Reimer, J. D. et al. Marine biodiversity research in the Ryukyu Islands, Japan: Current status and trends. PeerJ 7, e6532 (2019).
Dunne, A. et al. Importance of coastal vegetated habitats for tropical marine fishes in the Red Sea. Mar. Biol. 170, 90 (2023).
DiBattista, J. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10, 8365 (2020).
Lu, Y. et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 239, 670–680 (2018).
Kawahata, H., Ohta, H., Inoue, M. & Suzuki, A. Endocrine disruptor nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan—within coral reefs and adjacent river mouths. Chemosphere 55, 1519–1527 (2004).
Imo, S., Sheikh, M., Sawano, K., Fujimura, H. & Oomori, T. Distribution and possible impacts of toxic organic pollutants on coral reef ecosystems around Okinawa Island, Japan. Pac. Sci. 62, 317–326 (2008).
Reimer, J. D. et al. Effects of causeway construction on environment and biota of subtropical tidal flats in Okinawa, Japan. Mar. Pollut. Bull. 94, 153–167 (2015).
Iguchi, A. & Hongo, C. (eds) Coral Reef Studies of Japan (Springer, 2018).
Yoshihara, N., Matsumoto, S., Machida, I. & Uchida, Y. Deciphering natural and anthropogenic effects on the groundwater chemistry of Nago City, Okinawa Island, Japan. Environ. Pollut. 318, 120917 (2023).
Hermawan, O. et al. Effective use of farmland soil samples for N and O isotopic source fingerprinting of groundwater nitrate contamination in the subsurface dammed limestone aquifer, Southern Okinawa Island, Japan. J. Hydrol. 619, 129364 (2023).
Hermawan, O. et al. Mechanism of denitrification in subsurface-dammed Ryukyu limestone aquifer, southern Okinawa Island, Japan. Sci. Total Environ. 912, 169457 (2024).
Maruyama, R. et al. Metagenomic analysis of the microbial communities and associated network of nitrogen metabolism genes in the Ryukyu limestone aquifer. Sci. Rep. 14, 4356 (2024).
Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
Miya, M. Environmental DNA metabarcoding: A novel method for biodiversity monitoring of marine fish communities. Annu. Rev. Mar. Sci. 14, 161–185 (2022).
Alexander, J. et al. Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding. Coral Reefs 39, 159–171 (2020).
Andriyono, S., Alam, M. J. & Kim, H.-W. Environmental DNA (eDNA) metabarcoding: Diversity study around the Pondok Dadap fish landing station, Malang, Indonesia. Biodiversitas 20, 3772–3781 (2019).
Komyakova, V., Munday, P. & Jones, G. Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS ONE 8, e83178 (2013).
Oka, S. I. et al. Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation. Environ. DNA 3, 55–69 (2021).
Stat, M. et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 12240 (2017).
Martiny, J. et al. Investigating the eco-evolutionary response of microbiomes to environmental change. Ecol. Lett. 26, S81–S90 (2023).
McLellan, S., Fisher, J. & Newton, R. The microbiome of urban waters. Int. Microbiol. 18, 141–149 (2015).
Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).
Palmer, T. A., Montagna, P. A., Pollack, J. B., Kalke, R. D. & DeYoe, H. R. The role of freshwater inflow in lagoons, rivers, and bays. Hydrobiologia 667, 49–67 (2011).
Palmer, T. A. et al. Determining the effects of freshwater inflow on benthic macrofauna in the Caloosahatchee Estuary, Florida. Integr. Environ. Assess. Manag. 12, 529–539 (2016).
Dorado, S. et al. Towards an understanding of the interactions between freshwater inflows and phytoplankton communities in subtropical estuaries. PLoS ONE 10, e0130931 (2015).
Raes, J. & Bork, P. Molecular eco-systems biology: Towards an understanding of community function. Nat. Rev. Microbiol. 6, 693–699 (2008).
