAI Conf. Weblogs Social Media. 3(1), 361–362 (2009).


    Google Scholar
     

  • Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, 1–18 (2011).

    Article 
    MATH 

    Google Scholar
     

  • Blankenberg, D. et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. 19, 1–21 (2010).


    Google Scholar
     



  • Source link

    More From Forest Beat

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes

    Parasitism as a driver of host diversification

    Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).Article  ...
    Biodiversity
    15
    minutes

    Spillovers and legacies of land management on temperate woodland biodiversity

    MacArthur, R. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).Tscharntke, T. et al. Landscape moderation of biodiversity patterns...
    Biodiversity
    10
    minutes
    spot_imgspot_img