Ares, Á. et al. Extreme storms cause rapid but short-lived shifts in nearshore subtropical bacterial communities. Environ. Microbiol. 22, 4571–4588 (2020).
Mars, B. M., Dudley, K., Yonashiro, Y., Mitarai, S. & Ares, A. Urbanization of a subtropical island (Okinawa, Japan) alters physicochemical characteristics and disrupts microbial community dynamics in nearshore ecosystems. Estuaries Coasts 47, 1266–1281 (2024).
Hamamoto, K. et al. Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan. Environ. Microbiome 19, 54 (2024).
Nawa, N. & Miyazaki, K. The analysis of saltwater intrusion through Komesu underground dam and water quality management for salinity. Paddy Water Environ. 7, 71–82 (2009).
Yoshimoto, S., Tsuchihara, T., Ishida, S. & Imaizumi, M. Development of a numerical model for nitrates in groundwater in the reservoir area of the Komesu subsurface dam, Okinawa, Japan. Environ. Earth Sci. 70, 2061–2077 (2013).
Ke, S., Chen, J. & Zheng, X. Influence of the subsurface physical barrier on nitrate contamination and seawater intrusion in an unconfined aquifer. Environ. Pollut. 284, 117528 (2021).
Chen, J., McIlroy, S., Archana, A., Baker, D. & Panagiotou, G. A pollution gradient contributes to the taxonomic, functional, and resistome diversity of microbial communities in marine sediments. Microbiome 7, 104 (2019).
Lo, L. et al. How elevated nitrogen load affects bacterial community structure and nitrogen cycling services in coastal water. Front. Microbiol. 13, 1062029 (2022).
Zhang, F. et al. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network. Front. Environ. Sci. Eng. 14, 1–12 (2020).
Chariton, A. et al. Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries. Environ. Pollut. 203, 165–174 (2015).
Wang, Z. et al. Variation in structure and functional diversity of surface bacterioplankton communities in the Eastern East China Sea. J. Mar. Sci. Eng. 12, 69 (2024).
McManus, G., Zhang, H. & Lin, S. Marine planktonic ciliates that prey on macroalgae and enslave their chloroplasts. Limnol. Oceanogr. 49, 308–313 (2004).
Hanahara, N. Cryptic diversity of Eviota (Teleostei: Gobiidae) and their habitat use in the shallow waters of Okinawa Island. Mar. Biodiv. 53, 61 (2023).
Chiang, M. C. & Chen, I. S. Taxonomic review and molecular phylogeny of the triplefin genus Enneapterygius (Teleostei: Tripterygiidae) from Taiwan, with descriptions of two new species. Raffles Bull. Zool. Supplement 19, 183–201 (2008).
Minamoto, T. et al. An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols. Environ. DNA 3, 8–13 (2021).
Takahashi, S. et al. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).
Sinniger, F. et al. Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos. Front. Mar. Sci. 3, 92 (2016).
Iguchi, A. et al. Utilizing environmental DNA and imaging to study the deep-sea fish community of Takuyo-Daigo Seamount. npj Biodivers. 3(1), 14 (2024).
Maeda, A. et al. Environmental DNA metabarcoding of foraminifera for biological monitoring of bottom water and sediments on the Takuyo-Daigo Seamount in the northwestern Pacific. Front. Mar. Sci. 10, 1243713 (2024).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Callahan, B. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
Iwasaki, W. et al. MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol. Biol. Evol. 30, 2531–2540 (2013).
Sato, Y., Miya, M., Fukunaga, T., Sado, T. & Iwasaki, W. MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol. Biol. Evol. 35, 1553–1555 (2018).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2023).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.6–4 (2022).
Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).
Suzuki, R. & Shimodaira, H. Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extensions. R Package Ver. 2(1), 3 (2022).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Roberts, D.W. Package ‘labdsv’. http://r.meteo.uni.wroc.pl/web/packages/labdsv/labdsv.pdf (2016).